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Abstract- Consider a communication channel that consists 
of several subchannels transmitting simultaneously and asyn- 
chronously. As an example of this scheme, consider a board 
with several chips. The subchannels represent wires connecting 
between the chips where differences in the lengths of the wires 
might result in asynchronous reception. In current technology, 
the receiver acknowledges reception of the message before the 
transmitter sends the following message. Namely, pipelined uti- 
lization of the channel is not possible. The main contribution is 
a scheme that enables to transmit without an acknowledgement 
of the message, therefore enabling pipelined communication and 
providing a higher bandwidth. Moreover, the scheme allows 
for a certain number of transitions from a second message 
to arrive before reception of the current message has been 
completed, a condition that we call skew. Necessary and sufficient 
conditions for codes that can detect skew as well as for codes 
that are skew-tolerant, i.e., they can correct the skew and allow 
continuous operation, are derived. Codes have been constructed 
that satisfy the necessary and sufficient conditions, their opti- 
mality studied, and efficient decoding algorithms devised. To the 
best of the authors' knowledge, this is the first known scheme 
that permits efficient asynchronous communications without ac- 
knowledgement. Potential applications are in on-chip, on-board 
and board to board communications, enabling much higher 
communication bandwidth. 

Index Terms- Parallel asynchronous communications, error- 
correcting codes, unordered codes, skew, pipelined channel. 

I .  INTRODUCTION 

A. Motivation and Background 

ONSIDER a communication channel that consists of C several subchannels transmitting simultaneously. As an 
example of this scheme consider a board with several chips 
where the sub-channels represent wires connecting between 
the chips and differences in the lengths of the wires might 
result in asynchronous reception. Namely, we would like 
to transmit a binary vector of length 7) using 7c parallel 
channeldwires. Every wire can carry only one bit of infor- 
mation. Each wire represents a coordinate of the vector to be 
transmitted. In this model, an electrical transition corresponds 
to a 1, while absence of a transition corresponds to a 0. The 
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propagation delay in the wires varies. The problem is to find an 
efficient communication scheme that will be delay-insensitive. 

Clearly, this problem is very common and arises in every 
system that incorporates transmission of information over 
parallel lines. Currently, there are two approaches for solving 
it in practice. 

1) There is a clock that is shared by both the transmitter and 
the receiver and the state of the wire at the time of the 
clock represents the corresponding bit of information. 
This is a synchronous type of communication (which 
is not always feasible due to the difficulties in clock 
distribution and the fact that the transmitter might be 
part of an asynchronous system). 

2) Asynchronous type of communications. Here, the idea 
is to send one vector at a time and have a handshake 
mechanism. Namely, the transmitter sends the following 
vector only after getting an acknowledgment that the 
current vector was completely received by the receiver. 

A natural question with regard to the asynchronous type 
of communication is: how does the receiver know that the 
reception is complete? This problem was studied by Verhoeff 
[9]. He describes the forgoing physical model as a scheme in 
which the sender communicates with the receiver via parallel 
tracks by rolling marbles (that correspond to a logical 1) in the 
tracks. The assumption of rolling marbles is equivalent to the 
transmission of electrical signals. Although the marbles are 
sent in parallel, the channels are asynchronous. This means 
that marbles are received randomly and at different instants. 

Before presenting Verhoeff's result, we introduce some 
notation. Let us represent the channels with the numbers 
1, 2 ,  . . . .n. After theA mth transition has arrived, the receiver 
obtains a sequence X,, = :c1. x ; ~ ,  . . .  ,xm, where 1 5 2,  5 
71, and LT, represents the fact that the ith transition was 
received at the z,th channel. The set ( 2 1 ,  ~ 2 ,  . . . , x,} is the 
support (i.e., the set of nonzero coordinates) of a vector and 
determines uniquely a binary vector. From now on, X,, = 
: r l .  52. . . . ~ x,,, denotes a sequence as defined above, and 
X,, = ( r 1 .  : 1 : 2 . . . .  ; x m }  the binary vector as defined by its 
support corresponding to sequence X,, . For instance, assume 
that we have five channels and we receive the sequence X4 = 
2,  3 .  2, 4 .  This means, the first transition arrived in channel 
2, the second one in channel 3, the third one in channel 2 and 
the fourth one in channel 4. The support of the corresponding 
binary vector is X4 = (2 ,  3.  4) (repeated arrivals count only 
once!) and the binary vector itself is X4 = 0 1 1 10 .  In words, 
capital letters with a hat will denote sequences, while capital 
letters denote either vectors or their supports. 
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The following example shows the difficulty of choosing 
indiscriminate vectors for parallel asynchronous communi- 
cations. Assume that a vector X = 0 11 0 and a vector 
Y = 0 1 00  are transmitted in some order. In the language 
of sets, we have X = (2, 3) and Y = (2). When the receiver 
gets a transition in channel number 2, it is not clear whether 
he just received Y or he should wait to get a transition in 
channel 3 (this will correspond to receiving X). 

In general, the parallel asynchronous transmission model 
considered in [9], is the following: assuming that a vector X 
is transmitted, once reception has been completed, the receiver 
acknowledges receipt of the message. The next message is sent 
by the sender only after the receipt of the acknowledgement. 
The problem is finding a code C whose elements are messages 
such that the receiver can identify when transmission has 
been completed. It is easy to see, as shown in [9] and as 
suggested in the previous example, that the codes having the 
right property are the so called unordered codes, i.e., all its 
elements are unordered vectors (we say that two binary vectors 
are unordered when their supports are unordered as se t s -one  
set is not a subset of the other). 

One of the disadvantages of using the asynchronous type of 
communication is the fact that the channel is not fully utilized. 
Namely, there is at most one vector in the wires at any given 
time. This becomes very critical when the transmission rates 
are getting higher and lines are getting longer. 

B. The New Paradigm 
In this paper, we present a novel scheme that enables a 

pipelined utilization of the channel. In addition, our scheme 
has the important feature of not using a handshake (acknowl- 
edgement) mechanism. Hence, there is no need of communi- 
cation between receiver and sender. 

We note here that if one is ready to pay in performance, 
then a possible strategy, if acknowledgement of messages is 
not allowed, is that the sender will wait long enough between 
messages. So, if the sender sends a codeword X followed by 
a codeword Y ,  it will be very unlikely that a transition from 
Y will arrive before the reception of X has been completed. 
With this scheme, we can again use unordered codes as in [9]. 

The purpose of this paper is to study parallel asynchronous 
pipelined communication without acknowledgement. The main 
difficulty in this scheme is that a certain number of transitions 
from the second message might arrive before reception of the 
current message has been completed, a condition that we call 
skew. 

We give next a precise mathematical definition of the 
concept of skew. Assume that a vector X is transmitted 
followed by other vectors. At reception, we obtain a sequence 
Z = x1 , 2 2 ,  . . . , xi, . . .. If there is no skew of X with respect 
to 8, all the transitions from X arrive first and then the 
transitions from the next messages. However, this is not the 
case when there is skew. 

Consider a transmitted vector X fol-lowed by some other 
vectors, giving a received sequence 2. There are two pa- 
rameters that are related to the skew. The first one, denoted 
m ( X ;  Z ) ,  denotes the index of the last transition in X before 
the occurrence of skew, i.e., the last transition in X before 

the arrival of either a transitionlnot in X or a repeated arrival. 
The second one, denoted r ( X ;  Z), denotes !he index of the last 
arrival in X. If there is no skew! m ( X ;  2) = T ( X ;  2). For 
instance, if X = { l,, 2, 4) and Z = 2, 3, 1, 1, 4, 5 , .  . . , we 
canAsee that m ( X ;  2 )  = 1 and T ( X ;  2 )  = 5. More precisely, 
if Z = x 1 , x 2 , . ~ ~ , ~ ~ , ~ ~ ~  isasequence,andwedefinethe 
truncated sequence Zj = 2 1 ,  x2 , . + . , xj ,  and Zj denotes the 
vector corresponding to Z j ,  j 2 1, and X is a vector, then 

and 

Notice that, if xl$ZX,m(X; 2) = 0. We are ready now to 
define the ^concept of skew of a vector X with respect to a 
sequence 2. 

,n} (equiv- 
alently, X is a binary vector of length n). Let Z = 
XI, 2 2 ,  + . . , xj, . . . be a sequence whose elements are 
in (1, 2,...,71}, AZi = XI, x 2 , . ’ . , ~ i  and 2; the s,et 
corresponding to Zi. Let m = m ( X ;  Z )  and T = T ( X ;  2)  
be as defined by (1) and (2), respectively. 

We say that the skew pf X with respect to 2 is equal to 
(Z1, Z2) (notation, S ( X ;  2)  = ( I l ,  b)),  if and only if 

Definition 1: Let X be a subset of (1, 2, 

11 = I ( &  - 2,) n XI and Z2 = T - m - 11, 

where (SI denptes the cardinality of a set S. 
Let S ( X ;  2)  = (Z1, Z2). We say that S ( X ;  2) does not 

exceed (SI, SZ), denoted S ( X ;  2) I (51, sa), if 11 5 s1 and 
12 5 s2. Otherwise, we say that S ( X ;  2) exceeds (SI, s2) 
(notation, S(X; 2)>(sIl ~ 2 ) ) .  

Example 1: Assume that X = 11 000 is transmitted fol- 
lowed by other vectors. As a-set, X = (1, 2). At reception, 
assume that the sequence 2 = 2 3  1 4 2 5 . . .  is obtained. 
Equations (1) and (2) give m = m ( X ;  2)  = 1 and T = 
r ( X ;  2) = 3, respectively. Therefore, we obtain 2, = 21 = 
(2) and 2, = 2 3  = (1, 2, 3), giving 2, - 2, = 2, - 21 = 

According to Definition l , Z 1  = I (2, ; 2,) fl X I = 1 { 1) 1 = 
1 and 12 = T - m - I1 = 1, so S ( X ;  2)  = (1, 1). 

Similarly, ‘,f we receive 2 = 2 2 p  1 3  5, we can see that 
m = m(X;  2)  = 1 and T = T ( X ;  2)  = 4. 

Now, we obtain 2, = 21 = (2) and 2,. = 2 4  = (1, 2, 4}, 
giving 2, - 2, = Z4 - 21 = { 1, 4). According to Definition 
1, Z1 = l(Z,-Z,)nXI = 1(1)1 = 1 andZ2 = T-m-11 = 2, 

The next step is defining codes that can either detect or 
correct skew. Our approach to dealing with skew is to use 
coding theory methodology and identify the properties of a 
family of vectors (a code) that can handle the skew. In some 
applications, we might merely want to detect that skew has 
occurred, and then invoke a protocol that will halt transmission 
and allow for retransmission. Codes detecting skew are called 
skew-detecting codes. 

Definition 2: Let t l  and t 2  be nonnegative integers and 
let C be a code. We say that C is ( t l ,  ta)-skew-detecting 
(SD) if, whenever a codeword X in C is transmitted followed 

(1, 31. 

so S ( X ;  2)  = (1 ,2) .  
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by other codewords giving a received sequence Z, then, by 
examining Z, the code will correctly decode X provided 
that S ( X ;  2) = (0, 0) (i.e., no skew), and will detect the 
occurrence of skew when there is a repeated arrival as long as 
(0, 0) < S ( X ;  2) 5 ( t l ,  t2) (i.e., the skew does not exceed 

Definition 2 states that the skew will be detected when a 
repeated arrival occurs, provided that the skew does not exceed 
( t l ,  t2). In a worst case situation, the detection of skew will 
occur after n arrivals. 

In other applications, we might want to go further and 
correct the skew, allowing for continuous operation. Codes 
capable of correcting skew are called skew-tolerant codes. 
Formally, 

Definition 3: Let tl  and t2 be nonnegative integers and 
let C be a code. We say that C is ( t l ,  t2)-skew-tolerant (ST) 
if, whenever a codeword X in C is transmitted followed by 
other codewords, and 2 is the received sequence, then, by 
examining 8, the code will correctly decode X as long as 
S ( X ;  2) I ( t l .  f2) (i.e., the skew does not exceed ( t l ,  f2)). 

We will present a decoding algorithm that will correct the 
skew when the last transition corresponding to X, i.e., .rT, 
arrives, where T = T ( X ;  2) is given by ( 2 ) .  

(t l l  t2)). 

We illustrate Definitions 2 and 3 with an example. 
Example 2: Consider the following code: C = { X :  Y } ,  

a) Code C is (3, 3)-SD. The decoder checks for the arrivals, 
and when either X or Y arrive they are decoded and 
the process restarted. Assume that X is transmitted first 
and then Y followed by other transmissions of either 
X of Y ,  giving a received sequence Z. If the first 
transition arrives in channel 1, then we conclude that 
X has been transmitted. If the first transition does not 
arrive in channel 1, since S ( X ,  Z) 5 (3, 3), up to 
3 transitions from Y may arrive before the transition 
in channel 1 arrives. Therefore, at least one transition 
remains in Y when the transition in channel 1 arrives. 
For each arrival T ] ,  the receiver checks if the received 
sequence 2, coincides with either X or Y. Z, cannot be 
X ,  since X has only one element. Z, cannot be equal to 
Y neither, since 1 does not belong in Y ,  and 1 is received 
before the last transition in Y has arrived. Hence, the 
last transition in Y to arrive will be the 5th transition 
in the received sequence, corresponding to the complete 
set (1, 2 ,  3, 4, 5). The sixth arrival will be a repeated 
arrival, detecting the occurrence of skew. Something 
similar occurs when Y is transmitted followed by X .  
If the skew exceeds (3, 3), it may be undetected. In 
effect, assume, as before, that X is transmitted first but 
the received sequence is 2 = 2 4 3 5 1 ’ ’ ’. According to 
Definition 1, S(X; 8) = (1, 4). However, when ~1 = 5 
arrives, the receiver will conclude (incorrectly) that Y 
was the transmitted codeword. 

b) CodeAC is (1, 2)-ST. Assume that X is transmitted first 
and 2 is the received sequence. If S ( X ;  2) 5 (1, a), 
one of the first three transitions arrives in channel 1. On 
the other hand, if Y is transmitted first, 2 is the received 

where X = 10000 and Y = 01111. 

sequence, and S ( Y ;  2) 5 ( I ,  2 ) ,  when a transition 
arrives in channel 1, only one transition may remain in 
Y .  This means, the first three transitions do not arrive in 
channel 1. So, the receiver has a clear decoding strategy: 
it observes the arrival of the first three transitions; if one 
of them arrives in channel 1, then it decides that X has 
been transmitted; if neither of them arrives in channel 
1, it decides that Y has been transmitted. As long as 
the skew between the transmitted codeword and the 
received sequence does not exceed (1, 2), this strategy 
will successfully decode the transmitted codeword. 

Although Example 2 is very simple, the reader is urged 
to comprehend it, since the general case involves a similar 
reasoning. The necessary and sufficient conditions for a code 
to be ( t l ,  t2)-SD or ST, to be given in the next two sections, 
will allow to explain immediately why the code in Example 
2 is (3, 3)-SD or (1, 2)-ST. 

C. Contributions and Organization 

Clearly, i t  is not enough to just define ( t l ,  t2)-SD and 
( t l .  t*)-ST codes. Our real goal is to identify the properties 
that characterize those codes and use them in order to construct 
the codes. Indeed, we were able to derive necessary and suf- 
ficient conditions for both ( t l .  t*)-SD and ( t l ,  t2)-ST codes. 
These conditions are given using global distance properties 
between codewords. They fully characterize a set of vectors 
that can enable operation in the desired new paradigm. 

We also provide efficient encoding and decoding algorithms 
both for the case of detection of skew and for the skew-tolerant 
case (continuous operation). 

We have used the characterization theorems in order to 
construct efficient families, in terms of redundancy, of ( t l .  t2)- 
SD and ST codes. In particular, we have generalized the 
known construction by Berger [ l ]  for unordering of vectors 
and constructed the so called error-correcting unordered codes 
(ECU’s); these are codes that have both distance properties and 
are unordered. We also proved that the ECU’s constructed out 
of Hamming codes and certain BCH codes are optimal in a 
certain sense. 

In summary, we have used coding theory methodologies 
in order to create an efficient scheme for parallel pipelined 
asynchronous communication. As it turned out, new families 
of codes as well as new encoding and decoding algorithms are 
needed in order to address this problem. 

The paper is organized as follows. In Section 11, we prove 
the characterization theorem for ( t l ,  t2)-SD codes and present 
an algorithm for detection of skew. In Section 111, we prove 
the characterization theorem for ( t l .  t2)-ST codes and present 
a skew correction algorithm. In Section IV, we use the 
characterization theorems to construct efficient ( t l .  t2)-SD and 
ST codes. In Section V, we address the issue of the optimality 
of the codes obtained in Section 1V. 

11. NECESSARY AND SUFFICIENT CONDITIONS 
AND DECODING FOR ( t i .  t2)-SD CODES 

In this section, we study ( t l .  t2)-SD codes (Definition 2). 
We give a characterization in terms of distance between code- 
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words, starting with necessary conditions and then proving that 
these conditions are also sufficient. The sufficient conditions 
are proven by providing a decoding algorithm, and showing 
that the decoding algorithm correctly decodes a codeword 
when there is no skew, and detects the presence of skew when 
this skew does not exceed ( t l ,  t2). 

Given two binary vectors X and Y of length n, we denote 
by N(X, Y) the number of coordinates in which X is 1 and Y 
is 0 [2 ] .  For example, if X = 10110 and Y = 00101, we have 
N ( X ,  Y )  = 2 and N(Y, X) = 1. Notice that N(X, Y) + 
N ( Y ,  x) = dH(X, Y ) ,  where dH denotes Hamming distance. 
In the language of sets, N ( X ,  Y )  = (X - Y ( .  

The following theorem gives necessary conditions for a code 
to be ( t l ,  t2)-SD. 

Theorem I: Let C be a ( t l ,  t2)-SD code and let X and Y 
be any two different codewords in C .  Let t = min { t l ,  t z }  
and let T = max { t l ,  t 2 ) .  Then, at least one of the following 
two conditions occurs: 

a) min {N(X, Y), N ( Y ,  X)} 2 t + I 
or 

b) min {N(X, Y ) ,  N ( Y ,  X)} 2 1 and 
niax {N(X, Y ) ,  N ( Y ,  X)} 2 T + 1. 

Proof: Assume that for a given ( t l ,  t2)-SD code C the 
conditions are not satisfied. Namely, there exist X and Y E C  
such that 

min { N ( X , Y ) ,  N ( Y , X ) }  5 t (3 )  

and 

min{N(X,Y), N(Y,X)} = 0 or 

(4) 
"{N(X,Y), N ( Y , X ) }  I T .  

Given a set W ,  let denote a sequence with the elements of 
W in some order (no repetitions). 

Assume that N ( X ,  Y )  = 0. Therefore, X C Y. Let 
V = Y - X .  Assume that the following sequence is received: 

2 x,  v , x , .  . . 

Notice that both S ( X ;  2) = (0, 0) and S(Y;  2) = 
(0, 0). Therefore, there is no skew between either X of 
Y and the received sequence 2, so the receiver cannot 
distinguish which codeword was transmitted first, whether 
X or Y. This contradicts the fact that C is ( t l ,  t2)-SD, 
so,min {N(X, Y), N(Y, X)} 2 1, giving, from (3) and (4), 

1 5 m i n  { N ( X ,  Y ) ,  N ( Y ,  X ) }  5 t and 

max {N(X, Y),N(Y, X ) }  5 T. 

Without loss of generality, assume that N ( X ,  Y )  5 tl and 

Let U = X r l  Y, V = Y - X and W = X - Y .  Assume 

( 5 )  

N ( Y ,  X )  I t z .  

that the following is the received sequence: 

2 = u ,  v ,  w ,  U , . . .  . (6) 

Since S(Y;  8) = (0, 0), theJeceiver will conclude, after 
arrival of the last transition in V, that Y was transmitted. 

However, 

therefore, it could have well happened that X was transmitted 
first and the skew with respect to the received sequence does 
not exceed ( t l ,  tz), contradicting the fact that C is ( t l ,  t 2 ) -  
SD. cl 

Theorem 1 states necessary conditions for a code to be 
( t l ,  tz)-SD. It turns out that these conditions are also suf- 
ficient. The proof is based on showing that, given a code 
that satisfies the conditions, the following decoding algorithm 
correctly decodes the received sequence when there is no 
skew and detects an error provided that the- skew does not 
exceed ( t l ,  t 2 ) :  given a received sequence 2 = X I ,  T Z , . . . ,  

the receiver examines each arrival x, checking for a codeword. 
If there is a repeated arrival, a skew error is detected and an 
error-detecting protocol is invoked. If a codeword is found, it 
is produced as output and the process is restarted. This can be 
formalized as follows. 

Algorithm I (Decoding Algorithm for ( t l ,  t2)-SD codes): 
Let Z = X I ,  2 2 ,  . . . , x, , . . . be a received sequence. Then, 

SET the initial conditions as X +- 8 and J +- 0. 
START: SET 3 t 3 + 1. 

IF x,EX, THEN detect an error and stop. 
ELSE, SET x +- x U {T,} .  

I 

IF XEC, THEN output X ,  set X t 0 and 
GO TO START. 

ELSE, GO TO START. 

Theorem 2: Let tl and t 2  be positive integers, and let 
t = min { t l ,  t 2 }  and T = max { t l ,  t2}. Let C be a code 
such that, for any pair of distinct codewords X, Y E C ,  at least 
one of the following two conditions occurs: 

a) min { N ( X ,  Y ) ,  N ( Y ,  X)} 2 t + 1 
or 

b) min { N ( X ,  Y), N ( Y ,  X ) }  2 1 and 
max { N ( X ,  Y ) ,  N ( Y ,  X ) }  2 T + 1. 

Then, C is ( t l .  t2)-SD. 

Proof: We prove the theorem by showing that Decoding 
Algorithm 1 will correctly decode any codeword X when no 
skew with the received sequence has occurred, and will detect 
the occurrence of skew not exceeding ( t l ,  tz ) .  

Assume that XEC has been transmitted and the received 
sequence is 2 = zl,  T ~ ,  ' .; , x,, . . . (without loss of general- 
ity, we may assume that 2 starts at x1, and the codewords 
transmitted before X have been correctly decoded). 

If S(X; 2)  = (0, 0) (i.e., no skew), then the algorithm 
will correctly decode X .  Let 2, = { T I ,  x2 , . . . , z3} ,  j 2 1. 
We show that, if S ( X ;  2) 5 ( t l ,  t 2 )  and Z,#X, then Z,@. 
If 2, c X or X c Z, and Z,#X,  then Z,@C since the code 
is unordered. 

So, assume that X and 2, are unordered and 2 ,EC for 
some 3 2 1. Since S ( X ,  2)  5 ( t l ,  t 2 ) ,  N(X, 2,) 5 t 1  and 
N(Z , ,  X) 5 t2,  contradicting conditions a) and b) in the 
theorem. 
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Since the algorithm correctly decodes X when S ( X ;  2) = 
(0, 0) and never outputs a codeword when 0 < S ( X ;  2) 5 
( t l ,  t z ) ,  then a repeated arrival indicates the occurrence of 
skew. In a worst case situation, after n transitions in different 
channels arrive, the ( n  + 1)th transition will necessarily be a 

0 

The next two corollaries follow immediately from the 
necessary and sufficient conditions. 

Corollary I :  A code C is ( t l ,  t2)-SD, if and only if it is 
also ( t z ,  tl)-SD. Moreover, the decoding algorithm is the same 
for the two pairs of conditions. 

Corollary 2: A code C is ( t ,  t)-SD, if and only if, for any 
pair of codewords X ,  YEC, 

repeated arrival. Hence, C is ( t l ,  t2)-SD. 

min { N ( X ,  Y ) ,  N ( Y ,  X)} 2 1 

and 

max {N(X, Y), N ( Y ,  X)} 2 t + 1. 

The next example illustrates the necessary and sufficient 
conditions and the decoding algorithm for ( t l ,  t2)-SD codes. 

Example 3: Let C = {U,  V,  W } ,  where 

U = 00110*{3, 4}, 
V = 011014-+{2, 3, 5 } ,  

w = 10001++{1, 5 ) .  

Notice that N(U,  V) = 1 and N ( V ,  U )  = 2 ,  N ( U ,  W )  = 2 
and N ( W ,  U )  = 2, and N ( V ,  W )  = 2 and N ( W ,  V) = 1. 
According to Corollary 2, code C is (1, 1)-SD. 

Assume now that the sender transmits U followed by V ,  
then by W and then by other codewords, and the receiver 
obtains the following sequence: 

SI sz 1 3  r l  1 5  1 6  1 7  

2 = 3 4 5 2 1 3 s  

Table I illustrates the algorithm, with the relevant parameters 
at each step. We observe that skew has occurred between V 
and W :  the fifth arrival, in channel 1, corresponds to W ,  and 
the sixth arrival, in track 3, corresponds to V .  Since this skew 
does not exceed (1, l ) ,  the decoding algorithm detects it. The 
detection occurs when there is a repeated arrival. In that case, 
a skew detection protocol may be invoked and transmission 
is temporarily halted. 

Let us complete the example by showing that if the (1, 1) 
constraints are exceeded, skew may be undetected. This ex- 
ample also illustrates the proofs of Theorems 1 and 2. 

Assume, as before, that U,  V,  W , . . .  are sent in this order 
and the received sequence is 

1 1  x l  13 r 4  1 5  1 6  r7 

z = 3  4 5 1 2 3 s  

is received. We observe that the fourth arrival occurs in 
channel 1, which corresponds to W .  When this occurs, there 
are two transitions left in Y ,  2, and 3. Hence, once X 
has been received, the skew between Y and the received 
sequence is (2, l), which exceeds (1, 1). Notice that the 

TABLE I 

J r ,  Repeated Arrival? 
0 

1 3  No 

2 4  No 

3 s  No 

4 2  No 

5 1  No 

6 3  No i 
I 5  Yes 

s output  

(31 

.o 

{3> 41 00110 

a 
{ 5 }  

51 
1, 2, 51 
. 2, 3, 51 

Halt! 

received sequence corresponds to a skew-free reception of 
U,  W,  V. .  . . .  therefore the skew is undetected. 

In the next section, we give the conditions for ( t l ,  t2)-ST 
codes. 

111. NECESSARY AND SUFFICIENT CONDITIONS AND 
DECODING FOR ( t i .  f*)-sKEW-TOLERANT CODES 

The structure of this section is similar to the previous 
one: we characterize ( t l .  t2)-ST codes in terms of distance 
properties between codewords. We give necessary and suf- 
ficient conditions, and we prove sufficiency by providing a 
decoding algorithm and showing that this decoding algorithm 
can successfully decode transmitted codewords when the skew 
does not exceed ( t l ,  t 2 ) .  Codes that can correct, and not 
merely detect skew, have the advantage of allowing continuous 
operation: the system does not need to be halted in the presence 
of skew. Therefore, the skew is not noticed by the user. 
However, it will come as no surprise to the reader that ST 
codes require more redundancy than SD codes. Their decoding 
algorithm, also, is more complex. 

The following theorem gives necessary conditions for a code 
to be ( t l .  tz)-ST. 

Theorem 3: Let C be a ( t l .  t2)-ST code, and let X and Y 
be any pair of distinct codewords in C. Let t = min { ( t l ,  t 2 ) } .  

Then, at least one of the following two conditions occurs: 
a) rnin { N ( X .  Y). N(1’. X)} 2 t + 1 

or 
b) min { N ( X .  Y ) .  N(1.. X ) }  2 1 and 

max {N(X. Y ) .  N ( Y .  X)} 2 t l  + t 2  + 1. 

Proof: Assume that there exist X and E’EC such that 
a) and b) are not satisfied. Without loss of generality, let 
N ( X ,  Y) 5 N ( Y .  X), so, negation of a) and b) gives 

N ( X .  Y )  5 t (7) 

N ( X .  Y )  = 0 or N ( Y .  X )  5 t1-t  t2. (8) 

and 

If N ( X ,  Y) = 0, we get a contradiction as in the proof 
of Theorem 1. So, N ( X .  Y)>0 and conditions (7) and (8) 
become 

1 5 N(X. Y )  5 t and N ( Y .  X )  5 t l  + t 2 .  (9) 
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Since N ( Y ,  X )  = IY - XI I tl + t 2 ,  we may assume that 
Y - X = A1 U A2, where A1 n A2 = 0, lAll I t l  and 

As in the proof of Theorem 1, given a set W ,  we denote 
by W a sequence with the elements of W in some order. Let 
U = X n Y  and W = X - Y .  

IA2l I t 2 .  

Assume that we receive a sequence 2 as 

2 = U ,  A2, w ,  A,, U , .  . . . (10) 

According to Definition 1, 

Algorithm 2 (Decoding Algorithm for ( t l ,  t2)-ST codes): 
Let the received sequence be Z = 21, x2, .  . . , xj,. e .  Then: 

SET the initial conditions j t 0, X t 0, B +-- 0 
and Wl + 0 for 1 i. 1 I tl + t 2 .  

START: SET j t j + 1. 
IF XjEX,  THEN: 

IF IBI = t2 or x jEB ,  THEN declare an 
uncorrectable error and stop. 

ELSE, SET B t BU{zj}  AND GO TO START. 
ELSE, SET X t X U { z j } ,  Wl t Wl+l for 

For each A C Wt2--i+l U Wt2-i+2 U .. .  U 
1 I 1 I tl + t 2  - 1 and Wtl+t2 t {zj}. 

Wtl+t2-l of size (A(  = i ,  
and for each 0 I i 5 t 2 ,  DO: 

IF X - AEC for some A, THEN output X - A. 
IF A U BEC, THEN output A U B,  SET therefore, since C is ( t l ,  tz)-ST, X will be decoded as the 

transmitted codeword. 
On the other hand, 

X t 0 ,  Wl t 0 for 1 I 1 5 tl + t 2 ,  
B t 0 AND GO TO START. 

ELSE, SET X t A U B,  Wl c 0 for 
1 5 1 I ti + t 2 ,  B + 0 AND GO TO START. 

ELSE, IF X - A $ C  for any A, GO TO START. (tl+j-l) 
checks for each received transition. This is a fixed number 
depending only on tl and t 2 ,  so the algorithm has low 

S(Y;  2) = (IAll, IWl) I ( t l ,  t )  I ( i l l  t 2 ) ?  

Notice that Algorithm 2 performs at most 
therefore, since c is ( t l ,  tz)-ST, y Will be decoded as the 
transmitted codeword. This is a contradiction. 

It turns out that the necessary conditions in Theorem 3 are 
also sufficient for a code to be ( t l ,  t2)-ST. As in the previous 
section, the proof is based on a decoding algorithm, to be given 
next. In Algorithm 1, we simply checked, for each arrival, 
if the received vector is a codeword. Now we need a more 
complicated check operation. We need to look into a window 
in the immediate past and eliminate possible sets of arrivals 
that could have been caused by skew. The skew may appear in 
two possible ways: through arrivals of transitions that do not 
belong in the current word, and through repeated arrivals. The 
decoder needs to keep track of both sets. We denote by A the 
set of transitions that do not belong in the current codeword, 
and by B the set of repeated arrivals. The possible sets A are 
eliminated from the current word until we obtain a codeword. 
If no codeword is obtained after all possible sets A have been 
considered, the decoder considers the next transition x j  and 
repeats the process. 

The repeated transitions are ignored in the decoding of 
the current codeword, but they must be stored because they 
belong in the next transmitted codeword. Also, if the number 
of repeated transitions (i.e., the cardinality of set L?) exceeds 
t 2 ,  then, since the skew has exceeded the skew-tolerance of 
the code, the decoder halts transmission and may invoke a 
skew-detection protocol as in the previous section. 

In order to consider the possible sets A,  we need to look into 
a window with the last tl + t 2  elements, which are stored with 
their order of arrival. We denote these last tl + t 2  arrivals by 
W1, W2, . . . , Wt, + t 2 ,  where each Wi is either the empty set 
or a set with one element. When the current transition, say, xJ 
arrives, once it is established that x j  is not a repeated arrival, 
it is stored as Wtl+tq. The original value of W1 is eliminated 
and replaced by W2, W2 by W,, etc. This way, we have stored 
the last tl + t 2  transitions in the order they have arrived. 

Next we give formally the Decoding Algorithm. 

complexity. 
Before proving that the conditions in Theorem 3 are also 

sufficient, we give an example to familiarize the reader with 
Algorithm 2. 

Example 4: Let C = {U,  V, W } ,  where 

U = 0001100tt{4, 5) 
v = 01100006.{2, 3) 
W = 1100111~{1 ,  2, 5, 6, 7 ) .  

Notice that N ( U ,  V )  = 2 and N(V,  U )  = 2, N ( U ,  W )  = 1 
and N (  W, U )  = 4, and N(V,  W )  = 1 and N (  W, V )  = 4. AS 
will be shown in Theorem 4, code C is (1, 2)-skew-tolerant. 

Assume that the receiver obtains the sequence 

1 1  1'2 1 3  14 I:, 16 17 5 8  X g  X I 0  E11  " 

2 =  5 2 7 1 4  5 6 4 2 3 5 ' .  

Table I1 implements Algorithm 2, with the relevant param- 
eters at each step. 

Theorem 4: Let t l  and t 2  be positive integers and t = 
min { t l ,  t 2 ) .  Let C be a code such that, for any X ,  YEC, 
at least one of the following two conditions occurs: 

a) min { N ( X ,  Y ) ,  N ( Y ,  X ) }  2 t + 1 
or 

b) min { N ( X ,  Y ) ,  N(Y, X ) }  2 1 and 
max { N ( X ,  Y ) ,  N(Y.  X ) }  2 t l  + t 2  + 1. 

Then, C is ( t l ,  t2)-ST. 

Proof: We prove the theorem by showing that Decoding 
Algorithm 2 will correctly decode any transmitted codeword 
Y when the skew between Y and a received sequence Z does 
not exceed ( t l ,  t 2 ) .  

Moreover, if m = m(Y; 2)  and T = r ( Y ;  2) are defined 
by (1) and (2) ,  respectively, and S ( Y ;  2) I ( t l ,  t 2 ) ,  we 
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show that Y will be decoded when z, arrives, i.e., the last 
transition in Y .  To complete the proof, we need to show that 
the decoder does not produce any codeword different from Y 
for any arrival xj, j 5 T .  

Since Algorithm 2 ignores repeated arrivals in the decoding 
of the presenr codeword Y ,  without loss of generality, we 
assume that 2, does not contain repeated arrivals. Assume 
that S(Y;  2) = (11, 1 2 )  5 (tl, t 2 ) .  Let C = 2, - Y ,  i.e., 
Y = 2, - C.  Hence, since there are no repeated arrivals, 
IC1 = 12. We have to show that 2,. - C is a possible outcome 
of the decoding algorithm, i.e., C C W t z - t 2 + 1  U W t 2 - 1 2 + 2  U 
. . . U W t l + t 2 - 1 .  Notice that, by the definition of the Wi's in 
the decoding algorithm, 

Since C Z,-1 - 2, = {x,+l, xm+2,...,x,-1}, it is 
{ ~ , - ~ , - / ~ + 1 ,  x T P t , - l 2 + 2 ,  enough to show that 2 + 1  -2, 

. . . , x,-1}, i.e., 

This last inequality is equivalent to r - m 5 t l  + 12. But this 
is true, since T - ni = 11 + 12 and 11 5 t l ,  therefore (11) holds. 

So, Y = 2, - C is a possible outcome of the decoding 
algorithm. In order to complete the proof, we need to show 
that, for any j 5 r and Z, - A f Y ,  where A is as defined 
in the decoding algorithm, then 2, - A#C. In other words, 
Y = 2, - C is the only possible outcome of the decoding 
algorithm. 

If j 5 m, 2, - A C Z, C Z,, C Y .  Since code C is 
unordered, Z, - A#C. So, assume that 2, - A&, where 
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We will compute N ( Z ,  - A, Y )  and N ( Y ,  Zj - A) and show 
that the values we obtain contradict the fact that both Y and 
Zj - A are in code C (by contradicting the conditions in the 
theorem). 

There are two possibilities for A: either A n 2, = 0 
or A n Z,#0. Assume first that A n 2, = 0. Therefore, 
Y - ( Z j  - A) C Y n (2, - Z,), giving N ( Y ,  Zj - A) = 
(Y - (2, - A)I 5 IY n (2, - Z,)( = 11, i.e., 

N ( Y ,  Zj  - A) 5 ti.  (12) 

On the other hand, N ( Z j  - A, Y) 5 (2, - YI. Hence, 

N ( Z j  - A, Y) 5 t2. (13) 

Inequalities (12) and (13) contradict the hypothesis, so A n 
2, = 0 cannot hold. 

Now assume that A n Z,#0. Then, A = A1 U A2, where 
Al = AnZ, and A2 = A-Al .  Let lAll = 21 and (A21 = 22, 
so i = 21 + 22. 

First, we notice that, since S(Y;  2) = (11, l2) 5 (ti, t2), 
by Definition 1 of skew, 

N ( Z j  - A, Y )  L N ( Z j ,  Y )  F N ( & ,  Y )  
= (2, - YJ = IC( = Z2 5 t2. (14) 

This gives the inequality 

Now, observe that N ( Z j  - A ,  Y )  = l(Zj - A )  - Yl = 
l(Zj - Y )  - A(  I [ ( Z j  - 2,) - A21 = j - m - 22. Since, 
by inequality (15), - i2  5 t l  + m - j, replacing the value of 
-22, we obtain 

N(Zj  - A ,  Y )  I t l .  (16) 

From inequalities (14) and (16), we obtain 

N ( Z j  - A, Y )  5 t ,  (17) 

where t = min { t l ,  tz}. 
Now, notice that N(Y,  Zj - A )  5 I(Zr - 2,) n Y J  + (Al. 

By Definition 1, I(Zr - 2,) n Y (  = 11 5 t l .  Also, we have 
\A]  = i 5 t2, so we obtain the inequality 

N ( Y ,  Zj - A) 5 ti + t2. (18) 

But inequalities (17) and (18) also contradict the hypothesis. 
This shows that Y = 2, - C is the only possible outcome of 

0 

The following corollary is clear from the necessary and 

the decoding algorithm, completing the proof. 

sufficient conditions. 

Corollary 3: A code is ( t l ,  t2)-ST, if and only if it is also 

Notice that the decoding algorithm for a ( t l ,  t2)-ST code 
is not the same as the decoding algorithm for a (t2, tl)-ST 
code when t l f t2 .  

In the next sections, we discuss actual constructions of codes 
that are ( t l ,  t2)-SD and ST as well as optimality issues. 

(t2, t1)-ST. 

IV. CONSTRUCTIONS OF ( t l ,  t2)-SD AND ST CODES 

In this section, we give two constructions of ( t l ,  t2)-SD 
and ST codes. 

The first construction involves a family of codes well known 
in literature: the so called t-error-correctinglall unidirectional 
error-detecting (EC/AUED) codes [2]-[4], [8]. A t-ECIAUED 
code satisfies condition a) [8], which is sufficient for both 
( t l ,  tz)-skew detection and correction when the skew between 
the transmitted codeword and the received sequence does not 
exceed ( t l ,  t2), and t = min {tl, t2}. We state this fact in 
the next proposition. 

Proposition 1: Let tl and t2 be positive integers and t = 
min { t l ,  tz}. Let C be a t-ECIAUED code. Then C is ( t l ,  t 2 ) -  
SD and ST. 

An efficient way of constructing at t-ECIAUED is as 
follows: first encode the information bits using a t-error- 
correcting code. Then append a tail such that the code satisfies 
property a). Efficient tail matrices may be found in [2]-[4]. 

The second family of codes that we consider are the so 
called error-correcting unordered (ECU) codes. A t-ECU code 
is a code that can correct t errors and any two codewords are 
unordered. 

Definition 4: We say that a code C is error-correcting un- 
ordered (ECU) with minimum distance d if, for any X, YEC, 

a) ~ H ( X ,  Y) = N(X, Y) + N ( Y ,  X) 2 d. 
b) min {N(X,  Y ) ,  N ( Y ,  X)} 2 1. 
The connection between ECU codes and ( t l ,  t2)-SD and 

Lemma 1: Let t l  and t 2  be positive integers and t = 

a) Let C be an ECU with minimum distance? tl + t2 + 1. 

b) Let C be an ECU with minimum distance2 t l+tz+t+l.  

ST codes is given by the following lemma. 

min { t l ,  t2). 

Then, C is ( t l ,  t2)-SD. 

Then, C is ( t l ,  t2)-ST. 

Proof: 
Let t = min { t l ,  t2} and T = max { t l ,  t 2 ) .  Let 
X, Y EC, and assume that condition a) is violated, say, 
N ( X ,  Y )  5 t. The codewords are unordered, and also, 

N ( Y ,  X )  = d H ( X ,  Y) - N ( X ,  Y )  
2 t1 + t 2  + 1 - t = T +  1. 

Hence, X and Y satisfy condition b) in Theorem 2, 
proving that the code is ( t l ,  t2)-SD. 
Let X, YEC, and assume that condition a) is violated, 
say, N(X, Y) 5 t. The codewords are unordered, and 
also N ( Y ,  X )  = dH(X, Y) - N ( X ,  Y) 2 t l +  t 2  + 1. 
Hence, X and Y satisfy condition b) in Theorem 4, 

0 proving that the code is ( t l ,  t2-ST. 
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In the particular case in which tl = t 2  E t ,  an ECU code 
with minimum distance 2t + 1 gives a ( t .  t)-SD code, while 
an ECU with minimum distance 3 t +  1 gives a ( t .  t)-ST code. 

Next, we describe a method to construct systematic ECU 
codes. The construction is in fact a generalization of the 
well-known Berger construction [1]. 

Construction 1: Assume that we want to construct an ECU 
code C with minimum distance d and dimension k .  Choose 
an [n’, k ,  d] error-correcting (EC) code C’. Let 14 be an 
information vector of length I C .  Then proceed as follows. 

a) Encode 
b) Let ,j be the Hamming weight of 11. Then append to 

The code obtained with this encoding procedure is ECU 

Before proving that the code is ECU, we observe the 

into a vector ~ E C ’ .  

the complement of the binary representation of / d ]  . 

with minimum distance d. 

following. 
The code C has length 71’ + [log , [ ( 7 1 ’  + l ) / d l l .  
The Berger construction corresponds to the special case 
in which C’ is the [ k .  k .  11 code. 
The code C is systematic if the code C’ is systematic. 
We may sometimes make the construction more efficient 
when the all-1 vector is in C’ by taking a coset of this 
code. The construction is analogous but we have less 
than n,’ + 1 different weights in the coset [4]. 
For a table with the best error-correcting codes, see [lo]. 

Lemma 2: The code C obtained in Construction 1 is ECU 
with minimum distance at least d. 

Proof It is clear that the minimum distance is at least 
d. Assume that we have two codewords 9 and 11 in C’ with 
weights i and , j ,  respectively, where i 5 , j .  Notice that 
N ( 2 ,  g)>0.  Let t ,  and t,; be the tails when we encode using 
Construction 1. We will irove that N ( ( B .  tu) .  (2, t , , ))>0. 

We have two possibilities: either L i / X J  = I,j/dJ or 

If [ i / d ]  = l , j / d J ,  then j - i 5 d - 1. If B C 11, then 
d ~ ( a ,  11) = ;j - i 5 d - 1, a contradiction. So, in particular, 
( U ,  is) and (2, 4,) are unordered. 

If L i / d ] # l j / d ! ,  then, in particular, bi/d]  < [ , j / d ] .  Ac- 
cording to Construction 1, ts as a binary number is larger 
than 4, as a binary number. This means, N ( t , .  t , . )>O. Since 
we had that N ( g .  U)>() ,  it follows that (3. !,)and (E. t,,) are 
unordered. 0 

Example 5: Assume that we want to construct a (1. 1)- 
ST code of dimension k .  The first approach is to encode 
the k information bits into an [n’. k .  31 Hamming code. We 
then append a tail in such a way that the code becomes 

Take for instance k = 57. We first add six redundant bits in 
order to encode the information into a [63, 57, 31 Hamming 
code. Using the table in [4], we see that we have to add nine 
bits to make the code l-EC/AUED (and therefore, (1. 1)-ST). 
This gives a total of 15 redundant bits. 

The second approach is to use Construction 1 to obtain 
an ECU code with minimum distance 4. We first have to 
encode into a [64, 57, 41 extended Hamming code. Then, to 

l i /dl# l.i/dl. 

- - 

1-EC/AUED. 

make the code unordered, we have to add a tail of length 
[log, [65/411 = 5 bits. This gives a total of 12 redundant 
bits, so, for k = 57,  the second method is more efficient 
than the first. If we take a coset of this code, the weight 
distribution goes from 1 to 63, so we have 63 different weights. 
Now, [log [63/411 = 4 bits, so we save one bit in the total 
redundancy. 

In the next section, we deal with the issues of optimality 
of ECU codes. 

V. OPTIMAL ERROR-CORRECTING UNORDERED CODES 

In the previous section, we have presented two general 
constructions of codes that meet the necessary and suffi- 
cient conditions. The second construction is based on error- 
correcting codes to which a tail is added in such a way that 
the code is unordered. 

We consider the optimality of Construction 1 in the fol- 
lowing sense: the tail added to the error-correcting code has 
minimal length, i.e., it is impossible to find a shorter tail 
making the code unordered. In this sense, we prove that 
Construction 1 is optimal for the extended Hamming codes 
and for certain BCH codes (this does not mean that the code 
is globally optimal, in the sense that the tail is the shortest one 
that can be added to the information bits). 

We begin by defining the concept of a chain of vectors; 
Definition 5: A set of binary vectors {VI ,  V,, . . . , Vm} is 

a chain of length rn if any two vectors in the set are ordered. 
The idea in proving the optimality of our constructions is 

to exhibit a long enough chain of codewords in the error- 
correcting code. The following lemma gives the key. 

Lemma 3: Let { C1. C2.. . . , C, } be a chain of vectors, 
each being a codeword in a given code C. Then the length of 
the tail that we have to add to C to make it unordered is at 
least [log , nil bits. 

Proof Since all the codewords in the chain are ordered, 
we need to have a different tail for every one of them to make 
them unordered. Hence, we need at least m different tails. 0 

We prove the optimality of some of our constructions by 
exhibiting chains of length In,/& +1 in an [n, k ,  d] code. First 
we prove the optimality of our construction for the extended 
Hamming code by exhibiting a chain of + 1 codewords 
in a code of length 2n‘. 

Proposition 2: The [ , ‘ I L .  27r1 - m - 1 , 41 extended Hamming 
code contains a chain of 2rrrp2  + 1 codewords. 

Proof: The columns of the parity check matrix of a 
(2 , ’ .  2,‘ - m - 1. 4) extended Hamming code are 

Note that we can arrange the columns in the parity check 
matrix in pairs such that the first m bits are complemen- 
tary. Namely, column (711. 712. . . . , w,, l)T is paired with 
(VI, . .  ,Vnz.  l)T. Hence, the sum of a pair of columns 
in this arrangement gives the vector (1 .  1. . . . ,1, O ) T  and the 
sum of two pairs (four columns) is the all-0 vector. We call 
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this matrix H,. For example, 

0 1 1 0 0 1 1 0 ’  

0 1 0 1 0 1 0 1  
0 1 0 1 1 0 1 0  

1 1 1 1 1 1 1 1  1 H 3 =  ( 
Consider the extended Hamming code that corresponds to the 
matrix H,. It follows from the construction of H ,  that the 
following set of 2“-’ + 1 codewords is a chain: 

where Si, S a binary vector, is a vector obtained by concate- 
nating S i times. U 

The second result is related to BCH codes. We prove that 
in many cases we can exhibit chains of codewords that show 
the optimality of our construction. The key to exhibiting long 
chains is the following lemma [5]. 

Lemma 4: Consider a binary t-error-correcting BCH code 
defined in a standard way, i.e., as a cyclic code of length 
2” - 1. Let a and b be two integers such that 

a . b  = 2” - 1 

and 

a 2 2 t +  1. 

Then, the following b polynomials correspond to codewords: 

and for 2 5 i 5 b, 

.;(X) = X i - l z l ( x ) .  

Using this lemma we can prove the following. 
Proposition 3: Given a t-error-correcting BCH code of 

length 2” - 1 = a.  b where a and b are integers, and a 2 2t + 1, 
we can exhibit a chain of length b + 1. 

Proof: The proof follows from Lemma 4. The chain 
consists of the all-0 vector and the set of b vectors that 
correspond to partial sums of the polynomials from Lemma 
4 as 

I i=l J 
0 

Example 6: Consider the case t = 2, namely 2t + 1 = 5. 
We can exhibit a chain of ((2” - 1)/5) + 1 codewords in all 
the cases in which 2” - 1 0 (mod 5). For example, for 
m = 4 we can exhibit a chain of length 4. In general, we can 
exhibit a long chain whenever m = 0 (mod 4) (by Fermat’s 
Theorem). Similarly, for 2t + 1 = 7, we can exhibit a long 
chain for all the cases in which m z 0 (mod 6).  

To summarize, we proved in this section that our construc- 
tion of a t-ECU code is optimal when we consider the extended 
Hamming codes and certain BCH codes. 

VI. CONCLUSION 
We have studied a problem in parallel asynchronous com- 

munications allowing a certain amount of skew between 
consecutive messages. We have shown that there are codes 
that can either detect or correct a certain amount of skew. 
We gave a precise mathematical definition of the concept 
of skew. We found necessary and sufficient conditions for 
codes that can either detect or tolerate a predetermined amount 
of skew. We constructed codes satisfying the necessary and 
sufficient conditions and we studied their optimality. Finally, 
we provided efficient encoding and decoding algorithms. 

We note here that better ( t l ,  t2)-ST codes were obtained in 
a recent paper [6]. 
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