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Abstract

We describe the negative fuse, an analog model which encourages boundary completion in
early vision regularization algorithms. This algorithm is an extension of the successful imple-
mentation of line processes in analog VLSI using the resistive fuse (Harris et al) [1]. The
negative fuse provides for true negative resistance regions for the enhancement of edges, making
long connected edges more likely to occur. This model has a natural mapping into inexpen-
sive, fast, low power analog hardware. We discuss the performance of a negative fuse element
fabricated in VLSI and show simulations of network performance on digitized camera images.

1 Introduction

Standard regularization theory combines least squares methods with smoothness constraints, which
leads to quadratic variational functionals with a unique, global minimum (Horn and Schunck [2];
Hildreth(3]; Poggio, Torre and Koch[4]; Poggio, Voorhees and Yuille, [5]; Grimson[6]). These
quadratic functionals can be mapped onto linear resistive networks, such that the stationary voltage
distribution, corresponding to the state of least power dissipation, is equivalent to the solution of
the variational functional (Horn[7); Poggio and Koch, [8]). Data is provided through the correct
choice of data-dependent voltage sources and resistors at each node. Much research has gone into
extending these quadratic variational functionals to allow for discontinuities. Geman and Geman[9]
first introduced a class of stochastic algorithms, based on Markov random fields, that explicitly
encode the absence or presence of discontinuities by means of binary variables. Their approach was
extended and modified by numerous researchers to account for discontinuities in depth, texture,
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optical flow, and color. Various deterministic approximations, based on continuation methods or
on mean field theory yield next-to-optimal solutions (Koch, Marroquin and Yuille[10]; Terzopoulos
[11]; Blake and Zisserman[12]; Hutchinson et al.,[13]; Blake [14]; Geiger and Girosi[15]).

Considerable interest has focused recently on mapping vision algorithms onto analog or digital net-
works. Notably, Carver Mead[16] has been successful in developing subthreshold analog networks '
which implement various vision processes, such as an artificial retina chip (Mead and Mahowald)[17].
In this paper we first discuss the “resistive fuse”, the first implementation of line process discon-
tinuities in analog hardware. The resistive fuse was introduced by Harris[18][1] as a means of
implementing discontinuities directly without the use of a hybrid analog-digital network to imple-
ment the smoothing function and the discontinuity detection independently. Section 3 describes
the negative fuse, an idea that extends the resistive fuse concept to enhance boundary completion.
This negative fuse effectively implements a two-threshold scheme where the intensity difference
across adjacent pixels will be enhanced if discontinuities are present in the neighborhood of the
pixels. We will study the hysteresis properties of this new network that encourages the smooth
propagation of edges across gaps.

2 Resistive Fuse

Line discontinuties were first used by Geman and Geman as part of a Markov random field lattice
to reconstruct surfaces from noisy images. Marroquin [19] applied this idea by using two coupled
Markov Random fields (one for the depth values and the other for line processes) to solve the
surface reconstruction problem. Koch, Marroquin and Yuille extended this further by using analog
networks with discontinuities which vary continuously between 0 and 1. They also used a first-order
model (membrane) to reconstruct the surface between sparse depth points of synthetic images.

Blake and Zisserman[12] used similar energy functions for first-order (membrane) and second-order
(plate) networks to locate discontinuties in natural images. In forming the energy function for a
weak membrane for the 2-D case, the sparse and noisy depth data d; ; are given on a discrete grid.
Associated with each lattice point is the value of the recovered surface u;; and two binary line
discontinuities k; j and v; ;. Assuming that the surface is smooth except at isolated discontinuities,
the functional to be minimized is given by

E(u,v,h) =3 [(wij—di ;)2 + A(wij— i j41) (1= 03 )+ Mt j — wig1,5)* (1= hij) (b +vig)] (1)
i

where A and a are free parameters. The first term forces the surface u to be close to the measured
datad. The second and third terms implement the piecewise smoothness constraint in the horizontal
and vertical directions respectively. Horizontal and vertical line discontinuities are represented by
h; ; and v; ;. Fig 1 explains the choice of indices used for representing the line process variables. If
all variables, with the exception of u; j,uiy1,;, and h; j, are held fixed and N (uip1,j — uij)? < a,
then it is “cheaper” to pay the price A?(u;t1,; —ui,;)? and to set h; j = 0 than to pay the larger price
a. In other words. if the gradient becomes too steep, h; ; = 1, (i.e. a discontinuity is detected) and
the surface is segmented at that location. Fig 1 explains the choice of indices used for representing
the line process variables.

We use a deterministic approximation and map the functional E onto the circuit shown in Figure
2. The voltage at every gridpoint then corresponds to u;;. A voltage source is set to d; ; at every
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Figure 1: Description of indices

node. The conductance between the voltage source and the grid is assumed to be 1. In the absence
of any discontinuities (h;; = v;; = 0), smoothness is implemented via a conductance of value
A2 connecting neighboring grid points; that is, the nonlinear resistors in Figure 2a can simply be
considered linear resistors. The cost functional E can then be interpreted as the power dissipated
by the circuit. If parasitic capacitances are added to the circuit, E acts as a Lyapunov function of
the system and the stationary voltage distribution corresponds to the smooth surface.

Harris[1] introduced a two-terminal nonlinear device called a resistive fuse to implement piecewise
smoothness and discontinuities (Figure 2b). If the voltage drop across this device is less than
Vr = (al/2/)), the current through the device is proportional to the voltage, with a conductance
of A2, This implements the smoothing function. If Vr is exceeded, the fuse breaks and the current
goes to zero. Unlike the common electrical fuses in our houses, the operation of the resistive fuse
is fully reversible. The I-V characteristic of this analog fuse is shown in Figure 2b. The linear
part of the I-V curve produces a membrane-like smoothing function. This analog fuse implements
a continuous version of the binary line discontinuities. There are some problems with using a
weak membrane network. Even though the network possess hysteresis, this is insufficient to help
propagate the edges towards forming complete boundaries. We attempt to improve the membrane
energy by using a negative fuse.

3 The Negative Fuse

Conventional edge detectors assume that an edge is detected if the difference in intensity of a pixel
from that of its neighbors exceed a pre-defined threshold. Such detectors have difficulty finding
continuous edges and subsequent techniques like edge-linking are employed to fill in the gaps so
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Figure 2: (a) nonlinear resistor network implementing line processes (b) measured IV curve of the
resistive fuse (from Harris et al.)[1]

that closed contours are formed. Edge detectors like Canny’s edge detector(Canny)[21] and mean
field methods (Gieger and Girosi)[15] use two thresholds so that pixels with difference in intensities
lying between the 2 thresholds have the potential of either being a discontinuity or not depending
on whether discontinuities exist in their neighborhood.

In Geiger and Girosi’s work on developing a mean field approximation as a good deterministic
solution to MRF’s problem, they pointed out that the gradient limit threshold of a weak mem-
brane is sometimes insufficient to close a contour in the image. They proposed adding an extra
penalty term to the membrane energy equation to increase the hysteresis effect. The extra penalty,
corresponding to the following terms, is subtracted from the above energy, E.

P2 = ca) (hijhij-1) +eay (vijvio1,;)

1 3J ‘.’]

The first term in the equation above decreases the penalty paid for creating a horizontal dis-
continuity if one of the neighboring horizontal discontinuities is present. Similarly, a horizontal
discontinuity created at a site will make the presence of neighboring horizontal discontinuities more
likely. The second term decreases the penalty paid for creating a vertical discontinuity depending
on the absence or presence of neighboring vertical discontinuities. These additional terms increase
the amount of hysteresis in the network and encourages smooth propagation of edges to close gaps
in contours. The variable € can be varied continuously between 0 and 1. If ¢ = 0, the total energy
function reduces to that of the weak membrane. If € = 1, the penalty for creating a discontinuity
will be reduced to zero and edges will appear everywhere.

In a very ad hoc fashion, Geiger and Girosi modified a similar energy function to the one above
into a simpler form. Intuitively, the function of this new energy is to boost mediocre edges which
lie between certain high and low threshold values. This boost may be enough to push neighboring
edges over the threshold-cooperatively creating and extending contours which would not have been
detected with a single threshold. This ad hoc energy form is mapped onto a circuit shown in
Figure 2a and the the two-terminal nonlinear device has a current-voltage characteristic which is
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Figure 3: Measured current-voltage curve of an experimental analog VLSI negative fuse.

similar to the “derivative” of the energy (also known as “force”). We have implemented this new '
nonlinear device called the negative fuse because of the presence of a negative region below the x-
axis in the current-voltage characteristic shown in Figure 3. The I-V characteristic of this negative
fuse was measured from a fabricated analog VLSI device. The circuit for this device is based on
the “bump” circuit which measures the similarity between analog voltages[22].

For the circuit in Figure 2a, the stationary voltage at every gridpoint corresponds to u;. A voltage
source is set to d; at every node. In addition to this voltage source, there is a current source (not
shown in the figure) which pumps current in or out of the node when the difference in the voltages
of neighboring gridpoints fall within a certain range. This behavior is best explained by looking at
the response of the negative fuse to various step heights.

If a large step is applied to a network of negative fuses and the voltage difference across a negative
fuse exceeds a set upper threshold, there is essentially no smoothing across the nodes at the terminal
of the fuse and the conductance of the fuse is zero. If the voltage difference is below a set lower
threshold, the step is smoothed as in the weak membrane and the conductance is A2 If the voltage
difference across the fuse falls between the set upper and lower thresholds, current is then pumped in
or out of the corresponding nodes such that the voltage difference between these nodes is enhanced
and the response of the negative fuse falls in the region where the conductance is now decreased
till it reaches zero (see Figure 4). This enhanced voltage difference gives the step response its
characteristic look of an overshoot on the upper edge and an undershoot on the lower edge.

In essence, the negative fuse helps the surface break along those nodes whose voltage difference is
initially insufficient to cause the surface to break. However if the surrounding surface starts to break,
this creates an “avalanche effect” which continues the breaking of the surface even along points
with an insufficient voltage difference across them. This enhanced hysteresis property translates
into further propagation of an edge to form complete boundaries.

In Figure 5, we show the influence of different values of € on the current-voltage characteristic of
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Figure 4: Step response of Negative fuse for different step heights.

the negative fuse. As the value of € increases from 0, the influence of the neighboring discontinuities
on the penalty function is correspondingly increased. This translates into an increasing negative
region in the current-voltage characteristic of the negative fuse.

We have simulated a negative fuse network for smoothing and segmenting the Lena image shown in
Figure 6a. The original 256x256 Lena image was smoothed and resampled on a pseudo-hexagonal
grid. A hexagonal network of negative fuses were used to allow a richer set of edge neighborhood
properties. We and others have observed that rectangular grids tend to over-emphasize horizontal
and vertical edges. Figure 6b shows the segmented output and Figure 6c shows the extended
continuous edges. These results demonstrate that the negative fuse network yields solutions with
long, continuous edges. Honest comparisons between the negative fuse network and the standard
weak membrane method are difficult. Certainly if all other parameters are held constant, the
negative fuse network discovers more edges. The weak membrane technique could recover these
same edges by lowering the edge threshold at the risk of signalling more “noise” edges or succumbing
to the gradient limit on steep slopes.

4 Conclusion

We have demonstrated a modified version of the resistive fuse called the negative fuse which en-
courages boundary completion. The current-voltage characteristics of this fabricated analog VLSI
device are analysed to show the capabilities of this element. This simulated network have been run
on dense image data to show their segmentation and edge detection capabilities.
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Figure 5: Measured IV curves for negative fuse for varying €
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Figure 6: Negative fuse solution to Lena image. (a) shows the original Lena image (b) shows the
final segmented image using the simulated network (c) shows the edges obtained after segmentation.
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