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ABSTRACT  

The Spitzer Space Telescope currently operates in the "Beyond Era", over nine years past an original cryogenic mission. 
As the astronomy community continues to advance scientific boundaries and push beyond original specifications, the 
stability of the Infrared Array Camera (IRAC) instrument is paramount. The Instrument Team (IST) monitors the 
pointing accuracy, temperature, and calibration and provides the information in a timely manner to observers.  The 
IRAC IST created a calibration trending web page, available to the general astronomy community, where the team posts 
updates of three most pertinent scientific stability measures of the IRAC data: calibration, bias, and bad pixels. In 
addition, photometry and telescope properties from all the staring observations ( >1500 as of April 2018) are trended to 
examine correlations with changes in the age or thermal properties of the telescope. A long, well-sampled baseline 
established by consistent monitoring outside anomalies and space weather events allows even the smallest changes to be 
detected. 
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1. INTRODUCTION  
NASA’s Spitzer Space Telescope1, one of NASA's Great Observatories, continues to operate past the original cryogenic 
mission concept (2003-2009), executing both a follow-on “Warm” mission (2009-2016) and now into the current 
“Beyond” (2016-present) mission phase. As Spitzer closes out its fifteenth year of operations, the mission continues to 
operate well beyond its initial five-year primary mission due to several optimizations used to overcome challenges. In 
2016, another 2.5-year final extension was awarded with a recent additional 8 months to extend Spitzer operations 
through November 2019. This extension would have allowed Spitzer operations to overlap with the James Webb Space 
Telescope, planned at that time to launch in early 2019. Within this "Beyond" phase, the astronomical community 
continues to advance scientific boundaries from exploring relatively nearby exoplanets to the farthest galaxies. As 
Spitzer is pushed beyond its original specifications, the understanding of the stability of the Infrared Array Camera2 
(IRAC) instrument is paramount.  
 
As the age and orbit of the Spitzer Space Telescope (Figure 1) evolves, the IRAC Instrument Support Team (IST) 
continuously monitors the calibration, bias levels, number of radiation hits, and space weather anomalies. This 
information is continually updated and provided to observers. A calibration trending web page3 was created, available to 
the general astronomy community, where the team posts roughly biweekly updates on stability measures of the IRAC 
data.  
 
Spitzer/IRAC has a unique calibration program.4,5 In order to convert measured flux on the detector into physical units, 
IRAC has a 2 stage calibration star program.  The primary calibration stars are used to derive the absolute calibration, 
done separately for the cryogenic and the warm mission.  The secondary calibration stars are used to check on a regular 
(daily) basis that the absolute calibration has not changed.  This is critical to science operations because the Spitzer 
observations need to be put into physical units to be compared with other ground and space based facility measurements.  
These calibration stars consist of A and K stars chosen carefully to be devoid of astrophysical variations. The calibration 
program provides absolute photometric uncertainties less than 3%. 
 
In addition to absolute photometric calibration, the IRAC IST designed a dark calibration program for shutterless 
operation. In conventional dark calibration programs, the shutter would be closed to block light from the telescope at 
which time the electronic level of the bias is measured.  Because IRAC does not close it’s shutter, instead, a relatively 
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The flux densities have been measured using aperture photometry corrected for both the location of the center of the star 
with respect to the pixel (pixel phase effect) and the location on the array (array location dependence). The flux densities 
for each star are normalized to the median value for that star. Error bars are calculated as the sigma clipped standard 
deviation in the bins divided by the square root of the number of data points in each bin. The black line at normalized 
flux density = 1.0 is shown to aid the eye in determining what a flat line would look like. All data have been processed 
with pipeline version S19.2. These 21 stars include full array and subarray observations, as well as many different 
exposure times and well depths. These plots are updated weekly as new observations are made. The gap at December 
2015 is from an anomaly, with no obvious effect on the calibration after the instrument was turned back on. 

Over the course of the entire mission, we do see a decrease in sensitivity of IRAC photometry of order 0.1% per year in 
channel 1 and 0.05% per year in channel 2. The suspected cause is radiation damage to the optics, which can be expected 
in the space environment. 

2.2 Bias Stability 

Instead of using a shutter, dark current and bias offsets are calibrated by observing a dark region of the sky ("skydark") 
near the north ecliptic pole every seven days. The resulting image contains both the instrumental bias and dark current as 
well as sky background level which is dominated by zodiacal light.9 Models of zodiacal light contributions are used to 
remove that signature, leaving just an image of the instrumental signatures.  The instrumental signatures can then be 
subtracted from the routine science data, leaving only astrophysical sources. To monitor for any changes in the bias, the 
IST routinely examines the median value of the skydarks after they have been pipeline-processed. The calibration 
skydarks are created in a dedicated pipeline in a similar manner to that of the science data. A median ensemble skydark 
image is created from a dithered suite of eighteen individual images using an outlier rejection and sophisticated spatial 
filtering to reject astronomical objects in the frames. A skydark is created for every frametime once a week and the 
nearest-in-time skydark is used for image calibration. While all frametimes have bias levels monitored, similar trends in 
the background value as a function of time over the mission are seen in all frametimes, so only one frametime is 
currently used for monitoring. The 12s frame time was chosen for its balance between read noise and background noise 
so that changes in the bias level can be seen most clearly. 

For every combined 12s skydark frame, a median value of the array is calculated and plotted with error bars over the 
course of the warm mission (Figure 3).  Error bars are calculated from the Poisson electron noise and readnoise error 
added in quadrature calculated in the processing. The red line traces out the predicted zodiacal variation for each 
wavelength band normalized to the median value of the skydark in Jan 2012 to discern it from any change in the 
skydarks. There does appear to be a slight trend (<0.1%/year) of decreasing bias in both channel 1 and 2.  This could be 
due to a decrease in zodiacal background as the distance of the spacecraft has increased from Earth, or could be due in 
part to a decrease in the sensitivity of the optics as discussed in the photometry. It is hard to discern either from the data. 
Any change in bias in the skydark frames will also appear in the science frames, so it is subtracted out and does not 
cause any change in the overall calibration of the instrument, but the IST continues to monitor it. 
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The number of cosmic rays affecting an IRAC image is determined from the calibration skydark measurements of 100s 
frametimes taken once a week, using the same techniques as were preformed in the cryogenic mission.11 The dark frames 
consist of 27 individual images taken in a 3x3 mapping pattern in the “Best NEP dark” region chosen at the beginning of 
the mission. This is within the continuous viewing zone and contained no bright sources that would saturate in 100s 
images. A mosaic image is created from the individual frames of the dark field using outlier rejection to remove 
transients. The individual images are registered and compared with the mosaic to determine the affected pixels per 
second using the number of pixels above a cutoff level (after masking brighter stars in the image). The pipeline also has 
an outlier rejection which removes transient pixels and registers them in a mask file. The number of counts in this mask 
file can be compared and match the cosmic ray statistics.  

 
Figure 4. Average number of pixels per second affected by cosmic rays in the calibration 100s skydarks since the 
beginning of the warm mission. The spike in 2012 is due to a solar flare that occurred during the time the dark 
calibrations were being taken.  

Further discussed in Section 3, the IRAC IST actively monitors solar coronal mass ejection (CME) events that can 
sometimes raise the number of affected pixels by a factor of 10-15 due to the large number of high energy particles 
produced. While IRAC images are always constantly monitored, the IST performs even more careful checks of 
image quality for data taken during several days around the predicted impact time of a CME event on the spacecraft 
to determine whether any observations need to be retaken. 

 

3. IMPACTS OF SOLAR FLARES  
A solar flare is a rapid release of energy in the Sun’s corona and can produce energy across the electromagnetic 
spectrum. A coronal mass ejection (CME), usually the consequence of a solar flare C, are high energy particles that 
travel away from the solar surface. As the relationship between flares and CME’s are still an area of active research, the 
terms “flare” and “CME” are used interchangeably in considering the space weather effects on spacecraft.   

Spitzer was designed with radiation-hardened shielding and tested in an environment based on the original five-year 
mission lifetime. It was thought that the instruments might be susceptible to radiation damage from a strong space 
weather event producing protons with energy levels exceeding 100 MeV and particle flux greater than 100 pfu, so the 
prime mission had a directive that commands be issued to place the spacecraft in a standby mode, powering off the 
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masks from all the data for a week long period surrounding the predicted impact are then examined. Not all impacts 
produce a rise in radiation hits on IRAC, but a report is generated to add along with the other systems that are checked. 
As shown in Figure 6, during the February 2014 CMEs, the number of radiation hits per second measured by IRAC rose 
to over 60 shortly after predicted impact. The observations on IRAC are taken with a variety of exposure times, therefore 
the 12s, 30s, and 100s exposure time frame data are uses to gain a good statistical measure of the radiation hits per 
second. The GOES 13 never measured to 100MeV particles rise above 100 pfu and leveled off, while the number of 
radiation hits measured on IRAC fell quickly within the 24 hours after the maximum. This is most likely due to the 
different locations of the Spitzer and Earth orbits. As Spitzer has drifted farther away from Earth, GOES data are no 
longer directly indicative of the environment directly around the Spitzer spacecraft, but the inclusion of Spitzer 
ephemerides in the models has provided the information needed to directly monitor and trend the solar flare timing.   

 

4. HIGH PRECISION PHOTOMETRY 
Time series observations are used on IRAC to observe temporal variations in relative photometry on timescales from a 
few hours up to more than 20 days for exoplanets, brown dwarfs, and the Active Galactic Nuclei at the Galactic center.  
The first exoplanet observations employed a dithering strategy (intermittently shifting the position of a target on a 
detector array), but observers quickly discovered that the main systematic limiting the precision of photometry is 
changes in position coupled with intrapixel gain variations. The Spitzer Science Center now recommends continuous 
staring without internal re-pointing for any high precision time series observations. The source is placed on a well-
characterized “sweet-spot” on a region of the least responsivity variation6.  It was found the systematics in telescope 
motions and pointing could be characterized in short term drift, long term (>2hr) drift, cloud size, and position 
oscillations which are trended using an archive of every staring observation8. Here we discuss two noted trends that are 
are correlated and seem to have changes associated with the increasing orbit of Spitzer. 
 

4.1 Pointing Oscillations  

The timescale of interesting features in exoplanet observations is of order one hour.  Coincidentally, the battery heater 
originally cycled on roughly one-hour timescales as well.  This heater cycling leads to thermal-mechanical variations, 
which cause ~0.03” position changes of science targets on the IRAC detectors, or a “pointing wobble”.  Because the gain 
varies significantly (several percent compared to hundred parts per million fluctuations from exoplanets) as a function of 
position within a pixel, the resulting gain variations on timescales that are scientifically interesting can be a chief source 
of correlated noise, and thereby make it very difficult to disentangle science from instrument performance.  In response, 
the Spitzer engineering team tightened the heater deadband so that it cycled on a period of approximately 40 minutes 
resulting in a pointing fluctuation of <0.015 arcsec. Separating the instrumental and planetary transit timescales and 
reducing the amplitude of fluctuations, led to increased photometric precision. 
 

4.2 Increasing Pitch Angles  

As the Spitzer mission traveled farther from the Earth in its orbit, the geometry of Spitzer, Earth and the Sun created a 
challenge. The pitch angle is the angle between the normal vector of the solar array and Sun direction vector as seen by 
Spitzer with zero degrees defined as solar panels directly facing the Sun. The spacecraft had to exceed a pitch angle of 
30 degrees for downlinks in November 2013. In January 2016 the pitch angle of 40 degrees was exceeded. As the 
mission operations continue, there is a concern that as pitch angles increased, more area might be exposed to possible 
heating due to light falling on the spacecraft underneath the solar panel. This was coupled with the thermal and power 
constraints due to smaller percentage of illumination upon the solar panels, as well. In anticipation of ever increasing 
pitch angles, operational “toe-dips” were performed approximately 9-12 months before a milestone positon angle of 
42.5, 45.5, and 48.5 degrees were reached, respectively. The spacecraft would pitch over at the desired angle and dwell 
for a given time to test battery usage and recharging. The spacecraft would then return to a pitch angle of 0 degrees to 
recharge the battery. The IRAC IST took advantage of these engineering tests and placed an observation directly after 
the engineering test that contained an 8-10 hour staring observation of a standard star.  
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