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Abstract Satellite observations reveal substantial burning during the 2007 and 2010 tropical South America
fire season, with both years exhibiting similar total burned area. However, 2010 CO fire emissions, based on
satellite CO concentration measurements, were substantially lower (�28%), despite the once-in-a-century
drought in 2010. We use Bayesian inference with satellite measurements of CH4 and CO concentrations and
burned area to quantify shifts in combustion characteristics in 2010 relative to 2007. We find an 88% probability
in reduced combusted biomass density associated with the 2010 fires and an 82% probability of lower fire
carbon losses in 2010 relative to 2007. Higher combustion efficiency was a smaller contributing factor to the
reduced 2010 CO emissions. The reduction in combusted biomass density is consistent with a reduction (4–6%)
in Global Ozone Monitoring Experiment 2 solar-induced fluorescence (a proxy for gross primary production)
during the preceding months and a potential reduction in biomass (≤8.3%) due to repeat fires.

1. Introduction

Tropical fire carbon (C) losses, largely in the form of CO2, CO, and CH4, amount to a significant portion of the
global carbon budget. Tropical South America fires accounted for 5–35% of annual tropical fire CO2 emissions
during 2001–2011 (Global Fires Emissions Database) [van der Werf et al., 2010]. Larger fire C losses typically
occur during drier years [Chen et al., 2013b]. For example, during the once-in-a-century 2010 Amazon
drought [Lewis et al., 2011], the combined effect of larger fires and reduced terrestrial C uptake resulted in a
reversal of the net atmosphere-to-land C flux [Gatti et al., 2014]. Fires can also have long-term effects on C
cycling, resulting from increased tree mortality and shifting toward fire-resilient species [Brando et al., 2014].

Emissions of CO2, CO, and CH4 from fires are governed by the amount of available biomass C, the fraction
of biomass C combusted (combustion completeness), and the fraction of combusted C emitted as CO2

(combustion efficiency). Droughts can lead to changes in biomass burning traits, including reductions in fuel
load [Randerson et al., 2005; Chen et al., 2013a] and fuel moisture [Hély et al., 2003], which in turn will influence
overall combustion efficiency and completeness [Korontzi et al., 2003; Hély et al., 2003; Soares Neto et al., 2009];
these shifts can significantly alter large-scale fire C loss rates. Overall, placing top-down constraints on
combustion characteristics and their interannual variations is essential to better quantify continental-scale
terrestrial C exchange.

The relative scarcity of large-scale, repeat measurements of atmospheric CO2 has posed a significant barrier to
estimating C losses from tropical fires. CO and CH4 are the next largest gaseous forms of C loss from fires
[Andreae and Merlet, 2001]. Based on in situ measurements of the ratios of CO2 to CO and CH4 (or CO2 : CO : CH4)
within fire plumes, CO and CH4 can provide a constraint on total C emissions. However, CO and CH4 emission
factors vary among major land cover types [Andreae and Merlet, 2001; Akagi et al., 2011], and associated
estimates of total C losses will inherently remain highly uncertain. Observations of burned area provide an
independent constraint on fire C losses. Within burned areas, typically a high fraction of litter and foliar C is
combusted, while coarser aboveground woody C is only partially combusted [Ward et al., 1996; Prasad et al.,
2001]. The overall combustion completeness also varies as a result of fuel moisture [Hély et al., 2003] and fuel
types [Korontzi et al., 2003; Soares Neto et al., 2009] among other attributes. As a result, biomass density and
combustion completeness remain dominant sources of uncertainty in bottom-up C loss estimates. Ultimately,
trace gas, biomass, and burned area constraints can be used together to reduce uncertainties on fire C loss rates.
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2. Remote-Sensing Constraints

Our study is focused on tropical South America (study region: 25°S–5°S, 90°W–30°W): according to the Global
Fires Emissions Database (GFEDv3) [van der Werf et al., 2010], biomass burning within the study region
amounts to 92% of total South America emissions during 2001–2011. Burned area within this region peaks
during the dry season (July–October; Figure 1). We find large-scale agreements between the timing and
magnitude of MODIS (Moderate Resolution Imaging Spectroradiometer) burned area [Giglio et al., 2013],
TES (Tropospheric Emission Spectrometer) CO retrievals (tes.jpl.nasa.gov), and MOPITT (Measurements Of
Pollution In The Troposphere) CO V6J retrievals [Worden et al., 2010; Deeter et al., 2014]. Interannual variations
in Tropical Rainfall Measuring Mission (TRMM) precipitation retrievals [Huffman et al., 2007] and Gravity
Recovery and Climate Experiment (GRACE) water storage retrievals [Landerer and Swenson, 2012] are broadly
consistent with the dry-season CO and burned area magnitudes.

Two of the major fire years during this time period (2007 and 2010) exhibited similar burned areas (Figure 2a).
However, in contrast to recent major droughts in 2005 and 2010 [Lewis et al., 2011; Gloor et al., 2013], 2007
was not a major drought year. The total aboveground biomass within the 2010 burned areas [Saatchi et al.,
2011] is 13% higher, and GFEDv3 bottom-up emission estimates amount to higher CO emissions (+24%) and
higher total C loss (+23%) from 2010 fires, relative to 2007 [van der Werf et al., 2010]. However, TES and
MOPITT column-integrated CO data (Figure 1) do not exhibit enhanced CO concentrations in 2010, relative to
2007. Moreover, CO inverse emission estimates based on MOPITT CO observations are 28% lower in 2010,
relative to 2007 (Figure 2b). Details on the inverse CO emission estimates are provided in Text S1 of the
supporting information. Similarly, we find no significant enhancement in 2010 Ozone Monitoring Instrument
(OMI) NO2 concentrations relative to 2007 (Figure S3 in the supporting information).

We use the Worden et al. [2013a, 2013b] approach to determine fire plume CH4/CO ratios from Aura TES
column-integrated CO and CH4 observations over the study region. We find a higher 2010 CH4/CO
(0.11 g CH4 g

�1 CO) relative to 2007 (0.07–0.09 g CH4 g
�1 CO; see the supporting information for details):

this increase supports the explanation of a higher forest fire contribution to total CH4 and CO emissions in
2010, because forest fires typically have a higher CH4-to-CO ratio (i.e., higher CH4/CO) relative to savanna
and grassland fires [Andreae and Merlet, 2001] (see Figure 2c). However, the relative increase in forest fire
emissions alone cannot account for a 28% decrease in CO emissions without a sizeable decrease in savanna
and agricultural fire CO emissions. Likewise, elevated CH4/CO in 2010 cannot be solely attributed to lower
CO emission rates due to lower fuel moisture (i.e., higher combustion efficiency), as CH4 and CO emissions
factors are positively correlated [Korontzi et al., 2003; Soares Neto et al., 2009].

Therefore, lower than expected CO emissions in 2010 may have occurred as a result of a combined higher
forest fire contribution and lower CO emission factors: a large-scale shift from smoldering to flaming fires

Figure 1. (top) Monthly MODIS burned area (dark grey), MOPITT CO (dark green), and TES CO (light green) during
2006–2011 within the study area. (inset) Map showing the tropical South America study area. (bottom) Annual mean
GRACE equivalent water height (EWT) and TRMM total precipitation within the study area.
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[Soares Neto et al., 2009] may have resulted in increased combustion efficiency (i.e., lower CO emission rates).
Alternatively, a 2010 decrease in combusted biomass density (biomass density × combustion completeness)
may have resulted in both lower CO emissions and lower total fire C loss. A reduction in biomass may have
occurred as a result of reduced gross primary production (GPP) during the 2010 wet season [Lewis et al.,
2011], which in turn could lead to a reduction in easily combustible fuel during the dry season [Randerson
et al., 2005; Chen et al., 2013a].

To establish why in 2010, relative to 2007, burned area was higher (+5%) while 2010 CO emissions are lower
(�28%), we use Bayesian inference to determine the probability of four hypotheses concerning a 2007-to-2010
increase/decrease in combustion efficiency and combusted biomass density: the hypotheses are summarized
in Table 1. By quantifying the probability for each hypothesis, we can identify the likely underlying factors
leading to greater burned area and less CO emissions in 2010, relative to 2007. Moreover, by quantifying the
increase/decrease in combusted biomass density and combustion efficiency, we can quantify the difference
between 2007 and 2010 fire C losses. We bring (a) MOPITT CO concentrations, (b) TES CH4/CO ratios, (c) MODIS
burned area, (d) aboveground total biomass [Saatchi et al., 2011], and (e) land cover type CO and CH4 emission
factor prior information [Andreae and Merlet, 2001] together in a Bayesian inference framework to quantify
changes in combusted biomass density (henceforth CBD= [combusted biomass]/[area]; unit in kgCm�2),

modified combustion efficiency
(henceforth MCE= [CO2]/[CO2+CO
+CH4]; unit in [kg C] [kg C]�1), and
total South America fire C losses in
2007 and 2010.

3. Estimates of Burning
Coefficients

We express fire C fluxes of trace gas
species s from land cover type b, Fs,b, as

Fs;b ¼ Ab � CBDb � Es;b (1)

Table 1. Hypotheses 1–4a

Hypotheses
Change in 2010 Combusted Biomass Density (CBD)
and Combustion Efficiency (MCE), Relative to 2007

H1 Decrease in CBD and decrease in MCE.
H2 Decrease in CBD and increase in MCE.
H3 Increase in CBD and increase in MCE.
H4 Increase in CBD and decrease in MCE.

aHypotheses 1–4 outline all combinations of combusted biomass density
(CBD: [combusted biomass]/[area]; unit in kgm�2) and modified combustion
efficiency (MCE: [CO2]/[CO2 + CO + CH4]; unit in (kg C) (kg C)�1) changes
between 2007 and 2010.

Figure 2. (a) Savanna, forest, agriculture and total burned area and 2007-to-2010 percent changes in total burned area
within the study region. (b) Bottom-up (GFEDv3) 2007 and 2010 total fire C emissions and bottom-up (GFEDv3) and
top-down (MOPITT) estimates of 2007 and 2010 fire CO within the study area. (c) Land cover-specific CH4/CO mass ratios
and associated uncertainties, for savanna, forest, and agriculture fires emissions; TES CH4/CO ratios based on monthly TES
column-integrated CO and CH4 concentrations within the study area.
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where Ab, CBDb, and Eb are the burned area (m2), combusted biomass density (kg Cm�2) within each land
cover type b, and Es,b is the corresponding carbon emission factor (kg C species per kg C combusted) for each
trace gas species s within each land cover type b. CBDb can be expressed as

CBDb ¼ Cb � Bb (2)

where Cb and Bb are the combustion completeness and biomass density in land cover type b, respectively. We
express modified combustion efficiency (MCEb) as

MCEb ¼ 1� ECO;b � ECH4 ;b (3)

given that biomass burning C losses other than CH4, CO2, and CO emissions are negligible [Andreae and
Merlet, 2001].

We determine the total burned area in 2007 and 2010 (Ab) during the fire season (May–December) for each
land cover type from the Giglio et al. [2013] MODIS burned area 0.25° × 0.25° gridded product: based on
the burned area land cover types, we determine the Ab for three major land cover type groups, savannas

and grasslands, forests, and agriculture. We treat CBDy
b and Eys;b (for s= [CO, CH4]; for b= [(1) savanna and

grasslands, (2) forest, and (3) agriculture]; for y= [2007, 2010]) as unknown quantities (henceforth parameter
vector x). Based on the study region-scale observations O, which consist of CO and CH4 observational
constraints (total May–December 2007, 2010 MOPITT-derived CO emissions, and monthly TES CH4/CO ratios),
we use Bayesian inference to derive the probability density function of x given O, p(x|O), as follows:

p x OÞ∝p O xÞ p xð Þjðjð (4)

where p(O|x) is the probability ofO given x and p(x) is the prior probability of x. For a given parameter vector
x, p(O|x) is determined by comparing study area-integrated fluxes (

X3

b¼1
FCO;b and

X3

b¼1
FCH4;b) against TES

CH4/CO and total MOPITT-derived CO emission estimates and their associated uncertainty characteristics. For a
given parameter vector x, p(x) consists of prior constraints on CBDy

b and Eys;b and their associated uncertainty
characteristics. We use a Metropolis Hastings Markov Chain Monte Carlo approach (MHMCMC) [e.g., Ziehn et al.,
2012; Bloom and Williams, 2014] to derive 2×105 samples of x; based on their distribution, we derive the
probability density functions ofCBDy

b andE
y
s;b. Details on the observational and prior constraints, their associated

uncertainties, and the MHMCMC approach are included in the supporting information.

From 2× 105 samples of CBDy
b and Eys;b, we determine the region-wide overall combusted biomass density

(CBDy) and modified combustion efficiency (MCEy) for years y (y= 2007, 2010), as follows:

CBDy ¼
X3

b¼1
Ayb CBD

y
bX3

b¼1
Ay
b

; MCEy ¼
X3

b¼1
1� EyCH4 ;b

� EyCO;b

� �
AybCBD

y
bX3

b¼1
AybCBD

y
b

; (5)

We also determine the probability density function of the carbon fluxes for each vegetation type based on
the 2 × 105 CBDb samples. We calculate total C losses FC as the overall sum of total C losses (Ab × CBDb) from
savanna, forest, and agriculture fires. We determine individual land cover type and region-wide probabilities
for hypotheses 1–4 as follows:

Probability of HN ¼ No: of samples x where HN is true½ �= 2 � 105
� ��100%: (6)

4. Combusted Biomass Density, Efficiency, and C Losses

Table 2 describes the probability of 2007-to-2010 changes in combusted biomass density [CBD: g C
combusted/burned area] and modified combustion efficiency [MCE: kg C (CO2)/kg C (CO+CH4 + CO2)]. For
example, there is a 25% probability that both CBD and MCE increased in 2010 within savanna fires, as shown
in the “H1” row and “savanna” column of Table 2. Within the whole study area, we find that lower CBD
and higher MCE—hypothesis 2—is the most probable cause for lower CO emissions and larger burned
area in 2010, relative to 2007 (H2: 60%; see Figure 3). In particular, a change in forest and savanna fire
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characteristics likely explains the reduced CO emissions, with 47% and 55% probabilities that there were both
a reduction in CBD and an increase in MCE within these fires. While it is possible that CBD increased and
MCE decreased within any of the three regions, there is a 0% probability that all three regions exhibited
this change in fire characteristics. The probability density function of 2007-to-2010 changes in MCE
and CBD is shown in Figure 3. We could not resolve the probable changes in agricultural combustion traits
(H1: 26%, H2: 28%, H3: 24%, and H4: 22%), likely because these is a relatively small contribution to total
C emissions from agricultural fires in both years (Aagr was 20% and 22% of total burned area in 2007
and 2010).

The hypotheses 1–4 probabilities depend on the uncertainties for the combusted biomass density and
emission factor parameters in equation (1) (CBDb and Es,b), as well as the observation uncertainties; these are
reported in the supporting information. The uncertainties that most strongly affect these outcomes are those
related to the mean and the 2007-to-2010 change in equation (1) parameters. For example, we currently
assume a one-sigma probability that fire characteristics will change by less than a factor of 2 between 2007
and 2010. This is a conservative estimate of interannual variations in fire characteristics, based on the
seasonal range of reported combustion factor and efficiency measurements [e.g., Korontzi et al., 2003; Hély
et al., 2003], as we are not aware of any interannual measurements of these parameters. However, even when
we increase this uncertainty by a factor of 2, our overall conclusions remain unchanged (Table S3 in the
supporting information). Additional potential sources of error in our simple model (equation (1)) include
biases in MODIS-derived total fire season burned area and land cover classifications [Giglio et al., 2013]. We
also note the potential effect of seasonal changes in CBD and MCE: biomass burning combustion factor and
efficiency can vary significantly on monthly time scales [Korontzi, 2005].

Figure 3. (left) Probability distribution of 2007-to-2010 combusted biomass density change (CBD, y axis) and combustion efficiency change (MCE, x axis) within the
study area. Positive changes in MCE correspond to a decrease in CO emission factors between 2007 and 2010. The probabilities of hypotheses 1–4 (Table 1) are
shown within each quadrant. (right) The 2007-to-2010 difference in biomass burning total C emissions based on optimized CBD values, in comparison to bottom-up
2007-to-2010 total C emissions difference (based on total GFEDv3 CO2 + CO + CH4 from savanna, forest, and agriculture fires); the orange/green numbers denote the
top-down probability of less/more total C emissions from 2010 fires relative to 2007 fires.

Table 2. Probability of Hypotheses 1–4a

Hypothesis 2010–2007 CBD and MCE Change

Savanna Forests Agriculture Whole Study Area

Hypothesis Probability

H1 CBD ↓ MCE ↓ 25% 19% 26% 28%
H2 CBD ↓ MCE ↑ 47% 55% 28% 60%
H3 CBD ↑ MCE ↑ 19% 17% 24% 12%
H4 CBD ↑ MCE ↓ 8% 9% 22% 0%

aProbabilities of hypotheses 1–4 (see Table 1) based on Bayesian inference of combusted biomass density (CBD) and
modified combustion efficiency (MCE): land-surface and atmospheric constraints on fire C emissions were used to calculate
optimal 2007 and 2010 CBD and MCE values.
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5. Discussion and Implications

If we combine the outcomes for the change in combusted biomass density (g C combusted/burned area) and
modified combustion efficiency (CO2/[CO+CH4 + CO2]) with the change in burned area (equation (1)), we
find that total C emissions were likely lower by ~119 Tg C in 2010 relative to 2007 (Figure 3). However, there is
a non-zero (17.6%) probability of an increase in carbon emissions. In contrast, the bottom-up (or GFEDv3) fire
emissions were higher by +123 Tg C in 2010, relative to 2007.

For the whole study area, the probability of a 2007-to-2010 combusted biomass density reduction (H1 and
H2) is 88%, and the probability of a modified combustion efficiency increase (H2 and H3) is 72% (Figure 3).
The 2007-to-2010 increase in modified combustion efficiency (median increase = +0.01) is consistent with
observed increases in combustion efficiency due to drier fuel conditions [Korontzi et al., 2003; Soares Neto
et al., 2009]. The median 2007-to-2010 combusted biomass density reduction is 22%: based on equation (2),
this reduction corresponds to either (a) a 22% reduction in biomass density or (b) a 22% reduction in the
combustion completeness or (c) a combined change in both. We next discuss the potential causes of
2007-to-2010 changes in biomass and/or combustion completeness.

Reduced productivity during the regional drought in 2010 may have led to a reduction in biomass available for
combustion: as a large proportion of biomass loss from fires is derived from leaf and wood litter C, a reduction
in the preceding wet season GPP and corresponding fuel load [e.g., Randerson et al., 2005] is a viable cause for
a reduction of CO and fire C losses in 2010 shown in Figure 3. We find a 4–6% reduction in Global Ozone
Monitoring Experiment (GOME)-2 measurements of solar-induced fluorescence (henceforth SIF) [Joiner et al.,
2013] in 2010 relative to 2007 during the time period preceding the major fires (February–June) within the
study area (see the supporting information). SIF is a proxy for GPP [Frankenberg et al., 2011], which in turn
determines the fuel load during the subsequent fire season [e.g., Randerson et al., 2005]. Reduction in biomass
density between 2007 and 2010may have also occurred due to repeat fires and deforestation; we estimate that
repeat fires could amount for up to an 8.3% reduction in biomass within burned areas between 2007 and 2010
(see the supporting information).

Combustion completeness (the fraction of biomass burned) is typically expected to increase as a result of
drier conditions [Hély et al., 2003; Korontzi, 2005; van der Werf et al., 2010]. However, a reduction in GPP,
leading to less combustible fuel, could in turn lead to diminished fire persistence [e.g., Giglio et al., 2006],
therefore effectively suppressing large-scale combustion completeness within burned areas. Overall
reductions in biomass and combustion completeness are both possible explanations for a reduction in
combusted biomass density, and we currently do not have the large-scale constraints needed to differentiate
between the two. We therefore require further data constraints to better quantify trends in fire C losses and
biomass burning characteristics.

Orbiting Carbon Observatory-2 XCO2 data [Crisp et al., 2008] will place stronger constraints on the interannual
carbon emissions from fires. For example, both a 2007-to-2010 increase and decrease of combusted biomass
density are possible, as shown in Table 2. Currently combusted biomass density is indirectly constrained
by the CO and CH4 fromMOPITTand TES, but these trace gases represent 2–9% of carbon in biomass burning
emissions. XCO2-derived CO2 fluxes would place a stronger constraint on combusted biomass density.
Similarly, XCO2 data from biomass burning plumes would place stronger constraints on combustion efficiency.
Satellite-derived aboveground biomass data, such as the future Global Ecosystem Dynamics Investigation Lidar
and BIOMASS missions [Krainak et al., 2012; Hélière et al., 2014], can also be used to deconvolve changes in
biomass density and combustion completeness.
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