CaltechAUTHORS
  A Caltech Library Service

Properties of the Binary Neutron Star Merger GW170817

Abbott, B. P. and Abbott, R. and Adhikari, R. X. and Ananyeva, A. and Anderson, S. B. and Appert, S. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Biscans, S and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Brunett, S. and Cahillane, C. and Callister, T. A. and Cepeda, C. B. and Coughlin, M. W. and Couvares, P. and Coyne, D. C. and Ehrens, P. and Eichholz, J. and Etzel, T. and Feicht, J. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Heptonstall, A. W. and Hulko, M. and Isi, M. and Barkett, K. and Blackman, J. and Chen, Y. and Chua, A. J. K. and Kamai, B. and Kanner, J. B. and Kondrashov, V. and Korth, W. Z. and Kozak, D. B. and Lazzarini, A. and Markowitz, A. and Maros, E. and Massinger, T. J. and Matichard, F. and McIver, J. and Meshkov, S. and Nevin, L. and Pedraza, M. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Sanchez, L. E. and Taylor, R. and Torrie, C. I. and Urban, A. L. and Vajente, G. and Vass, S. and Venugopalan, G. and Wade, A. R. and Wallace, L. and Weinstein, A. J. and Williams, R. D. and Willis, J. L. and Wipf, C. C. and Xiao, S. and Yamamoto, H. and Zhang, L. and Zucker, M. E. and Zweizig, J. and Li, X. and Ma, Y. and Pang, B. and Scheel, M. and Tso, R. and Varma, V. (2019) Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 9 (1). Art. No. 011001. ISSN 2160-3308. http://resolver.caltech.edu/CaltechAUTHORS:20190107-131805656

[img] PDF - Published Version
Creative Commons Attribution.

3749Kb
[img] PDF - Submitted Version
See Usage Policy.

5Mb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20190107-131805656

Abstract

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary’s properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16  deg^2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89  M⊙ when allowing for large component spins, and to lie between 1.16 and 1.60  M⊙ (with a total mass 2.73^(+0.04)_(−0.01)  M⊙) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter ˜Λ are (0,630) when we allow for large component spins, and 300^(+420)_(−230_ (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1103/PhysRevX.9.011001DOIArticle
https://arxiv.org/abs/1805.11579arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Billingsley, G.0000-0002-4141-2744
Callister, T. A.0000-0001-9892-177X
Isi, M.0000-0001-8830-8672
Kamai, B.0000-0001-6521-9351
Kanner, J. B.0000-0001-8115-0577
Korth, W. Z.0000-0003-3527-1348
Kozak, D. B.0000-0003-3118-8950
Massinger, T. J.0000-0002-3429-5025
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Zucker, M. E.0000-0002-2544-1596
Zweizig, J.0000-0002-1521-3397
Pang, B.0000-0002-5697-2162
Additional Information:© 2019 Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Received 6 June 2018; revised manuscript received 20 September 2018; published 2 January 2019. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India; the Department of Science and Technology, India; the Science & Engineering Research Board (SERB), India; the Ministry of Human Resource Development, India; the Spanish Agencia Estatal de Investigación; the Vicepresidència i Conselleria d’Innovació; Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears; the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana; the National Science Centre of Poland; the Swiss National Science Foundation (SNSF); the Russian Foundation for Basic Research; the Russian Science Foundation; the European Commission; the European Regional Development Funds (ERDF); the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the Paris Île-de-France Region; the National Research, Development and Innovation Office Hungary (NKFI); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; the Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, Innovations, and Communications; the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR); the Research Grants Council of Hong Kong; the National Natural Science Foundation of China (NSFC); the Leverhulme Trust; the Research Corporation; the Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, Max-Planck-Society (MPS), INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. The GW strain data for this event are available at the LIGO Open Science Center [167]. This article has been assigned the document number LIGO-P1800061.
Group:LIGO
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max-Planck-Society (MPS)UNSPECIFIED
State of Niedersachsen/GermanyUNSPECIFIED
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche Scientifique (CNRS)UNSPECIFIED
Stichting voor Fundamenteel Onderzoek der Materie (FOM)UNSPECIFIED
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)UNSPECIFIED
Council of Scientific and Industrial Research (India)UNSPECIFIED
Department of Science and Technology (India)UNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development (India)UNSPECIFIED
Agencia Estatal de InvestigaciónUNSPECIFIED
Vicepresidència i Conselleria d’Innovació, Recerca i TurismeUNSPECIFIED
Conselleria d’Educació i Universitat del Govern de les Illes BalearsUNSPECIFIED
Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat ValencianaUNSPECIFIED
National Science Centre (Poland)UNSPECIFIED
Swiss National Science Foundation (SNSF)UNSPECIFIED
Russian Foundation for Basic ResearchUNSPECIFIED
Russian Science FoundationUNSPECIFIED
European CommissionUNSPECIFIED
European Regional Development FundUNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding CouncilUNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Hungarian Scientific Research Fund (OTKA)UNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
Paris Île-de-France RegionUNSPECIFIED
National Research, Development and Innovation Office (Hungary)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Province of Ontario Ministry of Economic Development and InnovationUNSPECIFIED
Natural Science and Engineering Research Council of Canada (NSERC) UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC)UNSPECIFIED
International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR)UNSPECIFIED
Research Grants Council of Hong KongUNSPECIFIED
National Natural Science Foundation of ChinaUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Kavli FoundationUNSPECIFIED
Other Numbering System:
Other Numbering System NameOther Numbering System ID
LIGO DocumentLIGO-P1800061
Record Number:CaltechAUTHORS:20190107-131805656
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20190107-131805656
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:92118
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:07 Jan 2019 23:27
Last Modified:07 Jan 2019 23:27

Repository Staff Only: item control page