
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Quantum decision-maker theory and
simulation

Michail  Zak, Ronald E. Meyers, Keith S. Deacon

Michail  Zak, Ronald E. Meyers, Keith S. Deacon, "Quantum decision-maker
theory and simulation," Proc. SPIE 4047, Quantum Computing,  (13 July
2000); doi: 10.1117/12.391958

Event: AeroSense 2000, 2000, Orlando, FL, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/5/2018  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Quantum Decision-Maker Theory and Simulation

Michail Zakab Ronald E. Meyersc and Keith Deaconc

a Jet Propulsion Laboratory, MS 126-347, Pasadena, CA 91109
b California Institute of Technology, Pasadena, CA 91125

C Army Research Laboratory, Columbia, MD 21045

ABSTRACT

A quantum device simulating the human decision making process is introduced. It consists of quantum
recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets
describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy
of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the
stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information
by an internal knowledge-base stored in the mental model in the form of probability distributions. As a result,
the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease
entropy without an external source of information. Applications to common sense based decisions as well as to
evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer
simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are
considered.

1 Introduction

Q uantum computers are under development at laboratories around the world. However, the number of pow-
erful algorithms for use on future quantum computers has been limited because of the restrictions imposed by
the quantum unitary operator. The unitary nondissipative process, central to quantum operations, does not
readily allow the simulation of neural intelligence which can be classically simulated using, among other devices,
dissipative attractors. One promising approach around this impasse develops the concept of Quantum Recurrent
Nets (QRN) which has been proposed by Zak and Williams.3 QRN takes advantage of the quantum measure-
ment property which collapses the quantum probability wave and is subsequently reinitialized and thereby resets
the recurrent process. Thus, the effective combined process is not limited to unitary processes only, and this
ultimately allows the efficient simulation of human endeavors. This paper develops the Quantum Decision Maker
theory which extends the QRN to include reflexive intelligence and simulates a Quantum Decision Maker.

The origin of the Quantum Decision Maker begins with consideration of that most mysterious human property,
common sense. Common sense has been an obstacle for artificial intelligence even though it was well understood
that human behavior, and in particular the human decision making process, is governed by feedback from the
external world. Although part of the problem was successfully simulated by control of systems, when the external
world does not provide sufficient information, the human being turns for "advice" to his experience, and that is
associated with common sense. In this paper we represent common sense by a feedback from the self image ( a
reflexive concept adapted from psychology5), and based upon that, we will propose a physical model of common
sense in connection with the decision making process.
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2 The Decision Making Process in Terms of Nonlinear Probabilities

In this section we formulate a nonlinear equation for the representation of the probability of choices. The
decision making process can be modeled by the time evolution of a vector r whose components -ir, (i = 1 , 2. . .N)
represent a probability distribution over N different choices. The evolution of this vector can be written in the
form of a Markov chain,

j (t+r) = (t)p, = 1Pij 1 (1)
0 ir 1, 0 Pij < 1

where Pij is the transition matrix representing a decision making policy. If P =const, the process (1) approaches
some final distribution ir°° regardless of the initial state J particular, in the case of doubly-stochastic
transition matrix, i.e. , when

Pij 1, and Pij 1 (2)

all the final choices become equally probable,

7r=7r= (3)

i.e. the system approaches its thermodynamic limit which is characterized by the maximum entropy. When the
external world is changing, such rigid behavior is unsatisfactory, and the matrix P has to be changed accordingly,
i.e., P = P (t) . Obviously this change can be implemented only if the external information is available, and
there are certain sets of rules for correct responses. However, in real world situations, the number of rules grows
exponentially with the dimensionality of external factors, and therefore, any man-made device fails to implement
such rules in full.

The main departure from this strategy can be observed in the human approach to decision making process.
Indeed, faced with an uncertainty, a human being uses a "common sense" approach based upon his previous
experience and knowledge in the form of certain invariants or patterns of behavior which are suitable for the
whole class of similar situations. Such a reflexive ability follows from the fact that a human possesses a self-
image, and interacts with it. This concept which is widely exploited in psychology has been known even to ancient
philosophers, but so far its mathematical formalization has never been linked to the decision making model (1).

First we will start with an abstract mathematical question: can the system (1) change its evolution, and
consequently, its limit distribution, without any external "forces"?

The formal answer is definitely positive. Indeed, if the transition matrix depends upon the current probability
distribution

P = P(ir) (4)

then the evolution (1) becomes nonlinear, and it may have many different scenarios depending upon the initial
state 7r . In the particular case (2) ,it can "overcome" the second law of thermodynamics decreasing its final
entropy by using only the "internal" resources. The last conclusion illuminates the Schrodinger statement2 that
"life is to create order in the disordered environment against the second law of thermodynamics. " Obviously this
statement cannot be taken literally — as will be shown below. Eq. (1) subject to the condition (4) describes
the system which is not isolated, and therefore, the result stated above does not violate the second law of
thermodynamics. In order to discuss the physical meaning of the condition (4), let us turn to Eq. (1) and
introduce the underlying stochastic process. The latter can be simulated by a quantum device represented by
quantum recurrent nets (QRN) , and we will start with a brief description of that device.
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2.1 Quantum Recurrent Nets

The simplest QRN is described by the following set of difference equations with constant time delay T

a1 (t + r) = i (t) a (t)} ,i.e., {aoai.a} " {O,O...1...OO} (5)

where a3 is the input to the network at time t, uj is a unitary operator defined by the corresponding Hamiltonian
of the quantum system, and o is a measurement operator (in the computational basis) that has the effect of
projecting the evolved state into one of the eigenvectors of a . The curly brackets are intended to emphasize that

is to be taken as a measurement operation with the effect similar to those of a sigmoid function in classical
neural networks. Obviously, the outputs a1 (t + r) are random because of the probabilistic nature of quantum
measurements. As shown by Zak and Williams,3 these outputs form a Markovian stochastic process with the
probabilities evolving according to the chain (1) and

n n
2 .

Pij IUji , Pij 1 , Pij 1 , Pij � 0, z,3 = 1
, 2, .. .N (6)

j=1 i=1

is the NxN doubly-stochastic matrix which is uniquely defined by the unitary matrix U. Each element of this
matrix represents the probability that the th eigenvector as an input produces jtheigenvector as an output:

00010 0 —p 0 . (7)

I J I J

In a special case when
Pu >0; i,j=1,2,...N

the Markov process is ergodic, i.e., the solution to Eq.(1) approaches an attractor (3) which is unique and it does
not depend upon the initial value ir0at t = 0. Only this case will be considered in this paper. Thus, Eq. (5)
describes the evolution of the vector

{ai...a}=< , a=1 (8)

representing a quantum state in a Hilbert space, and all the components (a3 ,u) are to be actually implemented.
This evolution is irreversible, nonlinear and nondeterministic because it includes measurements operations. On
the other hand, the vector

= , = 1, > 0 (9)

as well as the stochastic matrix Pij exist only in an abstract euclidean space: they never appear explicitly in
physical space. The evolution (1) is also irreversible, but unlike (5), it is linear and deterministic.

So far we have simulated the case P = Const. In order to control P, let us assume that the result of the
measurement, i.e., a unit vector am(t) = {00...010...O} is combined with an arbitrary complex (interference)
vector. If the reference state is

a'o
aç

(10)
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and a is a measurement operator in the computational basis, then kL' (t + T)) , the recurrent state re—entering the
circuit, must take one of the forms:

(0)1+a a0
I (0)

a1 a1
1 . 1

kb0) =
. =7 I

(11)

a' (0)N—i aNl
(1)1+a a0' (1)

a1 a1

k0) = I =
' (0)aN_l aN_l

(N-i)1+a a0
1 (N-i)

a1 a1
1 . 1

Ico) . =
a1 a1

with re-normalization factors:
R0 = 1 +a2 + IaI2 + ... (12)

Ri=JaI2+l1+a2+.. (13)

RN_l=IaI2+Ia2...+I1+aI2 (14)

It should be emphasized that the states (11) are first calculated and then prepared as new quantum inputs.
The transition probability matrix, Pij for this process is given by examining how each of the recurrent states,
Io) k/SN—i) evolve under the action of U:

2 2

— b 2
b1

2

15Pu—
(N—i) 2 b(N_i)

2
________ N—i

where

ujra =uji+urar(0). (16)

Thus, now the structure of the transition probability matrix Pij can be controlled by the interference vector (10),
and P=P(t).

Let us now implement the internal feed back (4). For the purpose, assume that the components of the
interference vector (10) are defined by the components ir of the probability vector by setting:

a = fi(1,2, ...N) (17)

and rewriting Eqs. (12)-(16) accordingly. Then

Pij =Pij (lrl...7rN) (18)
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However, the simplicity of this mathematical operation is illusive. Indeed, as pointed out above, the probability
vector 7r is not simulated by the QRN explicitly: it has to be reconstructed by a statistical analysis of the
ensemble of solutions to Eq. (5) . In order to avoid that, one can simulate the evolution of the probability vector,
i.e., Eq. (1) by a classical neural network which can be presented, for instance, in the form

1 (t + r) = S Wjkltk
(t)]

(19)

where S is the sigmoid function, and Wjk = const are the synaptic weights. Now Eqs. (5) and (19) are coupled
via the feedbacks (6) and (17).

. From the mathematical point of view this system can be compared with the Langevin equation which is
coupled with the corresponding Fokker Planck equation such that stochastic force is fully defined by the
current probability distributions, while the diffusion coefficient is fully defined by the stochastic force.4

. From the physical viewpoint, Eqs. (5) and (19) represent two different physical systems (quantum and
classical) which interact via the feed backs (4) and (6): the transition probability matrix P is defined by
the unitary matrix U of the QRN according to Eq. (6), while the input interference vector to the QRN is
defined by the feed back (17). Using the Feynman terminology,' Eq. (5) simulates probabilities, while Eq.
(19) manipulates them.

. Finally, from the cognitive viewpoint, Eqs. (5) and (19) represent two different aspects of the same subject:
the decision maker. Eq. (5) simulates his real-time actions i.e., his motor dynamics, while Eq. (19)
describes evolution of self-image in terms of such invariants as expectation, variance, entropy (information),
and that can be associated with the mental dynamics.

Thus, as a result of interaction with his own image and without any "external" enforcement, the decision
maker can depart from the thermodynamical limit (3) of his performance

"
against the second law." Obviously,

from the physical viewpoint, the enforcement in the form of the feedback (17) is external since the image (19)
represents a different physical system. In other words, such a " free will" effort is not in a disagreement with the
second law of thermodynamics.

Eqs.(5) and (19) illuminate another remarkable property of human activity: the ability to predict the future.
Indeed, Eq. (19) depends only upon the prescribed unitary matrix U, but it does not depend upon the evolution
of the vector a . Therefore, Eq. (19) , the predictive equation can be run faster than real time; as a result of that,
future probability distributions as well as its invariants can be predicted and compared with the objective. Based
upon this comparison, the feedback (17) can be changed if needed.

Actually such interaction with sef-image simulates"common sense" which replaces an unavailable external
source of information and allows one to make decisions based upon his previous experience.

Formally the knowledge base is represented by the synaptic weight Wik of Eq. (19), and its consists of two
parts. The first part includes personal experience and habits (risk prone, risk aversion, etc.). The second
part depends upon the objective formulated in terms of probability invariants (certain expectationswith minimal
variance, or maximum information, etc.). The dependence upon the objective may include real-time adjustment
of synaptic weights w3 in the form of learning (adapted from theory of neural networks). As soon as the synaptic
weights are determined, the common sense simulator will follow the optimal strategy regardless of unexpected
changes in the external world.
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2.2 Exponential Increase in Information Capacity

It should be noticed that the advantage of the quantum implementation is not only in simulation of true
randomness, but also in exponential increase of information capacity. Indeed, combining the direct product
decomposability and entanglement, one can represent the unitary matrix in Eq. (5) as follows:

U =
(U1(1)

® . . .U1)) • (U2) ® .. .U2)) .. . (U(m) ® .. .Um)) . (20)

Here the number of independent components is:

q=4nm (21)

while the dimensionality is N=2=2 (22)

In Eq. (22), N and q are associated with the Shannon and the algorithmic complexity, respectively; therefore,
the exponential Shannon complexity is achieved by linear resources.

Further compression of Shannon information can be obtained by applying the £ -measurement architecture3
when each step of the quantum evolution is repeated and measured £ times, and during a reset operation the
results of all the measurements are combined with the previous state. As shown in,3 such an architecture provides
the double-exponential Shannon complexity:

N=2 (23)

The advantage of the quantum compression (22) or (23) can be appreciated in view of the fact that the
efficiency of an alternative device - the pseudorandom number generator - rapidly decreases with the growth of
the dimensionality of random vectors.

Finally, one should notice that QRN provides the simplest physical simulation of the four constraints in Eq.
( 1) . However, even if QRN is replaced by a random number generator, the quantum formalism should be
preserved since it is the best mathematical tool generator for implementation of these constraints.

3 Spontaneous self-organization

We will start the analysis of the motor-mental dynamics, i.e., of Eqs. (5) and (19) with the effects of spon-
taneous self-organization with the system departs from the state of the thermodynamics limit and approaches a
deterministic state without any external forces. For that purpose suppose that the selected unitary matrix in
Eq. (5) is

u=( -1) (24)

Then the corresponding transition probability matrix in Eq. (1), according to Eq. (6) will be doubly-stochastic:

/1 1\
) (25)\2 21

and the stochastic process (1) is already in its thermodynamics limit (3), i.e. rr1 = = . Let us assume that
the objective of the decision-maker is to approach the deterministic state.

n11,7120 (26)
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without help from outside. In order to do that, he should turn to his experience in the form of the feed back
(17). If he chooses this feedback in the form:

a = (ai,a2), a1 = 2rr, a2 = 1 (27)

then, according to Eqs. (11-16), the new transition p:robability matrix Pij transporting the interference vector
will be:

— 1t- _ (1—i-,)2
Pu —

2ir—2ir+1 ' P12 2ir—2ir+1
(1+irj)2 (1—in)2

P21 2in+2 P22 2in+2

The evolution of the probabilities rr is given by

(n+1) (n) (in)
rn = 7i- Ph + 2 P2-i, (29a)

and because of the property n) (i n)) can now be presented as:

(n+1) (i _
(n)) P2i (29b)

in which Pu and P22 are substituted from Eq (28). It is easily verifiable that

7rx=1,7ro=O, (30)

i.e. , the objective is achieved due to the "internal" feedback (27).

4 Attraction to Common Sense Based Strategies.

Classical artificial intelligence as well as artificial neural networks are effective in a deterministic and repetitive
world, but faced with the uncertainties and unpredictability, both of them fail. At the same time, many natural
and social phenomena exhibit some degree of regularity only on a higher level of abstraction, i.e., in terms of some
invariants. For instance, each particular realization of a stochastic process can be unpredictable in details, but
the whole ensemble of these realizations i.e. , " the big picture" preserves the probability invariants (expectation,
moments, information, etc.) , and therefore, predictable in terms of behavior "in general."

In this section we will map the hetero-associative memory problem performed by artificial neural nets onto
the patterns which represent stochastic processes, namely: store a set of m stochastic processes given by vectors
of their probability distributions

- -

(i) = t) (t)
, •• , ) , = , 2, rn. (31)

Do this in such a way that when presented with any of the process * of the set of M processes:

(i) () () (i)ir =7li , 2 , .. . , ir , 3 = 1,2, ...M; (32)

the coupled motor—mental dynamics (5), (19) converges to one of the stochastic processes (31). The performance

(i) (i)
, = 1,2, .. rn; (33)

represents correspondence between two classes of patterns, i.e., a hetero—associative memory on a height level
of abstraction. Indeed, each process in (33) stores an infinite number of different patterns of behaviors which,
however, are characterized by the same sequence of invariants (31) and (32), repetitively thereby representing a
decision making strategy.
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Hence, if the strategy of the decision-maker is characterized by a pattern irfrom (32), starting from t=O, the
external information becomes unavailable, he should change its strategy from the pattern *to the corresponding
pattern from (31) , and that can be associated with a decision based upon common sense. It is implied that the
attracting strategies 7r are sufficiently "safe" , i.e., they minimize the risk taken by the decision-maker in case of
an uncertain external world.

The first step in the implementation of the mapping (33) is to find the transition probability matrix P such
that

(i\ (i) ((1)(2) *(mY\7rJ=7r P r 7i ...7i . (34)

This implies that the sought stochastic process is supposed to approach its limit state in one step, i.e.,

* (i) (i) (i)
71 (t + -) =7r (t + 2i-) =r (oc) = (') . (35)

Therefore, P must have the following form:

711
• • • 'TN

1 ••• N N

p=
•••

,o<7ri<1,I:7ri=1 (36)

where the vector iv = (ir...irN) belongs to the family of the vectors in Eq. (35). Indeed, then any arbitrary
probability vector

X=(x1,x2,...xN) (37)

is mapped onto the vector rr = (irj..7rN) in one step.

Let us assume that the vector r = . .itN) is representable as a direct product of n two-dimensional vectors,

(irl,ir2...rrN), (38)

n=log2N. (39)

Obviously this assumption imposes constraints upon the components of the vector r, and as a result, this vector
can be defined only by log2 N (out of N) independent parameters ir3, i = 1,2, .. .n. Now Eq. (36) reduces to

P= ( ®...®( 1fl
(40)\ in 1 — in1 j \ rr, 1 — ir j

where
= Irk, = = 1 — irk. (41)

The next step in the implementation of the mapping (33) is to express the components of the matrix (40) via
the components of the unitary operator U3 (see Eq. (5)) and the interference vector (10). For that purpose, let
us choose Uj and c' as follows:

:. ::: .?.)=( )®( ) (41)

a' = (ai, al(1) + i1(1)) ®... ® (an, al(n) + Zfii(n)) (42)
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Then, according to Eqs. (11-16),

k lak+lI (k) akl
Pu — = k P21 = 2

. (43)
ak + l2 + ak(l) + b(1) IakL + Iak(l) + bk(l) + 11

However, the components of the interference vector, akck(1) and /3k(l)cannot be chosen independentlysince they
should explore the equality (43) as well as the conditions:

imak = OImak(i) 0, Imbk(i) 0. (44)

Simple algebra leads to the following constraints imposed upon the interference vector:

a1 > —1,k = 1,2,...n (45)

a (a + 1)
ak(1) 2 (46)

2(ak±1)

k(1) —
ak(l). (47)

Now the components 'irk in Eq. (43) can be expressed via the only one component of the interference vector:

(ak+1)2 a
7k 2 ' 71k 2

= 71k (48)
(ak+1) (ak+1) +4

It is easily verifiable that is the sigmoid function of ak

. - - 1
7k S (ak) since -a---— 7k (0) = 0; Irk (oc) = ;ç (49)

C/ak

and that property will be exploited later.

The final step is to implement the actual association between the patterns in the mapping (33), i.e., to find
the appropriate dependence between the components rk of the matrix (40) and the components of the pattern

Since 7rk are uniquely defined by ak (see Eqs. (48)), we will start with representing ak as linear combinations

of the components of the initial patterns in the mapping (33) of each th association:

= Wik j= 1,2,...m;k = 1,2,...n (50)

where Wik are constant weights to be found, m is the number of association in Eq. (33), N and n are the

dimensionalities of the input pattern and the output pattern r3, respectively.

Eq. (50) can be written in the matrix form

AmnWnNllmN (51)

and therefore, the matrix WN of the weights can be explicitly expressed via the matrix Amn, i.e.. via the
components of he interference vector a:

WnNAmnH ifm=N,detll0 (52)

WnN Amn (11T11)' II if m >N. (53)
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Eq. (52) presents the exact solution, while Eq. (53) gives a minimum norm approximation for the case when the

number of association is large than the dimensionality of the input patterns

Since a can be expressed via a probabilities of the transition probability matrix (38) by means of Eq.
(48): ______________2 12 (())2

()
(3) — ___________________________________

ak _ f (•)2 (1 — 2

( one can choose either of two values) , the problem is solved in a closed analytical form. Indeed, given the
associations (33), one finds the corresponding aby Eqs. (54), and then weights w depend upon all the values

of the input patterns (via the matrix II) and the output patterns j) (via matrix A).

As soon as the weights w are found, Eq. (19) can be represented in the following form:

(55)

where
7rX 71i (t — oo) ,7r = 7r (t = 0) (56)

and the sigmoid function S is defined by Eq. (49). Eq. (55) has a form of a perception for hetero-associative
memory. Exploiting this formal analogy, one can conclude that any input pattern irwhich is sufficiently close to
a patter .(i) from the left of Eq. (33) will recall the output pattern which is close to the corresponding associative

pattern from the right of Eq. (33). Moreover, due to the contracting property of the sigmoid function S in
Eq. (55), the distance between the output patterns will be smaller than between the input ones. In particular,
several different inputs can be mapped onto the same output, and that can be interpreted as a classification
problem.

However, from the cognitive viewpoint, Eq. (55) is fundamentally different from the perception since it not
only manipulates with the patterns of probabilities, but it also simulates them via the QRN. Indeed, Eqs. (50)
defines the interference vector a' (see Eqs. (42)) which control the unitary evolution of QRN (see Eqs. (5) and
Eq. (41)) in such a way that the generated stochastic process has exactly the same probability distribution as
prescribed by the probability patterns ir°° manipulated by Eq. (55).

5 Theoretical Discussion

The model introduced above can be generalized in several ways. First we will consider the case when the
decision-maker controls two different, but correlated processes by making choices for combinations of decisions
with the joint probabilities irj . As mentioned in the introduction, the quantum implementation of stochastic
processes, i.e., QRN, allows one to stay with the same evolutionary operator (41) with the only difference that now
each step in QRN evolution should be run and measured twice, and then the results of these measurements, being
combined with the interference vector (10) and normalized, are sent back as a new input. The sequences of the
first and the second measurements correspond to the joint strategy for making decisions controlling two correlated
processes. The physical origin of this correlation is quantum interference between the results of measurements
after they are combined for a new input and subjected to the next step of unitary evolution.

Following the same methodology as those for a simple strategy, let us present a brief sketch of the double-
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strategy model and start with the assumption similar to Eq. (38):

I (1) (1) (1) (i)\ I (n) (n) (12) (n)'\
(11,712, ...NN) ' ii '12'21 22) ® . . . ® ii '12 '21 '22 ) (57)

Then one can deal with each 2x2 evolutionary operator in Eq. (41) separately. Any of these operators gives rise
to the following transition probability matrix:

11 12 21 22
Pu Pu Pu Pu

11 12 21 22
7-) — P12 P12 P12 P121— 11 12 21 22

P21 P21 P21 P21
11 12 21 22

P22 P22 P22 P22

where
11 _ [l+aiI 22 Il+a2 i

P11 —
(Il+aiI2+Ia22)2 'P22

(Ia1 12+I1+a212)
22 1a214 11 _ aiPu —

(ll+a112+1a212)2
P22

(Iai
12 l+a1121a212 21 _ Ial)211+a2V _ 21Pu — (Il+a112)+1a212 'Pu — (}a1J2+J1+a212)2 P22

4 4 (59
11 11 -+a1 22 -+a2

P12 P21 7 2 2\2P2l I 2 2

++a2I ) +a1++a2
12 21 _ 12 21 ___________________

P21 P12 P21 — P21 7 2 2\ 2

+a1l +l+a21)
In order to reduce the matrix (58) to the form (36), one has to provide the following equalities:

11_ 11_ 11_ 11 12_ 12_ 12_ 21
Pu — P12 — P21 P22,P21 — P12 P21 P22
21_ 21_ 21_ 21 22_ 22 22_ 22

Pu —P12 P2l P22,Pll —Pi2 —P21 P22

Analysis of Eqs. (59) shows that only the four (out of twelve ) equalities, namely

11_ 11_ 11 22_ 22_ 22
Pu —P22 P12P22 Pii —P12 61

must be enforced since the rest of them will follow automatically. Hence, one has to choose the four components
of the interference vector

a' = (ai , a2) ; a1 = a1(1) + ibl(l) ; a2 = a2(1) + ib2(2) (62)

to enforce the four equalities in (61).

In principle, the problem is solvable, however, unlike the previous case (see Eqs. (45)-(47)) a closed from
analytical solution is not available any more. A numerical solution can be based upon methods of gradient—
descent. As a result, one arrives at the generalized model of motor-mental dynamics:

a(t+r) =u2{Ui(t)aj(t)} (63)

ij (t + T) = S [ Wijkk (t)] (64)

where a2 is a two-measurements operator.

Now the vector a simulates two correlated stochastic processes (corresponding to the first and the second
measurements, respectively) whose joint probability rr is described by Eq. (64). Eqs.(63)and (64) are coupled in
the same way in which Eqs. (5) and (19) are. Further generalization to the case of £ (i?> 2) correlated strategies
will require to replace 2x2 components of unitary operators by £xt components in the decomposition (41). As a
result of that, the decomposition (57) should be changed accordingly.
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The second line of generalization of the model considered in the previous section is associated with an objective
function. Indeed, so far we did not discuss how the limit strategy ir° (see Eq. (55)) has been prescribed.
In principle, such a prescription can be based upon the optimization of some objective function, for example:
maximize entropy subject to a given expectation and variance, or minimize the expected cost function:

E=c (65)

subject to the constraints:

o<<1,r=1 (66)

where c1 are given weights representing the "external world." This minimization can be performed by linear
programming, and as a result, the limit probability will be defined by the weights:

(67)

However, in general, the weights cj can represent the probability distribution of another stochastic process (on
a much slower time scale) which belongs to a family of strategies converging to a global strategy in a way similar
to the mapping (53) . By continuing this process, one arrives at a hierarchy of stochastic attractors leading from
local to global strategies on the higher an higher levels of abstraction. Such a hierarchy can be implemented by
a set of master-slave equation of the type of (5) and (19).

In many practical cases, the objective function depends upon the outcome probabilities and then Eqs.
(65), (66) are coupled with Eqs. (5) and (19). This happens for instance, when the external world is represented
by another decision-maker, and that situation can be interpreted as an evolutionary game.

5.1 Two Decision-Makers (Players)

Let us consider two decision-makers (players) and suppose that the first player's objective is to maximize the
expected payoff after 3 number of moves:

/3 N
E = :: (t + kr) (68)

k=O i,j=1

ij = const, < < 1, = 1 (69)

where ir are joint probabilities that the players will use the strategies i and j respectively. Then the objective
of the second player is to minimize the maximum of E. If the objective (68), (69) is available to both players
each of them can find the best strategy (for instance by applying the methods of dynamical programming) and
implement it by simulations of Eqs. (63) and (64). However, it may happen that the players do not know exactly
the objective. For instance, in the beginning they may ignore the correlation between their strategies assuming
that

= (70)

where 'r and 'ir are the independent probabilities that each player will use a certain strategy. Then each player
will have its own image of the objective:

/3 N
= 4ir (t + k) rr' (t + kr) (71)

k=O i,3=1
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3 NE" = : (t + k'r) 7r' (t + k'r) (72)
k=O i,3=1

and, based upon that, he will execute his strategy by running the corresponding version of Eqs. (63) and (64).
After j3 numbers of moves, the feedback from the external world becomes available, and the players can evaluate
their performance by comparing the differences:

A'=E'-E, A"=E"-E. (73)

Based upon these differences, each of them can update the coefficients c and cJ in their objectives (71) and
( 72) respectively, and introduce correlations between and j1 (such a re-evaluation of the objective can exploit
the methodology of Bayes' procedures). Consequently, the player who has better images of the self and of the
adversary has a better chance to win.

6 Numerical Quantum Computing Simulation of Nonlinear
Probability Governing Spontaneous Self—Organization

In this section we simulate a quantum computer algorithm of spontaneous self-organization. Spontaneous
self-organization is modeled by the evolution of nonlinear probability functions of Eq. (29). To perform this
simulation both the quantum dynamics simulation algorithm and the nonlinear probability distribution algorithm
are needed. The quantum based algorithm would, of course, normally be run on a quantum computer. Until
such quantum computers are developed the algorithms are simulated using a classical computer.

6.1 Quantum Dynamics Algorithm

This section describes the stochastic implementation of the quantum dynamics part of the self-organization
algorithm. The steps in the computation are as follows:

1 . Since Quantum Recurrent Nets (QRN) need to relate to quantum measurements it is useful to define a
matrix of measurements 1 O.O

.. .. ' (74)

0 1

with its elements 6. For a 4 by 4 sample process that we compute below we have

1 0 0 o\
6= (75)

0 0 0 1)
2. Add the matrix of measurements elements to the interference matrix elements to obtain the recurrent

state matrix elements a,
= + (76)
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3. Compute the unnormalized recurrent state vector by multiplying the unitary matrix u with elements
Ujr times the recurrent state matrix to obtain

= ujra. (77)

4. Compute the renormalization vector elements

R = aai)*. (78)

5. Compute the transition probability matrix elements by taking the complex conjugate and renormalizing,

b(*
Pij R • (79)

6. Select a row from the matrix of measurements and create a result vector v from the product of measurement
vector 6' and the transition probability P

vi = (80)

For example, 8' = [1000] is the first row vector of the measurement matrix for a 4 by 4 matrix, and 5' =[0100]
is the second row. The term 6 would be the th element in the respective vectors.

7. Build bins where the first bin is from zero to the value of the first element v1 ,and the second bin is from
the value of v1 to v2 , and so forth to the value one. The bin intervals are proportional to the transition
probabilities.

8. Use a random number generator which generates random numbers in the interval 0 to 1, and assign the
first random number to the bin in which it falls.

9. Depending in which indexed bin the random number falls assign the corresponding measurement vector
index for the next measurement cycle.

10. Keep track of the bin number in which the measurements fall and plot the frequency of occurrence of each
bin number. The normalized frequency of occurrence is the probability.

EXAMPLE 1 . Quantum Probability Simulation

As an example we compute the transition probabilities from a given unitary matrix, and also compute the
probability distribution after taking 1000 steps of the Markov process. The transition probability does not change
with time in this example. However, in a second example below we allow it to change with time by successive
use and reinitialization of this algorithm, where the reinitialization depends on probability outcomes. The 4 by 4
unitary matrix

/ —.426364 — .40965i .152799 + .449573i .268873 — .52106i .262525 — .110547i

1 .187355 + .25612i .377974 — .0919836i .624798 — .282139i —.5189 + .0924264i
u=

.478001 — .334466i .230266 — .310334i .0028144 — .0982155i .164187 — .688263i (81)

\ —.415635 + .190776i —.263578 — .635931i .419877 — .0166754i .363206 — .0920733i

where the interference vector is
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gives the transition probability

—.00741589 + .48916i
— .12314— .667601i
.344441 — . 149759i
.386876 — .095256i

after 1000 transitions. The computations were implemented on a pc computer, and the computation run time
was short.

6.2 Self-Organization Quantum Dynamics Algorithm

The theory for the self-organization quantum dynamics is discussed above, and its implementation as an
algorithm on a classical digital computer used the following steps:

1. Start with the transition probability matrix

2. Choose initial conditions
1rn = (87)

3. Compute rr (k + 1)by making a set of m measurements using the current transition probability matrix using
the process in the Quantum Dynamics Algorithm subsection. The number m should be large enough that
the distribution of outcomes fairly represents the transition probability distribution in order to have good
accuracy.

4. Compute a p2(k + 1) using ir(k + 1) in

Pu 2ir—2ir+1'
(1+irz)2P21 2ir+2

(1
P12 2ir—2ir+1

P22 2ir+2

This results in a nonlinear probability distribution process.

111

a' =

(

I' .579626

P — .338022
—

I .785018

\\
.471082

.00222459

.0781686

.159218

.225005

.216761

.156848
.0349651

.28342

(82)

(83)

.201389

.426962
.0207996
.0204926

The initial fixed point probability distribution over states is

in0 = [ .579626 .00222459 .216761 .201389 ] . (84)

The final fixed point probability distribution over states is found to be

rr100° = [ .5810 .0730 .1990 .1470 ] (85)

/1 1\
P=( ). (86)

\2 2/

(28)
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5. Repeat steps #3. and #4. for each time step advance.

EXAMPLE 2 . Sef-Organization Nonlinear Probability Distribution Evolution

The values of the probability distribution for the above initial conditions for six time steps were computed as

iri(1) = 0.4980 7r2(1) = .5020

iri(2) = 0.6340 72(2) = .3660
rri(3) = 0.7760 712(3) = .2240

88iri(4) = .9310 712(4) = .0690
in(S) = .9950 712(5) = .0050
ri(6) = 1.000 7T2(6) = 0.000

Thus, as the theory predicts, the computational simulation shows that is attracted to 1 and r2 attracted
to 0 with increase in time.

7 Conclusions

The Quantum Recurrent Net (QRN) theory implementing reflexive intelligence has been developed and
computational dynamics simulations demonstrating its practical implementation have been made. The extension
to more complicated problems is underway. Already the problem has been formulated for the prey-predator and
mutual aircraft pursuit problems and numerical algorithms are under development using the reflexive intelligence
concepts and computational dynamics introduced above. QRN can be further developed for the modeling of more
complicated force-on-force engagements and general social interactions resulting in far more realistic and useful
predicitions.

Thus we have introduced a new dynamical paradigm in the form of coupled motor and mental dynamics which
is represented by a quantum generator of stochastic processes controlled by nonlinear Markov chains. Based upon
this paradigm, a quantum decision-maker has been proposed. New dynamical phenomena, namely spontaneous
self-organization, attraction to common sense strategies, and a new approach to simulation of evolutionary games
have been discussed. True quantum mechanical implementation would provide enormous storage, random number
generation, and computational advantages.
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