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A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a
charge density wave initial state, and theoretical works identified a set of many-body “scar states” showing
nonthermal behavior in the Hamiltonian as potentially responsible for the atypical dynamics. In the same
nonintegrable Hamiltonian, we discover several eigenstates at an infinite temperature that can be
represented exactly as matrix product states with a finite bond dimension, for both periodic boundary
conditions (two exact E ¼ 0 states) and open boundary conditions (two E ¼ 0 states and one each

E ¼ � ffiffiffi
2

p
). This discovery explicitly demonstrates the violation of the strong eigenstate thermalization

hypothesis in this model and uncovers exact quantum many-body scar states. These states show signatures
of translational symmetry breaking with a period-2 bond-centered pattern, despite being in one dimension
at an infinite temperature. We show that the nearby many-body scar states can be well approximated as
“quasiparticle excitations” on top of our exact E ¼ 0 scar states and propose a quasiparticle explanation of
the strong oscillations observed in experiments.

DOI: 10.1103/PhysRevLett.122.173401

Introduction.—Understanding quantum thermalization
in isolated systems has attracted a lot of attention, due
to both developments in cold atom experiments and
fundamental theoretical interest. The eigenstate thermal-
ization hypothesis (ETH) has emerged as a paradigmatic
mechanism for quantum thermalization [1,2]. The ETH
postulates that a generic many-body system thermalizes at
the level of individual eigenstates: Eigenstates at the
same energy density give the same expectation values of
“local-enough” observables. The strong version of the ETH
requires this on every eigenstate. While an analytical
proof is elusive, many numerical studies provided strong
corroborations [3–6]. However, some systems showed
atypical dynamics [7,8] due to special low-energy states
[9–11].
A recent Rydberg cold atom experiment [12] hinted

at a new scenario, where the system exhibited atypical
quench dynamics starting from a charge density wave
(CDW) state at effective temperature T ¼ ∞. In contrast,
a uniform initial state with the same energy density showed
the expected thermalization behavior. References [13,14]
proposed that this phenomenon is related to the presence of
special eigenstates—quantum many-body scar states—
which violate the ETH in the otherwise thermal spectrum,
analogous to the nonergodic single-particle scar wave
functions inside the chaotic single-particle spectrum [15].
Another nonintegrable system hosting nonthermal eigen-

states is the Affleck-Lieb-Kennedy-Tasaki model [16].
Reference [17] constructed families of exact eigenstates
in this model. Using matrix product states (MPSs), fur-
thermore, Ref. [18] showed that these exact eigenstates

with a finite energy density have logarithmic entanglement
scaling in the subsystem size. These papers thus provided
an important analytical demonstration of exact scar states
that violate the ETH [19]. Other works [20,21] also
proposed a special construction to embed nonthermal
eigenstates into the many-body spectrum.
Remarkably, in the same Rydberg atom Hamiltonian

studied in Refs. [12–14,22,23], we have discovered some
exact scar states with a finite bond dimension at an energy
density corresponding to T ¼ ∞. Our exact MPS descrip-
tion shows that these exact scar states have constant
entanglement scaling and are, hence, even more “non-
thermal” than the exact scar states at a finite energy
density in Refs. [17,18]. Furthermore, these exact scar
states break the lattice translation symmetry, despite being
at T ¼ ∞. Thus, the strong ETH is violated in the
Rydberg atom chain. Using a “single-mode approxima-
tion” (SMA) and generalizing it to a “multimode approxi-
mation” (MMA) on top of our exact scar states, we also
find good approximations to nearby scar states, potentially
relating the existence of other scar states to our exact
states.
Constrained Hilbert space and Hamiltonian.—Consider

Rydberg atoms on a chain with L sites, and denote j0i as
the atomic ground state and j1i as the Rydberg excitation.
The Rydberg blockade prohibits states with j…11…i on
any two neighboring sites [12]. Despite the resulting non-
tensor-product structure of the Hilbert space, one can still
have the ETH concept [24].
The dynamics of this system is described by the so-called

PXP model:
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H ¼
XL−1
j¼2

Pj−1XjPjþ1 þH1 þHL; ð1Þ

where P ¼ j0ih0j is the projector to the Rydberg atom
ground state and X ¼ j0ih1j þ j1ih0j describes transitions
between the ground and excited states. (Previousworks [25–
28] studied low-energy states of related Hamiltonians.)
For periodic boundary conditions (PBC), we have H1 ¼
PLX1P2 and HL ¼ PL−1XLP1, while for open boundary
conditions (OBC), H1 ¼ X1P2 and HL ¼ PL−1XL. For
PBC, the Hamiltonian has translation symmetry Tx and
inversion symmetry I, while forOBC, there is only inversion
symmetry relative to the midpoint, I∶j → L − jþ 1.
Furthermore, one can define “particle-hole transformation”
Cph ¼

Q
jZj, where Z ¼ j1ih1j − j0ih0j. This satisfies

CphHC−1ph ¼ −H, which guarantees that the spectrum is
symmetric around zero energy; moreover, the intertwining
of Cph with the inversion symmetry produces exponentially
many zero-energy eigenstates [14,29].
The above Hamiltonian, despite its simple appearance, is

not trivially solvable. While its level-spacing statistics
indicates its nonintegrability [14], a recent work [23] has
suggested that it could be a deformation from some
integrable Hamiltonian.
Inspired by Ref. [17], we inspected entanglement spectra

of eigenstates of the PXP model for OBC and discovered
eigenstates at E ¼ � ffiffiffi

2
p

with a finite bond dimension. We
then reverse engineered a simple MPS representation for
these eigenstates and further identified two more exact
eigenstates with E ¼ 0 for OBC and two exact eigenstates
at E ¼ 0 for PBC. Hence, these states analytically dem-
onstrate that the PXP Hamiltonian violates the strong ETH
and are therefore exact quantum many-body scar states.
Exact scar states for PBC.—These eigenstates exist for

even L (assumed throughout) and are expressed using
MPSs. We define 2 × 3 and 3 × 2 matrices

B0 ¼
�
1 0 0

0 1 0

�
; B1 ¼

ffiffiffi
2

p �
0 0 0

1 0 1

�
; ð2Þ

C0 ¼

0
B@

0 −1
1 0

0 0

1
CA; C1 ¼

ffiffiffi
2

p
0
B@

1 0

0 0

−1 0

1
CA: ð3Þ

Two (unnormalized) exact scar states for PBC can be
expressed as

jΦ1i ¼
X
fσg

Tr½Bσ1Cσ2…BσL−1CσL �jσ1…σLi ð4Þ

and jΦ2i ¼ TxjΦ1i, where σj ¼ 0 or 1. The wave functions
satisfy the constraints, since B1C1 ¼ 02×2 and C1B1 ¼
03×3. In Supplemental Material [30], we prove HjΦii ¼ 0.

Since these states are at E ¼ 0, their effective temperature
is T ¼ ∞.
The norm of the states is hΦijΦii ¼ 3Lb þ 2þ ð−1ÞLb ,

where Lb ≡ L=2. The two states are not orthogonal and
have overlap hΦ1jΦ2i¼2½ð ffiffiffi

2
p

−1ÞLbþð−1ÞLbð ffiffiffi
2

p þ1ÞLb �;
however, they are linearly independent for Lb > 3 [for
Lb ≤ 3, we happen to have jΦ2i ¼ ð−1ÞLb jΦ1i]. For
Lb > 3, the states jΦ1;2i in fact break the translation
symmetry Tx, while by construction they are invariant
under T2

x. One can form degenerate states jΦK¼0=πi ¼
jΦ1i � jΦ2i that carry definite momenta 0 and π, which can
be viewed as a finite-size signature of the Tx breaking that
appears in the thermodynamic limit.
Let us examine properties of the state jΦ1i (properties of

jΦ2i simply follow). First, the breaking of Tx in this state
cannot be detected by any one-site observable, since the
one-site reduced density matrices are the same for all sites,
ρone-site ¼ 2

3
j0ih0j þ 1

3
j1ih1j in the thermodynamic limit

[30]. In particular, for the Rydberg excitation number
nj ¼ j1ih1j, we have hΦ1jnjjΦ1i=hΦ1jΦ1i ¼ 1

3
. This vio-

lates the ETH, since, at T ¼ ∞, the Gibbs ensemble
predicts hnjiT¼∞ ¼ ð1þ ϕ2Þ−1 ≈ 0.2764, where ϕ ¼ ð1þffiffiffi
5

p Þ=2 is the golden ratio.
On the other hand, two-site observables can detect the Tx

breaking, as can be seen from the corresponding reduced
density matrices for subsystems [1, 2] and [2, 3] in the jΦ1i
state:

ρtwo-site½1;2� ¼ 1

3
ðj00ih00j þ j01ih01j þ j10ih10jÞ; ð5Þ

ρtwo-site½2;3� ¼ 1

3
ðj00ih00j þ j01ih01j þ j10ih10jÞ

−
1

9
ðj01ih10j þ j10ih01jÞ: ð6Þ

In particular, we see that j0j1jþ1ih1j0jþ1j þ H:c: has
expectation value 0 for j odd and −2=9 for j even.
We also list the symmetry properties of these exact scar

states (see Ref. [30] for the proof). For L even, the inversion
I defined earlier is relative to a bond center and is not
broken. We find IjΦ1i ¼ ð−1ÞLb jΦ1i. For jΦ2i, note that,
since ITx ¼ T−1

x I and T2
xjΦii ¼ jΦii, we obtain also

IjΦ2i ¼ ð−1ÞLb jΦ2i. While Cph is not a symmetry of H,
our states are, in fact, eigenstates of Cph. We have CphjΦii ¼
ð−1ÞLb jΦii for both i ¼ 1, 2.
Exact scar states for OBC.—We also found exact scar

states for OBC with the same bulk MPSs. Defining
“boundary vectors” v1 ¼ ð1; 1ÞT and v2 ¼ ð1;−1ÞT , we
can write four exact scar states

jΓα;βi ¼
X
fσg

vTαBσ1Cσ2…BσL−1CσLvβjσ1…σLi; ð7Þ
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where α; β ∈ f1; 2g. The eigenenergies are E ¼ 0 for
jΓα;αi, E ¼ ffiffiffi

2
p

for jΓ1;2i, and E ¼ −
ffiffiffi
2

p
for jΓ2;1i;

see Ref. [30].
It is interesting to examine the energy density profiles.

Figures 1(a) and 1(b) show hXjiα;β ≡ hΓα;βjXjjΓα;βi=
hΓα;βjΓα;βi in each state [30]. We can see that there are
localized “energy lumps” at the edges of the chain. The
profiles decay exponentially into the bulk with decay length
2 lnð3Þ. The integrated energy over each lump is

ffiffiffi
2

p
=2 or

−
ffiffiffi
2

p
=2 depending on the termination, which can be

thought as representing different “edge states.”
The symmetry properties of jΓα;βi can be derived in a

similar fashion as for PBC [30]. In particular, we have
IjΓ1;2i ¼ ð−1ÞLb−1jΓ1;2i and IjΓ2;1i ¼ ð−1ÞLb−1jΓ2;1i,
while IjΓ1;1i ¼ ð−1ÞLb jΓ2;2i and IjΓ2;2i ¼ ð−1ÞLb jΓ1;1i.
As for the particle-hole transformation, we obtain
CphjΓ1;2i ¼ ð−1ÞLb jΓ2;1i and CphjΓ1;1i ¼ ð−1ÞLb jΓ2;2i.
The fact that jΓ1;2i and jΓ2;1i are eigenstates of I means
that they can be nondegenerate, which is what we found in
exact diagonalization (ED). As expected, these E ¼ � ffiffiffi

2
p

scar states are related by Cph. Since they are nondegenerate,
their finite bond dimensions are not related to the expo-
nential degeneracy of the E ¼ 0 sector. Their existence
again demonstrates the violation of the ETH, even without
worrying about potential subtleties in the degenerate
space [29].
We can also calculate entanglement in jΓα;βi for any cut

and system size [18,31]. In the thermodynamic limit, across
a cut between C2b and B2bþ1 (bond-dimension D ¼ 2 cut),
we find [30] the squared Schmidt values 1=2 and 1=2,
which gives the von Neumann entanglement entropy
SOBC;D¼2
vN ¼ ln 2. Cutting instead across B2bþ1 and C2bþ2

(D ¼ 3), the squared Schmidt values are 2=3, 1=6, and 1=6,
and SOBC;D¼3

vN ¼ − 2
3
lnð2

3
Þ − 1

3
lnð1

6
Þ ≈ 0.868.

For the states jΦii in PBC and a large subregion, there
are two entanglement cuts, and the entanglement entropy
will be the sum of the OBC entropies associated with each
cut (and will remain finite in the thermodynamic limit).
We can then predict that, for the states jΦK¼0=πi,
the entanglement entropy will be SPBCvN ¼SOBC;D¼2

vN þ
SOBC;D¼3
vN þln2≈2.254.
Possible relation to Z2 scar states.—Turner et al. [13,14]

focused on the PXPmodel with PBC and identified a set of
quantum many-body scar states (called Z2 scar states)
through the overlap of eigenstates jEi with the CDW states
jZ2i ¼ j10…10i or jZ0

2i ¼ j01…01i. The most prominent
such scar states have the largest overlap and the smallest
entanglement entropy compared to nearby states, but there
are also “bands” (or “towers”) of weaker scar states close to
each primary one. The consecutive primary scar states have
an almost equal energy separation of ≈1.33. The scar states
and this frequency were proposed to be responsible for the
strong oscillations observed in quenches from the jZ2i state.
It is convenient to consider states jZð�Þ

2 i ¼ ðjZ2i�
jZ0

2iÞ=
ffiffiffi
2

p
, which have inversion quantum numbers I ¼ 1

and I ¼ −1 and carry momenta K ¼ 0 and K ¼ π, respec-
tively, if in PBC. For Lb even, the Z2 scar states at energy
E ≈ 0 are found to have I ¼ 1 (and K ¼ 0 in PBC), while
for Lb odd they have I ¼ −1 (and K ¼ π). For a fixed Lb, I
(and K in PBC) alternate between these values when going
from one primary scar state to the next (and are the same
within the band of weaker scar states associated with each
primary state). This is illustrated in Figs. 1(c) and 2.
Turner et al. [13,14] proposed to approximate the

primary scar states using “forward scattering approxima-
tion” (FSA) starting from the Z2 state. We propose an
alternative picture starting from our exact E ¼ 0 states.

FIG. 1. (a),(b) Energy density profiles hXjiα;β in the four exact
eigenstates jΓα;βi in the OBC system of size L ¼ 50. (c) Towers
of the Z2 scar states for OBC found in ED. The positions of the
exact scar states jΓ1;2i and jΓ2;1i are marked with stars.

FIG. 2. Overlaps of the SMA and MMA wave functions with
the eigenstates in the PBC system with L ¼ 26. We also list the
overlaps with the primary Z2 scar states. The Z2 scar states are

identified through the overlaps with the jZðþÞ
2 i or jZð−Þ

2 i states (for
more clarity, we show negatives of these overlaps).
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First, we note that our exact E ¼ 0 scar states are, in fact,
representative of the nearby scar states. For instance, at
L ¼ 26, the nearby E ≈�1.34 scar states have average
Rydberg excitation number hEjnjjEi ≈ 0.3476 while
hΦK¼πjnjjΦK¼πi ≈ 0.3355. Second, we note that, for
OBC, the exact scar states jΓ1;2i and jΓ2;1i, while not
being the primary Z2 scar states, belong to the first non-
zero-energy towers of scar states, as shown in Fig. 1(c).
Furthermore, we can understand these exact E ¼ � ffiffiffi

2
p

scar
states as “edge excitations” on top of the E ¼ 0 states jΓα;αi
(see Ref. [30]). We therefore conjecture that, for the PBC
system as well, the nearby scar states can be understood as
quasiparticle excitations on top of the “vacuum” jΦii.
Motivated by these observations, we construct varia-

tional wave functions using SMA [32,33] and generalize it
to MMA on top of our exact jΦii states and aimed to
capture the nearby scar states. We start with the following
SMA wave function jΞ1i ¼ ½jM1i − ð−1ÞLbTxjM1i�=ξ1,
where

jM1i ¼
X
fσg

XLb

b¼1

Tr½Bσ1Cσ2…Mσ2b−1σ2b…BσL−1CσL �jσ1…σLi

ð8Þ
and ξ1 provides normalization hΞ1jΞ1i ¼ 1. The matrices

M00¼
�
1 0

0 1

�
; M01¼

�
μ1 0

μ2 0

�
; M10¼

�
0 0

−μ2 μ1

�

are chosen such that thewave function satisfies theRydberg-
blockaded constraint and IjM1i ¼ ð−1ÞLb−1jM1i; hence,
IjΞ1i ¼ ð−1ÞLb−1jΞ1i (see Ref. [30]). We have also chosen
the translation quantum number of jΞ1i to be ð−1ÞLb−1,
which matches the symmetry sector of the first E ≠ 0 scar
state overlappingwith theZ2 CDW. Tomake jΞ1i as close to
an eigenstate as possible, we minimize the energy variance
σ2Hðμ1; μ2Þ ¼ hΞ1jH2jΞ1i − hΞ1jHjΞ1i2 at fixed L. At
L ¼ 26, we find optimal parameters μ1 ¼ −1.0876 and
μ2 ¼ −0.6344, which give σ2H ¼ 0.0263 and the
average energy hΞ1jHjΞ1i ¼ −1.3147. Remarkably, the
optimized state has over 63% overlap with the primary
Z2 scar state at E ≈ −1.3386 found in ED, as shown in
Fig. 2. It is easy to check that μ01 ¼ −μ1; μ02 ¼ μ2 gives
jΞ0

1i ¼ ð−1ÞLb−1CphjΞ1i, which captures the scar state
with E ≈ 1.3386.
To capture other primary scar states and support

our picture of quasiparticle excitations, we examine
the following MMA wave functions jΞni ¼ ½jMniþ
ð−1ÞLbþnTxjMni�=ξn, where

jMni ¼
X
fσg

X0
Lb

b1;…;bn¼1

Tr½Bσ1Cσ2…Mσ2b1−1σ2b1

…Mσ2bn−1σ2bn…BσL−1CσL �jσ1…σLi; ð9Þ

the summation is constrained to have all bi distinct, and ξn
is the normalization factor. Such an jMni describes some
n-particle scattering state and is the most primitive con-
struction where we simply try hard-core exclusion of the
particles. For simplicity, we will take M from the opti-
mization of jΞ1i. Moreover, jΞni has quantum numbers
Tx ¼ ð−1ÞLbþn and I ¼ ð−1ÞLbþn, matching the symmetry
structure of the Z2 scar states. Unexpectedly, Fig. 2 shows
that the overlaps of such simplest MMAwave functions and
the primary scar states become better with more quasipar-
ticles, up to about n ≈ Lb=2, while for larger n the overlaps
start to decrease. The poorer performance for n > Lb=2 is
not surprising: For example, for n ¼ Lb, the state jMLb

i¼
⊗Lb

b¼1 j0i2b−1ðj0iþμ1j1iÞ2bþ⊗Lb
b¼1 ðj0iþμ1j1iÞ2b−1j0i2b−

⊗Lb
b¼1 j0ij0i; therefore, jΞLb

i ∼ jMLb
i but has spontaneous

Tx symmetry breaking and is only a crude approximation to
the true nondegenerate fully symmetric ground state. Our
MMA states with n close to Lb are similarly expected to be
only crude approximations to the actual primary scar states
and are seen to be spread over several nearby scar states. On
the other hand, the performance of the states with n < Lb=2
is truly remarkable. Typically, when adding more quasi-
particles without further optimizations, such MMA states
become worse with the number of particles added, while
our MMA have better overlaps with the primary scar states.
Furthermore, our MMA states perform better than the FSA
states for 2 ≤ n ≃ Lb=2. For reference, at L ¼ 26, the FSA
states have overlap 69% with the scar states E ≈�1.33 and
68%–72% overlaps on the consecutive primary scar states,
respectively [30]. This suggests that our exact eigenstates at
E ¼ 0 provide a better starting point for understanding the
scar states in the PXP model.
Let us further discuss these results. jΞ1i and jΞ0

1i ∼
CphjΞ1i can be viewed as representing “elementary quasi-
particles” with energies ϵ− ≈ −1.31 and ϵþ ¼ −ϵ−; these
particles also carry inversion quantum number −1. It is then
natural to expect strong oscillations with frequency ϵþ in
observables that flip the inversion quantum number.
(Observables in experiment and numerics that do not flip
I will show frequency 2ϵþ.) Indeed, even though the
overlaps of the Z2 initial state with the primary scar states
decrease exponentially with the system size, the “quasi-
particle creation operators” can also act on many more
states, always “adding” roughly ϵ�. This argument resem-
bles the quasiparticle explanation [9] of strong oscillations
in the “weak thermalization” regime in Ref. [7], where the
initial state happened to be near the ground state. The
differences here are that the initial Z2 state is at T ¼ ∞ but
is “close” to our special eigenstates jΦii and that the
quasiparticles here can carry both positive and negative
energies.
By the repeated application of the SMA construction

that gave us the jΞ1i and jΞ0
1i states, we also expect addi-

tional states with energies E ≈ ðnþ − n−Þϵþ, nþ; n− ∈ N.
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We have demonstrated the ðnþ; n−Þ ¼ ð0; nÞ branch explic-
itly in Fig. 2. Interestingly, the same energy mϵþ can be
obtained in multiple ways, which may explain the bands of
weaker scar states near the primary states.
Finally, we note that the presented simple “bond-

dimension-2” SMA wave functions cover cases where
we replace one B or one C with an “excitation” or “excite”
two consecutive B2b−1; C2b matrices. One can also consider
exciting two consecutive C2b; B2bþ1 matrices, which would
lead to new “bond-dimension-3” SMAwave functions with
more variational parameters and the corresponding MMA
wave functions. Our study shows that they can capture the
primary Z2 scar states with even higher fidelity [30], but,
since the improvement is only quantitative, we presented
the simpler bond-dimension-2 SMA.
Conclusions.—We discovered exact scar states in the

Rydberg-blockaded atom chain at T ¼ ∞ that explicitly
violate the strong ETH and have constant entanglement
scaling in the subsystem size. Our exact states show
translation symmetry breaking, which implies twofold
degeneracy for PBC. The exact scar states for OBC have
the same bulk as for PBC and can have different edge
terminations leading to different eigenenergies, including
nondegenerate energies.
By constructing quasiparticles on top of the exact scar

states, we capture the primary Z2 scar states with high
fidelity. Systematic improvements for capturing the pri-
mary scar states, as well as study bands of weaker scar
states, are therefore warranted. For example, even for the
SMA, is there a convergent construction that reproduces the
first primary Z2 scar state and proves its ETH-violating
properties? It is also interesting to understand the pattern of
scar states in the PXP model more generally and how it
compares with other instances of exact scar states
[17,18,20]. Studying additional models with exact scar
states and their stability to perturbations would be benefi-
cial for both of these questions. We leave such explorations
for future work.
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