


STABILITY THEORY FOR CROSS HATCHING 

Part 1. Linear Stability theory

by

Lester Lees, Toshi Kubota and Denny R-S Ko 

California Institute of Technology

Pasadena, California 91109

Contract No. F04701-68-C-0151

TECHNICAL REPORT SAMSO TR 72-34, Vol. I

Distribution limited to U. S. Government agencies 

only; test and evaluation 14 Feb 72. Other requests 

for this document must be referred to SAMSO (RSSE).

SPACE AND MISSILE SYSTEMS ORGANIZATION

AIR FORCE SYSTEMS COMMAND

Norton Air Force Base, California 92409



- ii -

FOREWORD

This report was prepared by the California Institute of Technology, 
Pasadena, California under USAF Contract F04701-68-C-0151, Project 
"Research on Fluid Mechanics of Striation Ablation. " The work was 
administered under the direction of the Space and Missile Systems Organi- 
zation, Air Force Systems Command.

This report covers work performed between 1 September 1968 to 15 August 
1971.

Professors Lester Lees and Toshi Kubota were the Co-Principal Investi- 
gators, Dr. Denny R-S Ko was a Post-Doctoral Research Fellow and 
Mr. Asher Sigal was a Graduate Research Assistant.

The manuscript of this report was released by the authors in January 1972. 

This technical report has been reviewed and is approved.



- iii -

ABSTRACT

A linear instability theory was developed which couples small perturbations 
in surface shape of a subliming surface and resulting perturbations in aero- 
dynamic heat-transfer rates. Equations governing compressible turbulent 
boundary layers were linearized for small perturbations whose streamwise 
scale lengths are comparable with the undisturbed boundary layer thickness. 
For turbulent shear stress, the mixing-length approximation was employed, 
and the turbulent Prandtl number was assumed to be unity for turbulent 
heat flux. Heat conduction within the ablating solid was analyzed by linear- 
izing the boundary condition for small amplitude. Sample computations 
were made for a teflon surface ablating under turbulent boundary layer at 
Mach 2. 6, and the results indicate that the small surface perturbations 
are unstable within certain regions in the wave number - wave angle space.
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1. Introduction

The cross-hatching on ablating surfaces is treated as a stability 

problem of perturbations on ablating surfaces, coupled with resulting per- 

turbations in the aerodynamic forces and heating from the gas boundary 

layer and the internal heat conduction and deformation within the ablating 

material, fed back into the surface perturbation. The initial phase of the 

stability can be treated by a linearized theory for small perturbations. In 

this boundary layer-ablation feedback model, then, the necessary ingredi- 

ents before we can treat the stability problem are

1) small perturbations in boundary layer heat transfer rates;

2) heat transfer and deformation of the wall material;

3) phenomena occurring at the interface.

For subliming ablators without appreciable softening at ablating 

temperature the interior problem is that of heat conduction. At the crests 

of surface perturbations the heat conduction away from the interface to the 

interior is decreased, and in the valleys the heat conduction is increased, 

which has the stabilizing effect. If the material becomes soft and deform- 

able, we may have to include visco-elastic motion of a layer next to the 

interface. For melting ablators, we have to include a liquid layer between 

the gas boundary layer and the solid material. With charring ablators, 

the analysis becomes more complex, since it must include the ablation 

of charred material by mechanical stress and chemical reaction at the sur- 

face, the heat and mass transfers in the charred layer, the pyrolysis at the 

bottom of the charred layer, and the heat conduction in the solid ablator, 

all of which are perturbed by the changes in the aerodynamic stresses and 

heat transfer rate from the gas boundary layer.
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Regardless of which mechanism we assume for the behavior of 

ablating material, then, the perturbations in the aerodynamic stresses 

and heat transfer rate must be known accurately for given perturbations in 

the boundary conditions at the interface.

The small perturbations in boundary layers have been treated exten- 

sively in the boundary layer stability theory for both incompressible and 

compressible laminar boundary layers. The stability theory, however, are 

concerned with eigen-value problems of small perturbations that vanish at 

the boundaries. On the other hand, we are interested in small perturbations 

forced by the wall perturbation. Another limitation is that the stability theory 

deals almost exclusively with laminar boundary layers, while the cross-hatch 

was observed, thus far, only with supersonic turbulent boundary layers.

The forced small perturbation was treated by Lighthill in the shock 

wave-boundary layer interaction, by Miles and Benjamin in connection with 

wind-generated waves on the surface of the water. But none of these works 

treats the perturbations in shear stress and heat transfer in a satisfactory

manner.

At the present state of knowledge of turbulent shear flows it is not 

possible for us to analyze the problem from the first principles. We must 

employ certain simplified models for turbulent shear stresses and heat flux. 

There are some models available which are proven (by comparing with meas- 

urements) to be applicable to conventional boundary layers, mixing layers, 

wakes and jets for obtaining solutions satisfactory for engineering purposes. 

The solutions derived from such models, however, have to be compared 

with measurements when they are applied to those flows that are outside the 

class of flows for which these models were invented.
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Since no experimental verification of the turbulent-shear-stress 

models are available for boundary layers over wavy surfaces with the wave 

length comparable to the boundary layer thickness, the second part of the 

present study was devoted to a detailed investigation of low-speed turbulent 

boundary layers over solid stationary wavy surface in which distributions 

of turbulent shear stress and energy as well as the mean flow field are meas- 

ured.

Low-speed boundary layer rather than supersonic turbulent boundary 

layer was chosen for the experiment since 1) it is relatively easy to obtain 

thick boundary layers, which facilitate detailed measurements of distributions 

of flow properties across the layer, without use of large expensive wind 

tunnels; 2) the data reduction of hot-wire anemometry is well established in 

low-speed turbulent flows, whereas at supersonic speeds the complexity of 

data acquisition is magnified several folds and some drastic approximations 

have to be made in data reduction of turbulence components; 3) the significant 

frequency spectra extend only to a few kilo-Hertz in low-speed thick boundary 

layers but to hundreds of kilo-Hertz in supersonic turbulent layers which is 

beyond the frequency range of conventional hot-wire anemometry; 4) the pri- 

mary aim of the experiment is to examine the applicability of currently 

available models for turbulent shear flow, which are developed mainly for 

conventional turbulent boundary layers, to the flow over wavy surfaces whose 

wave lengths are comparable to the boundary layer, and for this purpose even 

the low-speed data are virtually nonexistent.

The first part of the study covers a linear analysis of small pertur- 

bations in incompressible turbulent boundary layer utilizing an eddy-viscosity
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model which has been proven to yield satisfactory results for conventional 

boundary layers. The results from the analysis are compared with the 

experimental results.

2. Formulation of Stability Problem for Subliming Wall

If we denote the perturbation of a surface undergoing steady subliming

ablation under a turbulent boundary layer by ϵ -y (x, t), the perturbation 

in the ablation rate by ϵ •m', the density of the solid by ρs, the heat of 

sublimation by LE, the convective heat-transfer perturbation by ϵ •qa', the 

heat-conduction perturbation in the solid by ϵ •qs' (positive away from the 

interface), then from the heat-energy balance at the interface we obtain

By dividing the convective and conductive heat-flux perturbations by the

values of these fluxes under a steady ablation rate ϵ •m = ρsvs 

we can rewrite the above equation in the form

(2.1) *

If the surface perturbation is very small and given by

(2.2)

then the heat-flux perturbations will be of the form
* 

All variables in this section are dimensionless: the reference dimensions 
are the boundary-layer thickness and the freestream gas properties.
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(2.3)

where κs is the thermal diffusivity of the solid, and β is the angle between 

the wave crest and the freestream velocity. By substituting Eqs. (2.2) and 

(2.3) into Eq. (2.1), we obtain

This is the eigenvalue equation which determines the value of c. The real 

part of c is the wave speed of the surface pattern. The imaginary part of c 

is related to the amplification rate of the pattern; namely, the time rate of 

amplification σ is given by

Thus, if ci > 0, the small perturbations are amplified, and if ci < 0 they 

are damped.

2.1. Heat Conduction in Solid

We take the undisturbed surface to be at y = 0 with solid material in

y < 0. Thus the solid is moving toward the plane y = 0 at a constant speed

vs. If the perturbed surface is described by y = ϵ -y (x, t), the average value 

of y is zero when nonlinear effects are neglected.

If we assume a constant thermal diffusivity, the temperature in the

solid is governed by the equation

(2.4)

(2.5)
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(2.6)

If Tin denotes the temperature at large distance from the interface, then

(2.7a)

If we neglect small changes in ablation temperature with pressure, then

(2.7b)

When ϵ is small, we expand T in a series *

(2.8)

Then from Eq. (2. 6) we obtain

The boundary condition (2.7a) becomes

(2.9)

From the boundary condition (2.7b) we get

(2.11)

* For validity of this expansion it is required that ϵ vs/κs << 1.

(2.10)
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Therefore

The heat flux at the interface is given by

Hence

The solution for To is easily obtained and 

For the linear perturbation, let

(2.12)

(2.13)

(2.14)

(2.15)

Substitution of Eq. (2. 15) into Eqs. (2. 10), (2. 11) and (2. 12) yields
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The solution for f is given by

with

Hence

and

Therefore from (2. 13), (2. 14) and (2. 17)

Thus

(2.16)

(2. 17)

(2.18)

(2.19)

3. Small Perturbations in Turbulent Boundary Layer

One of the basic difficulties of problems involving turbulent boundary

layers is our lack of fundamental knowledge in turbulence. Even today we cannot 

compute the turbulent shear stress and heat flux in boundary layers from the 

first principles of physics. Therefore, we have to rely heavily on empirical
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description of turbulent shear flows. Classical examples are the mixing- 

length and eddy-viscosity approximations for boundary-layer like turbulent 

shear flows. With the progress of high-speed digital computors and better 

understanding of the "physics" of turbulent flow, more sophisticated models 

(with accompanying complexity in computation) has been proposed in the last 

few years. These models, nevertheless, do not show clear advantages over 

simpler models when applied to boundary-layer flows. In the present inves - 

tigation, therefore, we adopted the eddy viscosity model to relate the turbu­

lent shear stress and heat transfer to the mean flow gradients. Specifically, 

we use the eddy viscosity, μR, used by Smith et al in their finite-difference 

computation of compressible turbulent boundary layer equations.

(3.1)

Following Benjamin (3) we adopt an orthogonal curvilinear coordinate 

system which conforms with wavy surfaces; namely, we choose as independent
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variables ξ, η and ζ defined by

(3.2)

Here x, y and z are cartesian coordinates, x taken in the direction of undis- 

turbed flow, y in the direction perpendicular to the undisturbed plane wall, 

z in the undisturbed plane wall perpendicular to x and y. For η = 0 we obtain

(3.3)

which represents, for small values of a, a sinusoidal wave pattern with wave 

crests making an angle β with the x-axis.

The elements of length at ξ, η, ζ in the directions of increasing 

ξ, η, ζ are hdξ, hdη, dζ with

(3.4)

If p is the density, p the pressure, T the temperature, v1, v2, v3 the velocity

components in the direction of increasing ξ, η, ζ respectively, and σij the 

components of the stress tensor, then

(3.5a)
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(3.5b)

(3.5c)

(3.5d)

(3.5e)

The stress tensor and heat-conduction vector include the turbulence contri-

butions - Reynolds stress and heat flux - as well as the molecular stress

and heat conduction.

In the above equations the ζ-derivatives are omitted by assuming that 

the variation of flow properties in the direction parallel to the wave crest is 

negligible. When β is small, this may not be a good approximation.
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When the amplitude a of the surface wave is small, we assume that 

the flow properties in the boundary layer are of the form

where v is the value for a = 0 and av' is a small perturbation. If we substi- 

tute these into the governing equations and collect terms multiplied by a, we

obtain

(3.6a)

Here terms multiplied by ∂-v1/∂ξ, or ∂-v2/∂η ∂-T/∂ξ are neglected, since

we regard partial derivatives of the primed variables as quantities of the order 

1/δ, where δ is the boundary layer thickness, whereas the former quantities 

are considered as 0(1). Also, of the viscous terms, only those which be- 

come significant in a thin sublayer next to the wall are retained, since in 

the outer part of the boundary layer the viscous terms are inversely pro- 

portional to the Reynolds number based on the boundary-layer thickness 

compared to the convective terms.

Outside the boundary layer the viscous the turbulent stresses are 

negligible, and the undisturbed flow is uniform flow, -v1 = u∞ sinβ, ρ = ρ∞,

-T = T∞. When Mn = M∞ sinβ < 1, the perturbation flow is subsonic in char- 

acter and decays exponentially at large distances from the wall. On the other

(3.6b)

(3.6c)

(3.6d)

(3.6e)
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hand, when Mn > 1, the perturbation flow is supersonic in character, and 

then the condition is that the disturbances propagate away from the wall, not 

toward the wall.

At the surface η = 0, v'1 = v'3 = 0 and also T' = 0 since we assume 

that the ablation temperature is unchanged.

From the mass-conservation at the interface

we obtain

Since

this can be written as

where

(3.7)

Reduction to Ordinary Differential Equations:
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Let

Here is the turbulent eddy viscosity and η, ξ are made dimensionless by 

dividing by the boundary layer thickness δ.

Then the differential equations become

(3.9a)

(3.8)

(3.9b)

(3.9c)

(3.9d)

(3.9e)
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This system of five ordinary differential equations is identical to the 

system which appears in the theory of hydrodynamical stability of compressible 

laminar boundary layer except for the forcing terms due to the coordinate 

curvature.

Here

(3.10)

and, except for dz5/dη term appearing in the dissipation term of the energy 

equation, the equations for through are uncoupled from Z5 and are iden- 

tical to the equations for two-dimensional (unyawed) disturbances for Mach 

number and Reynolds number corresponding to Mn and Rn.

Equations (3.9) are a linear system of order 8, and the general 

solution can be expressed as a linear combination of a particular solution 

and eight complementary solutions, i. e.

(3.11a)

Four of the undetermined constants, C4, C5, . . ., C8, say, are eliminated by 

the boundary condition at η = ∞. C1, . . ., C4 are chosen to satisfy the boundary 

condition at η = 0,

(3.11b)

(3.11c)
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From Eq. (3. 7)

and from Eq. (2.4)

(3.11d)

(3.11e)

If we eliminate Cn's from (3.11), we obtain the eigenvalue equation for C;

where

(3.12)

3.1. Small-Perturbation Solution for Incompressible Flow

As stated in the Introduction, an experiment was conducted in a low-

speed wind tunnel in order to obtain data on the turbulent boundary-layer 

properties over wavy surfaces. The purpose of the experiment is to provide 

a testing ground for various models for turbulent transport properties. In . 

order to test the turbulent eddy viscosity model, which will be employed in 

compressible flow computation, the linear perturbation equations (3. 9) are
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integrated for M∞ = 0, sinβ = 1, -T = 1, Z4 = Z5 = 0. For incompressible

flows Z3 in Eq. (3.9) has to be replaced by γM∞2Z3, which is equivalent to 

normalizing the pressure perturbation by ρ∞u∞2 rather than by p∞. With these

changes the governing equations are

From (3.1)

(3.13a)

(3.14)

The boundary conditions are

(3.15)

The undisturbed velocity profile w1(η) and eddy viscosity -μt are 

computed by a program described in Appendix I.

Outside the boundary layer w1 = 1 and Eq. (3.13) reduces to

(3.13b)

(3.13c)
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The solutions that vanish at large values of q are given by

Let Z be a vector (mathematical, not physical) with components Z1, Z2, Z3;

ℒn be a vector with components φn1, φn2, φn3,  and then the above solution 

can be written in the form

(3.17)

where

(3.18)

~φn has a property

(3.19)

Using (3. 18) and (3.19) at a suitably large value of η as initial conditions, we 

integrate Eq. (3.13) toward η = 0 twice without forcing terms to obtain ~φ1(η)

where

(3.16)
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and ~φ2(η) and once with forcing terms to generate ~φp(η). The constants 

C1 and C2 in Eq. (3.17) are then determined by satisfying the boundary 

condition Z1(0) = Z2(0) = 0.

One complication in carrying out the numerical computation indicated 

above is that, since |m2| is very large compared to |m1| or α, numerical 

solutions for ~φ1 and ~φp will be very quickly contaminated by ℒ2. Then C1 

and C2 as determined by the condition at η = 0 will contain significant errors, 

or it becomes impossible to solve for C1 and C2. In order to reduce the 

magnitude of the contamination, the parallel-shooting method (Ref. 4)

was programmed for numerical solution of present boundary-value problem. 

Also a solution based on the matched-asymptotic-expansion method was worked 

out for the purpose of comparison with the numerical solution (Appendix II).

The results from the numerical solution are compared with the exper- 

imental results in Fig. 2-7. Even though there are some significant dis- 

agreement in some regions, especially for shear-stress distributions, a fair 

agreement is obtained in overall distribution, and it was concluded that the 

eddy-viscosity model for turbulent shear stress could be used in the cross- 

hatch problem without incurring too great an error.

4. Stability Calculation for Teflon Ablation

A stability calculation was carried out for ablating teflon surface. The 

flow condition at the boundary-layer edge was:

The undisturbed flat-plate boundary layer for this condition was com- 

puted from the program described in Appendix III.
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In order to facilitate the computation, an approximation was made in 

the stability-problem formulation. In Eq. (3. 7) the pressure and ablation 

terms are multiplied by the injection parameter λin. In many cases λin is 

of the same order of magnitude as the skin friction coefficient, which is very 

small compared with one. Then Eq. (3. 7) reduces to

and this equation together with (3.11 a, b, c) determine Cn's independent of c.

Once the boundary-layer solution is determined as a function of α, the

amplification rate may be determined from Eq. (2. 4).

Another ad hoc approximation introduced to simplify the computation

is that the dZ5/dη-term in Eq. (3. 9e) is neglected in order to decouple the 

energy equation from Z5. With this approximation, Z1 through Z4 can be 

computed without Z5, reducing the order of the system by two. Since Z5 is 

induced through Z2 dw3/dη, it is reasonable to expect that Z5 is much less 

than Z1.

For the thermal properties of Teflon, we have used the following values

With this approximation in addition to the approximation c << u∞ 

already made previously, the boundary-layer computation can be decoupled 

from the ablation perturbation; namely, Eq. (3.11d) reduces to
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The results of the computation are summarized in Fig. 8, which 

shows the instability domain in the αβ-plane.
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FIG. 1 COORDINATES ON SURFACE



FIG. 2 COMPARISON BETWEEN COMPUTED AND MEASURED 
WALL PRESSURE DISTRIBUTION
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FIG. 3 COMPARISON BETWEEN COMPUTED AND MEASURED WALL 
PRESSURE DISTRIBUTIONS
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FIG. 4 COMPARISON BETWEEN COMPUTED AND MEASURED WALL 
SHEAR DISTRIBUTION
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FIG. 5 COMPARISON BETWEEN COMPUTED AND MEASURED WALL 
SHEAR DISTRIBUTION
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FIG. 6 COMPARISON BETWEEN COMPUTED AND MEASURED REYNOLDS' SHEAR STRESS

- 28 -



FIG. 7 COMPARISON BETWEEN COMPUTED AND MEASURED REYNOLDS' SHEAR STRESS
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FIG. 8 INSTABILITY DOMAIN - TEFLON ABLATION
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Appendix I

Constant-Pressure Incompressible Turbulent Boundary Layer

For undisturbed velocity profile in a flat-plate turbulent boundary layer 

we use Coles’ empirical velocity distribution

For large values of its argument the law-of-the-wall function 1/κ F(ζ) behaves

as follows:

An analytical approximation for this function was obtained to fit experimental 

data by Reichardt and by Laufer in the following form:

The eddy-viscosity distribution is given by the following expression.

with

- 31 -

as ζ → 0 in the viscous sublayer

The wake function w is approximated by
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TURBULENT BOUNDARY LAYER OVER WAVY SURFACE

1. Small Perturbation Equations

The governing differential equations for the incompressible turbulent 

shear layers are

APPENDIX II

In dealing with the boundary layer over wavy wall of small amplitude, 

it is convenient to introduce the following orthogonal vurvilinear coordinates 

(Benjamin, 1959)

(II.1.1)

For a << 1, y = a cosαx + O(a2) at η = 0 .

If a = 0, we obtain the boundary layer over a flat plate, in which the velocity 

distribution is U(ξ, η). For small nonzero a, we assume all perturbations are 

of the order of a, for example

(II.1.2)

Furthermore, if we consider the wave lengths comparable to the boundary 

layer thickness, we may assume that the undisturbed flow is parallel, i. e. 

U = U(η) and V = 0 in the first approximation.

Then we obtain the following linearized equations for perturbations, 

by letting
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Here variables are made dimensionless by dividing the lengths by undisturbed 

boundary-layer thickness, the velocities by u∞, the pressure by ρ u∞2 and 

the viscosity coefficient by μ∞. The viscosity coefficient includes the turbulent

eddy viscosity as well as the molecular viscosity, and it is assumed to be a 

scalar quantity as in the laminar flows. This may not be a valid assumption 

in turbulent shear flow, but it is used here because of the lack of knowledge 

and for the sake of simplicity. A further justification for this assumption is 

that the viscous stresses are significant only in a thin layer near the wall 

where the usual boundary layer approximation is again valid except for ex- 

tremely large α. In view of the last remark, the momentum equations are 

simplified further, and we are going to use the following reduced equations 

in our analysis:

(II.1.3)

2. Mean Flow

Following Coles/ we assume that the mean flow profile has the 

following representation

(II.2.3)

(II.2.1)

where

(II.2.2)
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Here F(ζ) is the law-of-the-wall profile, and

(II.2.7)

A good approximation for w(η) is

At

(II.2.4)

which is the skin friction law for flat plates. From (II.2.1) and (II.2.4), we 

can write the velocity distribution in the defect form

(II.2.5)

where

(II.2.5a)

As R → ∞, we obtain ϵ → 0, but the rate at which ϵ → 0 is so small 

that Rϵ → ∞. Then in the outer region where η = O(1)

W is the velocity-defect profile. On the other hand in the inner region 

where ζ = O(1), (II.2.1) reduces to

(II.2.6)

For the turbulent eddy viscosity we assume

in the outer region, and
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in the inner region. Here K and α * are constants and

The function C(η) must be linear in η as η → 0 in order to match with the 

inner region viscosity and taken to be

where

(II.2.8)

From the assumed mean flow profile

and

3. Outer Expansion

Using the defect form (II.2.5) for U, we rewrite (II.1.3) as

In the outer layer where η = O(1) as ϵ → 0, let

(II.3.2)

(II.3.1)
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then

(II.3.3)

(II.3.5)

(II.3.7a)

(II.3.7b)

(II.3.4)

The solution of (II. 3. 3) which vanishes as η → ∞ is

Substituting (II.3.5) for ~uo, ~po, ~fo and in (II.3.4), we obtain

(II.3.6)

The solution of (II.3.6) which vanishes as η → ∞ is given by

(II.3.7c)
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Thus to O(ϵ) the outer solution becomes as η → 0

(II.3.8a)

(II.3.8b)

(II.3.8c)

where

4. Intermediate Expansion

The outer region is convection dominated, and the inner region is 

viscosity dominated. We expect the convection and the viscous stress balance 

each other in the intermediate region.

If we let

(II.4.1)

Eq. (II.1.3) becomes
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we obtain

(II.4.3)

Now in this region we obtain

Therefore if we choose

the convection term and the viscous term balance in the ~u-momentum equation, 

provided α = O(1).

Thus, in the intermediate region, we let

(II.4.2)

Then the governing equations become

If we assume
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(II.4.4)

(II.4.5)

We immediately get

(II.4.6)

Then the solutions for ûo and f̂o are 

(II.4.7)

where

(II.4.8)

and K0, K1 are the modified Bessel functions of the second kind.

The intermediate expansions of the two-term outer solution are, to O(ϵ)

(II.4.9a)

(II.4.9b)

(II.4.9c)
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For large values of ^η we obtain

Therefore

(II.4.10)

The solution for û1 and ̂f1 are, then,

(II.4.11)

The solution for ^u2 is given by

(II.4.12)

5. Inner Expansion

In the region near the wall where

the mean velocity distribution is given by

and the viscosity coefficient is given by

The governing equations become
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Let

then

Therefore as R → ∞, ϵ → 0

Where (T.S.T.) denotes transcendentally small terms.

Hence if we assume expansions of the form

(II.5.1)

we obtain
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and

provided O(R ϵ3 g*1) > 1

Then two-term inner solutions are

Matching with Intermediate Solution: 

Since for large values of ζ

Expressed in terms of the intermediate variable, these become

On the other hand, the two-term intermediate expansions for small 

values of ^η are

we obtain
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With these values for the constants, the three-term intermediate solution for 

small ^η is

On the other hand the three-term inner solution in terms of the intermediate

variable is

Therefore

Hence

Summarizing the results to O(ϵ), we obtained
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By adding these expansions in three regions and subtracting the 

common parts we obtain composite expansions which are valid uniformly 

in 0 ≤ η < ∞;

For ~f and ~p, ~fouter and ~pouter are uniformly valid in 0 ≤ η < ∞.

and
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FIG II-1 SURFACE PRESSURE



FIG II-2 SURFACE SHEAR STRESS
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COMPRESSIBLE FLAT-PLATE BOUNDARY LAYER

The undisturbed velocity profile in compressible turbulent boundary 

layer to be used in the linear perturbation analysis described in the main body 

of this report was computed numerically by assuming a turbulent eddy viscosity

Compressible turbulent boundary layer along a flat plate is governed 

by the following set of equations:

For the shear stress and heat flux appearing in the momentum and energy 

equations, we assume

Here μR is the eddy-viscosity coefficient and is assumed to have the following 

form: *

* Cebeci, Smith, and Mosinskis. AIAA Journal, vol. 8, no. 11, 1970.

APPENDIX III
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where y1 is the value of y at which these two expressions give the same value 

Γ is the intermittency factor and is taken to be

as in low speed turbulent boundary layer, * and

Introduce the following transformation

and for stream function and total enthalpy

Then we obtain

and the momentum and energy equations become

* Klebanoff. NACA TN 3178, 1954

Eddy thermal conductivity kR is related to μR through eddy Prandtl number
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where

Let

Then the momentum equation becomes

If uτ and u'τ/uτ are both small compared to unity, then we obtain

namely the similarity of velocity defect -- the velocity-defect law, provided 

that CR and ρ/ρe are functions of η only.
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The last condition is violated in a very thin viscous sublayer near the 

wall, but we expect the following system

to give a good first approximation to the flat-plate turbulent boundary-layer

solution.

A comparison of this approximation and experimental data is shown 

in Fig. III-1.



FIG. III-1 FLAT-PLATE TURBULENT BOUNDARY LAYER
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1. Introduction

The appearance of a remarkably regular cross-hatched surface 

pattern on recovered reentry vehicles has generated considerable interest 

on the part of fluid mechanicians. The regularity and "cleanness" of the 

pattern tend to call for some relatively simple explanations. However, 

no theoretical explanation offered so far has been completely convincing. 

On the other hand, since the first systematic investigation by Larsen, the 

experimental studies have provided much more information which tends 

to screen out most, if not all. of the explanations. Much understanding 

on the phenomena in terms of the necessary conditions for the occurrence 

of cross-hatched pattern has been achieved through the experiments, but 

little progress on the physical mechanism is made from the theoretical 

end. The present work is intended to offer a plausible model which will 

be capable of explaining the phenomena. The basic philosophy is to use 

the simplest possible model first and increase its complexity only when 

the simplified model fails to explain certain observed phenomena. The 

approach is based mainly on the refracting and reflecting properties of 

the shear flow in the supersonic-turbulent boundary layer for small distur- 

bances generated by a wavy surface. As these disturbances propagate 

outward along curved Mach lines, a certain fraction of the energy is re- 

flected back toward the surface because of the sharp gradient in the mean 

Mach number. Thus, a certain waviness pattern produces a distribution 

of surface heat transfer rate that is shifted in phase with respect to the 

surface waviness by an amount that depends on the ratio of wave-length to 

boundary layer thickness, the free stream Mach number, and the Mach 

number distribution across the boundary layer, etc. In the first part of

APPENDIX IV

CROSS HATCHING STUDIES - LIQUID LAYER MODEL 
WITH INVISCID EXTERNAL FLOW
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this study, an inviscid, linear analysis is used for th external flow. A 

liquid layer is then incorporated with this external inviscid calculation in 

order to search for the causes of the occurrence of certain wave angle and 

wave-length.

2. External Flow

2.1. Formulation

The external undisturbed flow is assumed to be a parallel shear flow 

and a thin sublayer (less than 1 or 2% of the boundary layer thickness) near 

the wall is neglected in this phase of study. The edge of the sublayer is taken 

to be the location where u/ue = 0. 5. The undisturbed velocity distribution 

was assumed to be a power-law profile, and the exponent was obtained by 

a curve-fit to D. Coles' measurement of supersonic adiabatic turbulent 

boundary layer. The perturbed flow field due to an obliqued wavy surface 

in such a prescribed mean flow is then considered in the following.

The coordinates are made dimensionless by the boundary layer thick- 

ness δB. The three velocity components are

and

gives the pressure and the density respectively.

It may be shown that viscous effects are negligible when the scale

length of the disturbances is of the same order of magnitude as the boundary 

layer thickness. Then, the linearized equations for the perturbations are
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The phase speed of the wavy surface is assumed to be small compared with 

the air speed, and hence, the wall is given by

(IV.2.6)

where k is the nondimensional wave number in the direction normal to the

wave front; λ and ν are the directional cosine of the normal, related by

(IV.2.7)

The boundary condition far away from the wall is that only simple outgoing 

waves exist outside the boundary layer; namely, if Qeik(λx + νz) stands for 

the perturbation quantities, we have

(IV.2.9)

where β2e = λ2 M2e - 1, and Me is the Mach number of the uniform external 

flow.

(IV.2.1)

(IV.2.2)

(IV.2.3)

(IV.2.4)

(IV.2.5)

where

Then the linearized boundary condition at the wall is

(IV.2.8)
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Eliminating all perturbations but p from equations (IV. 2. 1-5) and

putting

The boundary condition for P at the wall is

(IV.2.10)

(IV.2.11)

(IV.2.12)

By changing λM to Mn, (IV.2.11) and (IV.2.12) become identical to 

those for a non-oblique wave with the reduced Mach number. We will then 

consider the system

(IV.2.13)

The problem stated by (IV. 2. 13) has been studied by Lighthill. 1 For 

arbitrary Mn(y) and k, no closed-form solution is possible. Lighthill gave

1 M. J. Lighthill. "Reflection at a Laminar Boundary Layer of a Weak 
Steady Disturbance to a Supersonic Stream, Neglecting Viscosity and Heat 
Conduction," Quart. Jour. Mech. and Appl. Math., Vol. 3, part 3, 1950.

M. J. Lighthill, "On Boundary Layers and Upstream Influence. II. 
Supersonic Flows without Separation," Proc. Roy. Soc. A, Vol. 217, 
p. 478, 1953.

we obtain the equation for P

where

where
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the asymptotic solution for large values of k. However, as the wave length 

decreases (k increases) one will expect the inner viscous sublayer, which 

has been neglected in the present formulation, to become important since 

we are interested in the whole range of wave number, the system (IV.2.13) 

is solved numerically for a given Mach number distribution and wave number 

k. The details are given in Section 4. It should be noted that for a given free 

stream Mach number Me, the solution also depends on the wave sweep angle 

θ (λ = sin θ).

Now, tentatively, we will assume that the perturbation of the heat 

transfer rate, hence the ablation rate, is proportional to the pressure per- 

turbation on the wall. If we let the perturbed surface to be given by

(IV.2.14)

where c = cr + i Ci the complex wave velocity. In the above analysis, a 

steady wave pattern was considered, i. e., cr = 0. Notice that the wave 

velocity is also normalized by the freestream velocity ue. Therefore, the 

assumption of a standing wave pattern should be a fairly good approximation. 

Then, we may write

(IV.2.15)

or, using (IV. 2. 14) we have

Thus, the amplification rate of the perturbed surface is directly proportional 

to the magnitude of the real part of the pressure disturbance on the wall. 

Numerical results will be given in the following section.

(IV.2.16)
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where δs represents the sublayer thickness defined as the distance from 

wall to the location where u/ue = 0.5. The subscript e refers to the edge 

condition. The wall temperature is taken to be equal to the free-stream 

static temperature. Computations were carried out for Me = 2.6 and 6.0, 

and for a range of sweep angles of the wavy surface. Fig. IV-1 shows the 

calculated magnitude and phase shift of the pressure perturbation at wall 

as functions of the sweep angle θ and the wave number k for Me = 2. 6. For 

small wave numbers, the phase shift of the pressure is close to 90° for 

larger wave angles and increases as the wave angle decreases, reaches 

180° at the Mach angle where (Mn)e = 1. Further decrease in the wave angle 

leads to a complete subsonic layer and a constant phase shift of 180°. On the 

other hand, for large wave numbers, the phase shift is larger than 90° even 

at large wave angles and reaches 180° as the wave angle decreases before 

(Mn)e = 1. The magnitude of the pressure perturbation in general increases 

as the wave angle increases except for small wave numbers which peaks at 

the Mach angle.

Since we assume that the perturbation of the ablation rate is directly

proportional to the pressure perturbation at wall, Fig. IV-2 gives essentially

the rate of amplification of the surface perturbation. For small wave num-

bers, this quantity exhibits a maximum at a value of θ near the Mach wave

angle. This peak moves to a larger angle as the wave number increases.

The magnitude at the peak also increases with the wave number. Fig. IV-3

shows a similar result for Me = 6.0.

2.2. Results and Discussions

The Mach number distribution is assumed to be given by

(IV.2.17)
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In conclusion, the present simple model predicts the most unstable 

wave angle for a given wave number and edge Mach number. However, 

there is no way of predicting the most unstable wave number. It is the 

purpose of the second part of this study to provide a model for selection 

of the most unstable wave number.

3. Liquid Layer Model

A thin liquid layer is assumed to exist between the external gas flow

and the ablating material. The stability of this layer is then investigated 

in a similar manner to the analysis of Nachtsheim. * However, the results 

from the previous inviscid pressure calculation will be used instead of a 

uniform supersonic external stream as considered by Nachtsheim. Only 

a brief summary will be given here and one may refer to the paper of

Nachtsheim for more details.

3.1. Formulation

* Nachtsheim, P. R., "Analysis of the stability of a thin liquid film adjacent 
to a high-speed gas stream, " NASA TN-D-4976, Jan. 1969.

Schematic of the Flow
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The following assumptions will be applied in the present analysis.

(1) The amplitude of the wall perturbation is small as compared to the 

thickness of the liquid layer δ, i. e. -η << 1. So, the boundary condi- 

tion may be evaluated at -y = y/δ = 1.

(2) The mean velocity profile is taken to be linear inside the liquid layer.

(3) Density and Viscosity are taken to be constant inside the liquid layer 

and their perturbation ignored.

(4) The perturbation of shearing stresses of the external gas stream is 

assumed to be negligible.

(5) The gravitational field, included in the analysis of Nachtsheim, is 

ignored.

In this liquid layer analysis, the coordinates are made dimension- 

less by the thickness of the layer δ, and the velocity components and pres- 

sure are given by

(IV.3.1)

where

respectively. Here uδ is the velocity of the liquid layer at the interface 

in the direction normal to the wave front. The time is normalized by δ/uδ. 

The governing linearized equations for the perturbations are then given by
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Now, the perturbations are assumed to be proportional to exp [iα(λx+νz-ct)], 

where c is the wave speed normalized by uδ and α is equal to k(δ/δB). Then 

equations (IV.3.1) become

Let

(IV.3.2)

Then, equations (IV. 3. 2) can be reduced to

where

(IV.3.3)

(IV.3.4)

Because of the linear velocity profile assumed, the mean shear 

force is constant throughout the liquid layer and is equal to the external 

shear at the interface, i. e.

(IV.3.5)

The appropriate boundary conditions are

(IV.3.6a)

and at interface y = 1 (linearized)
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(IV.3.6b)

(IV.3.6c)

(IV.3.6d)

where T is the surface tension per unit length and po is the external pressure 

perturbation given by (IV.2.10) evaluated at y = 0.

The interface can be expressed as

(IV.3.7)

Then, by substituting

into eq. (IV.3.3), we obtain, after elimination of the pressure, the governing 

equation for f(y)

This is the well-known Orr-Sommerfeld equation with a linear mean velocity 

profile. The boundary conditions (IV.3.6) then become

(IV.3.8)

(IV.3.9)

(IV.3.10a)

(IV.3.10b)

(IV.3.10c)

(IV.3.10d)
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Now, we may use the skin friction coefficient defined by Eq. (IV.3.5) 

to further simplify (IV.3.10d), since

(IV.3.11)

(IV.3.12)

Eq. (IV.3.11) can be regrouped into the form

with

(IV.3.11a)

The homogeneous equation, together with the homogeneous boundary condi- 

tions, forms an eigenvalue problem. The eigenvalue satisfies a complex

relation of the form

(IV.3.13)

The eigenvalues are obtained numerically by using a linear search procedure. 

The details of the method of solution is given in Section 5. We should just 

point out the fact that the following parameters appear in the problem and 

affect the eigenvalues.

hence, (IV.3.10d), combining with (IV.3.10b), becomes

Where W is the Weber’s number defined by
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The effect of M∞ appears through its influence on the external pressure 

perturbation at wall P(0). When these parameters are fixed, Eq. (IV.3.13) 

gives the rate of amplification (αci) as functions of the wave number α, for 

a given Reynolds number R. The results of the numerical integration will 

be given in the next section.

3.2. Results and Discussion

Fig. IV-4 shows a plot of the amplification rate αci as function of

the wave number at M∞ = 6.0 for the conditions indicated on the figure. For 

this case, αci has a peak at αm = 0. 65, corresponding to the wave length 

approximately equal to the boundary layer thickness. The Weber’s number 

used corresponds to a liquid with surface tension of the order of 500 dynes/cm 

(as compared to that of water of 72 dynes/cm). Disturbances with short wave 

length are stabilized by the effect of surface tension. Now, by plotting the 

value of versus the wave angle 0, a peak can be located which uniquely 

determined the preferred wave angle and wave length for a given flow.

Fig. IV-5 shows the corresponding wave propagation velocity as 

function of wave number α. For small α, it is always greater than one (fast 

wave). However, it decreases for large α and, in fact, becomes less than 

one for sufficiently large α. We may also note that the maximum value of 

cr is about 3.4. Since this is normalized by the surface speed of the liquid 

film, which is quite small in absolute term, the assumption of a standing 

wave pattern to the external flow is justified.

(IV.3.14)
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Figs. IV-6 and IV-7 shows the variations of (αci) and cr with α 

for M∞ = 2. 6. The reason for the occurrence of the peak amplification 

rate at such a large wave number is due mainly to the use of a small sur- 

face tension (T = 50 dynes/cm) we should recall that the present analysis 

becomes increasingly inaccurate as the wave number increases because of 

the external inviscid approximation. Thus, a refined model which includes 

the sublayer structure should be constructed in order to provide a better 

estimate of the preferred wave angle and wave length. Moreover, an 

additional phase shift between the pressure perturbation and the heat transfer 

perturbation may exist which again calls for the inclusion of the viscous 

sublayer in the external flow calculation.

4. Numerical Solution of the External Perturbed Pressure Field

4.1. Analysis

The system to be solved is a second order ordinary differential 

equation of the form

with boundary conditions

(IV.4.3)

(IV.4.1.)

(IV.4.2a)

(IV.4.2b)

(IV.4.2c)

Eq. (IV.4.1) can be rewritten as
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Now let

(IV.4.4a)

then

(IV.4.5a)

where C and φ∞ account for the proper normalization to be determined by the 

boundary condition at wall.

Eqs. (IV.4.5) forms a set of four coupled first order ordinary differ- 

ential equations. The equations are then integrated using the following condi- 

tions at y = 1

(IV.4.6)

where

and

(IV.4.4b)

(IV.4.5b)



- 66 -

The normalization constants are determined by satisfying the boundary 

condition at y = 0 (IV.4.2a) which gives

(IV.4.7)

The solution is then uniquely determined from (IV.4.4)

5. Numerical Calculation for the Stability of a Thin Liquid Layer 

The equation to be solved is

(IV.5.1)

with the boundary conditions

(IV.5.1a)

where

This system constitutes an eigenvalue problem for the four parameters 

α, R, cv and ci. When any two of these parameters are given, the other 

two are uniquely determined. In the present analysis, we will demonstrate 

the method of finding the eigenvalues cr and ci when α and R are given. Let

then Eq. (IV.5.1) becomes

(IV.5.2)

(IV.5.3)
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Now let

(IV.5.7)

(IV.5.10)

(IV.5.4)

We have,

(IV.5.5)

(IV.5.6)

The corresponding boundary conditions at y = 1 are

The index n refers to two linearly independent solutions of the equation which 

can be obtained numerically by using two linearly independent initial condi- 

tions, e. g.,

(IV.5.8)

then from (IV. 5. 7)

(IV.5.9)

Two sets of solutions ζ1 and ζ2 are then obtained by integrating (IV.5.6) 

with the initial conditions (IV.5.9). Solutions to (IV.5.5) satisfies (IV.5.8) 

and are given by
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Solution to Eq. (IV.5.1) can be constructed from these two linearly inde- 

pendent solutions

(IV.5.11)

where C1 and C2 are complex constants. The boundary conditions at y = 0 

then require

In order to have a non-trivial solution, we must have

(IV.5.12)

For arbitrary set of parameters α, R, cr, ci, condition (IV.5.12) will not 

be satisfied. Thus, an iteration procedure is needed to search for the 

correct eigenvalues.

We consider the case when α and R are given. In order to search 

for the eigenvalue c = cr + i ci, we need to find (δD/δc), then a new estimate 

of the eigenvalue can be obtained by

(IV.5.13)

cnew = cold + Δc 

To evaluate we also need to know The governing equation

for ζ c can be easily obtained from (IV.5.3)

(IV.5.14)
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These equations are to be integrated simultaneously with (IV.5.6) using 

the initial conditions

A computer program has been written to search for the eigenvalues.

(IV.5.15)



FIG. IV-1a SURFACE PRESSURE AT M∞ = 2.6 
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FIG. IV-1b SURFACE PRESSURE AT M∞ = 2. 6 
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FIG. IV-2 SURFACE PRESSURE AT M∞ = 2. 6 - REAL PART 
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FIG. IV-3 SURFACE PRESSURE AT M∞ = 6 - REAL PART 
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FIG. IV-4 AMPLIFICATION RATE VS. WAVE NUMBER α



FIG. IV-5 WAVE PROPAGATION VELOCITY, Cr VS. WAVE NUMBER α 
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FIG. IV-6 AMPLIFICATION RATE VS. WAVE NUMBER
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FIG. IV-7 WAVE PROPAGATION VELOCITY
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STABILITY OF SUBLIMING SURFACE

From the mass and energy balances at the interface between the 

air and the solid which is subliming under the aerodynamic heating, we

obtain

(V.1)

For undisturbed, steady, one-dimensional ablation, we have

(V.3)

By dividing the perturbations by the corresponding steady rates, (1) and 

(2) become

APPENDIX V

(V.2)

where = density of solid material

= surface perturbation

= perturbation in ablation rate

= perturbation in aerodynamic heating 

= perturbation in internal heat conduction

= heat of sublimation

(V.4)

= cs (Tw -Tin) 

= heat required to raise the ablator from the interior 

temperature to the surface temperature

= steady ablation speed.
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(V.5)

If we assume traveling-wave type perturbations, i. e.

(δ * is the boundary layer edge, not the displacement thickness)

then

(V.6)

This equation yields the wave speed and the rate of amplification of small

perturbations, when Qa and Qs are obtained from small-perturbation 

analyses of aerodynamic heating and internal heat conduction, respectively, 

for the surface perturbation -y = ϵ exp(iαx - iαct) .

If it is assumed that the specific heat and thermal conductivity of 

the solid are constant, we obtain

(V.7)

For the purpose of obtaining Qa, the following assumptions are made:

(1) the boundary layer is turbulent,

(2) the perturbations are inviscid except in a thin sublayer (not necessarily 

identical to the viscous sublayer) adjacent to the wall,

(3) molecular and turbulent transport is important only in the sublayer.
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The inviscid small perturbations are computed by truncating the mean 

velocity near the wall below -u/u∞ = 0.5 (no rigorous justification for this 

choice).

The solution in the sublayer is obtained by an integral method with the 

inviscid perturbations at the wall at the boundary condition at the sublayer 

edge. Then

where

Here

(V.8)

Reynolds number based on boundary 
layer thickness

for air

for air

(δ * boundary-layer thickness)

total temperature

All unstarred variables are made dimensionless by dividing by the corre-

sponding values at ∞. (  )o refers to the values at the velocity cut-off

point in the inviscid calculation, i. e. Uo = -u/u∞ = 0.5 in the present  
analysis. (  )w denotes the values at the wall.

(V.9a)

(V.9b)
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Sample computations shown in the accompanying figures were 

carried out for



Fig. V-1 AMPLIFICATION RATES AGAINST WAVE NUMBER
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Fig. V-1 AMPLIFICATION RATES AGAINST WAVE NUMBER
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Fig. V-1 AMPLIFICATION RATES AGAINST WAVE NUMBER
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Fig. V-2 CONTOURS OF CONSTANT AMPLIFICATION



Fig. V-2 CONTOURS OF CONSTANT AMPLIFICATION

α ci/vs

1. 0

2. .02

3. .04

4. .06

5. .08

6. .10

7. .12

- 87 -



Unclassified
Security Classification

DOCUMENT CONTROL DATA • R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

California Institute of Technology

Pasadena, California 91109

2a. REPORT SECURITY CLASSIFICATION

Unclassified . . ,
2b GROUP

3. REPORT TITLE

Stability Theory for Cross Hatching, Part I. Linear stability Theory

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

Scientific Final
5. AUTHOR(S) (Last name, first name, initial)

Lester Lees, Toshi Kubota, Denny R-S Ko

6. REPORT DATE

April 1972
7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

94 8
8a. CONTRACT OR GRANT NO.

F 04701-68-C-0151
b. PROJECT NO.

c.

d.

9a. ORIGINATOR’S REPORT NUMBER(S)

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned 
this report)

10. AVAILABILITY/LIMITATION NOTICES

Distribution limited to U.S. Government agencies only; test and evalution
14 Feb. 72. Other request for this document must be referred to SAMSO (RSSE)

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

SPACE AND MISSILE SYSTEMS
ORGANIZATION (AFSC)

Norton Air Force Base. Calif. 92409
13. ABSTRACT

A linear instability theory was developed which couples small perturbations 
in surface shape of a subliming surface and resulting perturbations in 
aerodynamic heat-transfer rates. Equations governing compressible tur­
bulent boundary layers were linearized for small perturbations whose 
streamwise scale lengths are comparable with the undisturbed boundary layer 
thickness. For turbulent shear stress, the mixing-length approximation 
was employed, and the turbulent Prandtl number was assumed to be unity for 
turbulent heat flux. Heat conduction within the ablating solid was ana­
lyzed by linearizing the boundary condition small amplitude. Sample 
computations were made for a teflon surface ablating under turbulent bound­
ary layer at Mach 2.6, and the results indicate that the small surface 
perturbations are unstable within certain regions in the wave number - wave 
angle space.

DD FORM 1 JAN 64 1473
Security Classification



Unclassified
Security Classification

14.
KEY WORDS

LINK A LINK B LINK C

ROLE WT ROLE WT ROLE

Stability Theory, Ablation, Cross-Hatching, 
Boundary Layer, Turbulent.

»

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address 
of the contractor, subcontractor, grantee, Department of De­
fense activity or other organization (corporate author) issuing 
the report.
2a. REPOST SECURITY CLASSIFICATION: Enter the over­
all security classification of the report. Indicate whether 
“Restricted Data” is included. Marking is to be in accord­
ance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Di­
rective 5200.10 and Armed Forces Industrial Manual. Enter 
the group number. Also, when applicable show that optional 
markings have been used for Group 3 and Group 4 as author­
ized.
3. REPORT TITLE: Enter the complete report title in all 
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-  
tion, show title classification in all capitals in parenthesis 
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of 
report, e. g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is 
covered. 
5. AUTHOR(S): Enter the-name(s) of author(s) as. shown on 
or in the report. Enter last name, first name, middle initial.
If military, show rank and Branch of service. The name of 
the principal author is an absolute minimum requirement.
6. REPORT DATE:  Enter the date of the report as day,
month, year; or month, year. If more than one date appears 
on the report, use date of publication. '
7a. TOTAL NUMBER OF PAGES: The total page count *
should follow normal pagination procedures. i.e., enter the 
number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the total number of 
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written.
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc.
9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi­
cial report number by which the document will be identified 
and controlled by the originating activity. This number must 
be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim­
itations on further dissemination of the report, other than those

imposed by security classification, "using standard statements 
such as:

(1) “Qualified requesters may obtain copies of this 
report from DDC.’’

(2) “Foreign announcement and dissemination of this 
report by DDC is not authorized. ”

(3) “U. S. Government agencies may obtain copies of 
this report directly from DDC. Other qualified DDC 
users shall request through

(4) ‘*U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users 
shall request through

(5) “All distribution of this report is controlled. Qual­
ified DDC users shall request through

If the report has been furnished to the Office of Technical 
Services, Department of Commerce, for sale to the public, indi­
cate this fact' and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explana­
tory notes. 
12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay­
ing for) the research and development; Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in {he body of the technical re­
port. If additional space is required, a continuation sheet shall 
be attached.

It is highly desirable that the abstract of classified reports 
be unclassified. Each paragraph of the abstract shall end with 
an indication of the military security classification of the in­
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. How­
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report. Key words most be 
selected so that no security classification is required. Identi­
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con­
text. The assignment of links, rules, and weights is optional.

Security Classification



DISTRIBUTION

Addressee No. of Copies

Space and Missile Systems Organization
Air Force Systems Command
Norton Air Force Base, California 92409
Attn: RNSR (Maj. M. Mauldin) 1

Space and Missile Systems Organization
Air Force Systems Command
Norton Air Force Base, California 92409
Attn: SMYDM-1

1
Air University Library (AUL)
Maxwell AFB, Ala 36112 1

Capt. F. Munoz
RNSE
Space and Missile Systems Organization
Norton Air Force Base, California 92409 1

Aerospace Corporation
P. O. Box 5866
San Bernardino, California 92402
Attn: Don Seiveino 10

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314 20

Arnold Engineering Development Center
Tullahoma, Tennessee 37388
Attn: AES 1

AVCO Everett Research Laboratories
2385 Revere Beach Parkway
Everett, Massachusetts 02149
Attn: P. Rose 1

U. S. Naval Ordnance Laboratory
White Oak,
Silver Springs, Maryland 20390
Attn: K. Lobb 1

Cornell Aeronautical Laboratory, Inc.
P. O. Box 235
Buffalo, New York 14200
Attn: J. Carpenter 2

Institute for Defense Analyses
400 Army -Navy Drive
Arlington, Virginia 22202
Attn: Classified Library 1



Addressee No. of Copies

SPL-32
Naval Plant Representative Office
Special Projects Office
Lockheed Missiles and Space Company
P. O. Box 504, Sunnyvale, California 94088 3

NASA-Ames Research Center
Moffett Field, California 94035
Attn: H. K. Larson

T. A. Canning 3

Assistant Deputy for Naval Applications
Space and Missile Systems Organization
Norton Air Force Base, California 92409
Attn: RNN 1

AVCO Corporation
Missile Systems Division
201 Lowell Street
Wilmington, Massachusetts 01887
Attn: REST Program Office

A. Pallone
V. DeCristina 3

General Electric Company-RSD
Missile and Space Division
Space Technology Center
King of Prussia, Pennsylvania 19101
Attn: D. Nestler 2

BAMIRAC, University of Michigan
Ann Arbor, Michigan 48103
Attn: Roy Nichols 1

Director of Defense Research and
Engineering (Strategic Weapons)

The Pentagon
Washington, D. C. 20330
Attn: Capt. A. Julian 1

Massachusetts Institute of Technology
Lincoln Laboratory
P. O. Box 73
Lexington, Massachusetts 02173
Attn: BMRS Project 2

Advanced Research Projects Agency
The Pentagon
Washington, D. C. 20301
Attn: C. McLain 1



Addressee No. of Copies

Navy Department
Special Project Office
Washington, D. C.
Attn: SP-272 2

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: L. Hromas 1

Air Force Flight Dynamics Laboratory
Wright Patterson Air Force Base,

Ohio 45433
Attn: A. Draper 1

Office of Aerospace Research
Aerospace Research Laboratories
Thermomechanics Branch
Wright Patterson Air Force Base,

Ohio 45433 1




