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1 Introduction

Gauge theories in three dimensions contain special local defect operators called monopole

operators, which are defined by requiring certain singular behavior of the gauge field close

to the insertion point [1]. These operators play important roles in the dynamics of these

theories, and in particular in establishing various interesting properties such as infrared (IR)

dualities between theories with different ultraviolet (UV) descriptions (see [2–15] for some

recent examples). Because these operators are not polynomial in the Lagrangian fields,
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they are notoriously difficult to study, and most studies so far have focused on determining

only their quantum numbers [1, 16–29]. The goal of this paper is to present the first direct

computations of operator product expansion (OPE) coefficients and correlation functions

of monopole operators in 3D non-abelian gauge theories.

We focus on a class of 3D gauge theories with N = 4 supersymmetry (eight Poincaré

supercharges) constructed by coupling a vector multiplet with gauge group G to a matter

hypermultiplet that transforms in some representation of G.1 For a matter representation

of sufficiently large dimension, these theories flow in the IR to interacting superconformal

field theories (SCFTs), whose correlation functions are generally intractable. However, as

shown in [35, 36], these theories also contain one-dimensional protected subsectors whose

correlation functions are topological, and one may hope that computations in these pro-

tected subsectors become tractable. This is indeed the case, as was shown in [37, 38] and

as will be explored in further detail here. While 3D N = 4 SCFTs have in general two

inequivalent protected topological sectors, one associated with the Higgs branch and one

with the Coulomb branch, it is the Coulomb branch sector that contains monopole opera-

tors and that will therefore be the focus of our work. (The Higgs branch sector was studied

in [37].) From the 3D SCFT point of view, the information contained in either of the two

protected sectors is equivalent to that contained in the (n ≤ 3)-point functions of certain

half-BPS local operators in the SCFT [35–38].

The Coulomb branch protected sector consists of operators that belong to the coho-

mology of a supercharge QC that is a linear combination of a Poincaré and a conformal

supercharge.2 As such, one may think that the protected sector mentioned above is emer-

gent at the IR fixed point, and therefore inaccessible in the UV description. This is indeed

true for SCFTs defined on R3. However, as was shown in [37, 38], if one defines the QFT

on a round S3 instead of on R3, then the protected sector becomes accessible in the UV

because on S3, the square of QC does not contain special conformal generators. Indeed,

Poincaré and special conformal generators are mixed together when mapping a CFT from

R3 to S3. As we will explain, the square of QC includes an isometry of S3 that fixes a great

circle, and this is the circle where the 1D topological quantum field theory (TQFT) lives.

Previous work [37] used the idea of defining the QFT on S3 together with supersymmet-

ric localization to solve the 1D Higgs branch theory by describing a method for computing

its structure constants. The Coulomb branch case is much more complicated because it

involves monopole operators. A complete solution of the 1D Coulomb branch theory was

obtained for abelian gauge theories in [38]. Building on the machinery developed in [38],

we describe how to compute all observables within the 1D Coulomb branch topological sec-

tor of an arbitrary non-abelian 3D N = 4 gauge theory by constructing “shift operators”

whose algebra is a representation of the OPE of the 1D TQFT operators (also known as

twisted(-translated) Coulomb branch operators, for reasons that will become clear).

The mathematical physics motivation for studying the 1D TQFT is that it provides a

“quantization” of the ring of holomorphic functions defined on the Coulomb branch MC .

1These theories do not allow the presence of Chern-Simons terms. While it is possible to construct

N = 4 Chern-Simons-matter theories [30–34], we do not study them here.
2Similar statements hold about the Higgs branch protected sector if one replaces QC with another

supercharge QH .
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This can be explained as follows. The 3D theories that we study have two distinguished

branches of the moduli space of vacua: the Higgs branch and the Coulomb branch. These

are each parametrized, redundantly, by VEVs of gauge-invariant chiral operators whose chi-

ral ring relations determine the branches as generically singular complex algebraic varieties.

While the Higgs branch chiral ring relations follow from the classical Lagrangian, those for

the Coulomb branch receive quantum corrections. The Coulomb branch is constrained by

extended SUSY to be a generically singular hyperkähler manifold of quaternionic dimen-

sion equal to the rank of G, which, with respect to a choice of complex structure, can

be viewed as a complex symplectic manifold. The half-BPS operators that acquire VEVs

on the Coulomb branch, to be referred as Coulomb branch operators (CBOs), consist of

monopole operators, their dressings by vector multiplet scalars, and operators built from

the vector multiplet scalars themselves. (Monopole operator VEVs encode those of ad-

ditional scalar moduli, the dual photons.) All of the holomorphic functions on MC are

given by VEVs of the subset of CBOs that are chiral with respect to an N = 2 subalge-

bra. Under the OPE, these operators form a ring, which is well-known to be isomorphic

to the ring C[MC ] of holomorphic functions on MC . It was argued in [36] that because

the operators in the 1D TQFT are in one-to-one correspondence with chiral ring CBOs,

the 1D TQFT is a deformation quantization of C[MC ]. Indeed, the 1D OPE induces an

associative but noncommutative product on C[MC ] referred to as a star product, which

in the limit r → ∞ (r being the radius of S3) reduces to the ordinary product of the

corresponding holomorphic functions, and that at order 1/r gives the Poisson bracket of

the corresponding holomorphic functions.

Note that both the quantization of [36] in the “Q+S” cohomology and our quantization

on a sphere are realizations of the older idea of obtaining a lower-dimensional theory by

passing to the equivariant cohomology of a supercharge, which originally appeared in the

context of the Ω-deformation in 4D theories [39–41] and was also applied to 3D theories

in [42–44].

Our procedure for solving the 1D Coulomb branch theory uses a combination of the

cutting and gluing axioms, supersymmetric localization, and a consistency requirement

that we refer to as polynomiality. We first cut S3 into two hemispheres HS3
± along an

equatorial S2 = ∂HS3
± orthogonal to the circle along which the 1D operators live (see

figure 1). Correlators are then represented by an inner product of wavefunctions generated

by the path integral on HS3
± with insertions of twisted CBOs. In [38, 45], it was shown

that it suffices to consider such wavefunctions Ψ±(BBPS) with operator insertions only at

the tip of HS3
±, and evaluated on a certain class of half-BPS boundary conditions BBPS.

Insertions of twisted CBOs anywhere on the great semicircles of HS3
± can then be realized,

up to irrelevant QC-exact terms, as simple shift operators acting on this restricted class of

wavefunctions. It was shown in [38] that these shift operators can be fully reconstructed

from general principles and knowledge of Ψ±(BBPS). Moreover, their algebra provides a

faithful representation of the star product. Finally, one can determine expectation values

(which is to say, more abstractly, that one can define an evaluation map on C[MC ], known

as the trace map in deformation quantization) by gluing Ψ+(BBPS) and Ψ−(BBPS) with an

appropriate measure, as will be reviewed in section 2.2.
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Figure 1. A schematic depiction of S3, obtained by gluing two hemispheres HS3
±
∼= B3. The

1D TQFT lives on the S1 parametrized by the angle ϕ (thick orange line). The 1D TQFT circle

intersects the equatorial S2 = ∂HS3
± at two points identified with its North (N) and South (S) poles.

The fact that the star product algebra can be determined independently of evaluating

correlators is very useful. First, calculating correlators using the above procedure involves

solving matrix integrals, which can be complicated for gauge groups of high rank. On the

other hand, the star product can be inferred from the comparatively simple calculation of

the wavefunctions Ψ±(BBPS). Second, the matrix models representing correlators diverge

for “bad” theories in the sense of Gaiotto and Witten [30].3 Nevertheless, as we will see,

the HS3 wavefunctions and the star product extracted from them are well-defined even

in those cases. Therefore, we emphasize that our formalism works perfectly well even for

bad theories, as far as the Coulomb branch and its deformation quantization are concerned.

However, correlation functions cannot be computed for such theories, and the star products

might not satisfy the truncation property introduced in [36].

On a more technical note, we provide a new way of analyzing “monopole bubbling” [52].

Monopole bubbling is a phenomenon whereby the charge of a singular monopole is screened

to a lower one by small ’t Hooft-Polyakov monopoles. In our setup, this phenomenon man-

ifests itself through the fact that our shift operators for a monopole of given charge contain

contributions proportional to those of monopoles of smaller charge, with coefficients that

we refer to as bubbling coefficients. While we do not know of a localization-based algo-

rithm for obtaining these coefficients in general, we propose that the requirement that the

OPE of any two 1D TQFT operators should be a polynomial in the 1D operators uniquely

determines the bubbling coefficients, up to operator mixing ambiguities. In section 4, we

provide many examples of gauge theories of small rank where we explicitly carry out our

3In bad theories [46–49], the IR superconformal R-symmetry is not visible in the UV, which invalidates

the usual localization logic [50, 51].
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algorithm to determine the shift operators and bubbling coefficients. These results are

also interesting for the purpose of comparison with the literature on direct localization

computations of bubbling in 4D, e.g., [53–55], which were subsequently refined by [56–58].

The main mathematical content of this work is a construction of deformation quantiza-

tions of Coulomb branches of 3D N = 4 theories that also satisfy the truncation condition

of [36] in the case of good or ugly theories, as a consequence of the existence of the natural

trace map (the one-point function).4 By taking the commutative limit, we recover the

ordinary Coulomb branch of the theory in the form of the “abelianization map” proposed

by [59]. Therefore, our approach also provides a way to prove the abelianization proposal

of [59] starting from basic physical principles. Moreover, the knowledge of bubbling coeffi-

cients that our approach provides vastly expands the domain of applicability of abelianiza-

tion to all Lagrangian 3D N = 4 theories of cotangent type. Finally, we expect that trans-

lating our approach into a language that uses the mathematical definition of the Coulomb

branch [60–63] might be of independent interest in the study of deformation quantization.

The rest of this paper is organized as follows. Section 2 contains a review of the setup

of our problem as well as a derivation of the shift operators without taking bubbling into

account. Section 3 discusses the dressing of monopole operators with vector multiplet

scalars and sets up the computation of the bubbling coefficients. In section 4, we provide

explicit examples of shift operators and bubbling coefficients in theories of small rank. In

section 5, we discuss several applications of our formalism: to determining chiral rings,

to chiral ring quantization, and to computing correlation functions of monopole operators

and performing checks of non-abelian mirror symmetry. Many technical details, further

examples, and comments on connections between our approach and existing ones can be

found in the appendices.

2 Shift operators

2.1 Setup

2.1.1 Theories

We study 3D N = 4 gauge theories of cotangent type, which are the same theories whose

quantized Higgs branches were the subject of [37]. Coulomb branches of abelian gauge

theories were scrutinized in [38] using different techniques, and here we extend those tech-

niques to the case of general gauge groups G ∼=
∏
iGi, where each Gi is either simple

or abelian. As the construction of such theories was detailed in [37, 38], we only briefly

describe it here.

These theories are built from a 3D N = 4 vector multiplet V taking values in the Lie

algebra g = Lie(G) and from a 3DN = 4 hypermultipletH valued in a (generally reducible)

representation R of G. H can be written in terms of half-hypermultiplets taking values in

R⊕R, which is the meaning of the term “cotangent type.” More general representations

4Such star products are also called “short” in ongoing mathematical work on their classification, as we

learned from P. Etingof.
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of half-hypermultiplets should also be possible to address using our techniques, but we do

not consider them in the present work.

Our focus is on such theories supersymmetrically placed on the round S3 of radius

r. There are several good reasons for choosing this background. One is that compactness

makes the application of supersymmetric localization techniques more straightforward. But

the most important reason, as should be clear to readers familiar with [37, 38], is that the

sphere is a natural setting for deformation quantization of moduli spaces: the Coulomb and

Higgs branches in such a background can be viewed as noncommutative, with 1/r playing

the role of a quantization parameter. As with the 2D Ω-background in flat space [59], the

result is an effective compactification of spacetime to a line.

Furthermore, quantized Coulomb and Higgs branch chiral rings are directly related to

physical correlation functions, and in particular encode the OPE data of the BPS operators

in the IR superconformal theory, whenever it exists. This relation equips the noncommu-

tative star product algebra of observables with a natural choice of “trace” operation —

the one-point function of the QFT — as well as natural choices of basis corresponding to

operators that are orthogonal with respect to the two-point function and have well-defined

conformal dimensions at the SCFT point. These extra structures are a significant advan-

tage of quantization using the spherical background, and they are responsible for much of

the progress that we make in this paper.

The N = 4 supersymmetric background on S3 is based on the supersymmetry algebra

s = su(2|1)` ⊕ su(2|1)r, which also admits a central extension s̃ = s̃u(2|1)` ⊕ s̃u(2|1)r, with

central charges corresponding to supersymmetric mass and FI deformations of the theory.

In the flat-space limit r → ∞, this algebra becomes the usual N = 4 super-Poincaré

algebra, implying that all results of this paper should have a good r →∞ limit. All of the

necessary details on the SUSY algebra s, and how the vector and hypermultiplets transform

under it, can be found either in section 2 of [37] or in section 2.1 and appendix A.2 of [38].

Supersymmetric actions for V, H, and their deformations by mass and FI terms can also

be found in those sections.

The SUSY algebra s̃ contains two interesting choices of supercharge, QH and QC .

They satisfy the following relations:

(QH)2 =
4i

r
(Pτ +RC + irζ̂), (QC)2 =

4i

r
(Pτ +RH + irm̂), (2.1)

where Pτ denotes a U(1) isometry of S3 whose fixed-point locus is a great circle

parametrized by ϕ ∈ (−π, π): call it S1
ϕ ⊂ S3.5 Here, RC and RH are the Cartan gener-

ators of the usual SU(2)C × SU(2)H R-symmetry of N = 4 SUSY, which in terms of the

inner U(1)` ×U(1)r R-symmetry of s are identified as:

RH =
1

2
(R` +Rr), RC =

1

2
(R` −Rr). (2.2)

The notations ζ̂ and m̂ stand for the FI and mass deformations, i.e., central charges of s̃.

5Concretely, τ is the fiber coordinate in an S1 fibration over the disk D2, i.e., S1
τ → S3 → D2. After

conformally mapping to flat space, Pτ would be a rotation that fixes the image of S1
ϕ, which is a line.
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The most important features of QH and QC are that if we consider their actions on the

space of local operators and compute their equivariant cohomologies, the answers have very

interesting structures. The operators annihilated by QH are the so-called twisted-translated

Higgs branch operators (HBOs), whose OPE encodes a quantization of the Higgs branch;

such operators for the theories of interest were fully studied in [37]. Correspondingly, the

cohomology of QC contains twisted-translated Coulomb branch operators, whose structure

has so far been explored only for abelian theories [38]. Such operators must be inserted

along the great circle S1
ϕ fixed by (QC)2, and their OPE encodes a quantization of the

Coulomb branch. More details on twisted-translated operators are given in appendix B.

2.1.2 Observables

The purpose of this work is to study the cohomology of QC and associated structures for

general non-abelian gauge theories of cotangent type. The operators annihilated by QC

are constructed from monopole operators and a certain linear combination of scalars in

the vector multiplet. Recall that the vector multiplet contains an SU(2)C triplet of scalars

Φȧḃ=Φḃȧ. Using the notation of [38], the following linear combination is annihilated by QC :

Φ(ϕ) = Φȧḃ(ϕ)vȧvḃ, v =
1√
2

(
eiϕ/2

e−iϕ/2

)
, (2.3)

whenever this operator is inserted along S1
ϕ ⊂ S3. On the other hand, (bare) BPS mon-

opole operators are defined as defects imposing special boundary conditions on the gauge

field and on Φȧḃ. They were first defined for 3D N = 4 theories in [64], while the non-

supersymmetric version was introduced earlier in [1]. The twisted-translated monopole

operators that we study — which are essentially those of [64] undergoing an additional

SU(2)C rotation as we move along S1
ϕ — were described in detail in [38]. Their definition

is rather intricate, so it will be helpful to review it, with an eye toward the additional

complications that arise in non-abelian gauge theories.

First recall that in a U(1) gauge theory, a (bare) non-supersymmetric monopole oper-

ator is a local defect operator that sources magnetic flux at a point in 3D spacetime. In a

non-abelian gauge theory, the quantized charge b is promoted to a matrix, or more precisely,

a cocharacter of G (referred to as the GNO charge [65]).6 A cocharacter is an element of

Hom(U(1), G)/G ∼= Hom(U(1),T)/W. Passing from the element of Hom(U(1),T)/W to

the map of algebras R→ t, we see that cocharacters can also be identified with Weyl orbits

in the coweight lattice Λ∨w ⊂ t of G, i.e., in the weight lattice of the Langlands dual group
LG. Since every Weyl orbit contains exactly one dominant weight (lying in the fundamen-

tal Weyl chamber), it is conventional to label monopole charges by dominant weights of
LG [59]. Let b ∈ t be such a dominant weight of LG. Then a bare monopole operator is

defined by a sum over Wb, the Weyl orbit of b, of path integrals with singular boundary

conditions defined by elements of Wb. Specifically, the insertion of a twisted-translated

6This is a more refined notion than the topological charge labeled by π1(G) (when it exists): such charges

correspond to global symmetries of the Coulomb branch whose conserved currents in the UV are the abelian

field strengths and which may be enhanced in the IR.
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monopole operator at a point ϕ ∈ S1
ϕ is defined by the following singular boundary condi-

tions for Fµν and Φȧḃ:

∗F ∼ byµdyµ

|y|3
, Φ1̇1̇ = −(Φ2̇2̇)† ∼ − b

2|y|
e−iϕ, Φ1̇2̇ ∼ 0, (2.4)

where it is understood that one must compute not a single path integral, but rather a

sum of path integrals over field configurations satisfying (2.4) with b ranging over the full

Weyl orbit of a given dominant weight. Here, “∼” means “equal up to regular terms”

and yµ are Riemann normal coordinates centered at the monopole insertion point. The

origin of (2.4) is that twisted-translated monopoles are chiral with respect to the N = 2

subalgebra defined by the polarization vector in (2.3) at any given ϕ. This requires that

the real scalar in the N = 2 vector multiplet diverge as b
2|y| near the monopole [64] and

results in nontrivial profiles for the N = 4 vector multiplet scalars near the insertion point.

We denote such twisted-translated monopole operators byMb(ϕ), or simplyMb. The

QC-cohomology, in addition to Mb(ϕ) and gauge-invariant polynomials in Φ(ϕ), contains

monopole operators dressed by polynomials P (Φ), or dressed monopoles, which we denote

by [P (Φ)Mb]. Note that because monopoles are really given by sums over Weyl orbits, the

notation [P (Φ)Mb] is not merely a product of P (Φ) and Mb, but rather:[
P (Φ)Mb

]
=

1

|Wb|
∑

w∈W
P (Φw)× (insertion of a charge-(w · b) monopole singularity),

(2.5)

where Φw means that as we sum over the Weyl orbit, we act on the P (Φ) insertion as

well. Because Mb breaks the gauge group at the insertion point down to the subgroup

Gb ⊂ G that preserves b, P (Φ) must be invariant under the Gb action.7 Also, to avoid

overcounting, we must divide by the order of the stabilizer of b in W.8

At this point, we pause to discuss a few subtleties inherent to the above definition.

They are important for precise understanding, and ultimately for performing computations

correctly, but may be skipped on first reading.

First, let us ask ourselves what exactly Φw is. After all, the Weyl group acts canonically

on the Cartan subalgebra t, but it does not have a natural action on the full Lie algebra g

where Φ is valued. Indeed, from the identification W = N(T)/Z(T), a Weyl group element

is interpreted as an element of the normalizer N(T) ⊂ G of the maximal torus T, up to

an element of the centralizer Z(T) ⊂ G. On t, the centralizer Z(T) acts trivially, but it

certainly acts nontrivially on the full algebra, making the action of W on g ambiguous.

However, the action ofW on a Gb-invariant polynomial P (Φ) is nevertheless unambiguous.

To understand this, note that the magnetic charge b ∈ t is obviously preserved by Z(T),

7We will see that after localization, Φ takes values in the Cartan subalgebra tC, in which case the Gb-

invariance of P (Φ) boils down toWb-invariance, whereWb is the Weyl group of Gb. But then, because (2.5)

includes summation over the Weyl orbit of W, there is no real need to require Wb-invariance of P (Φ), as

it will be automatically averaged over the subgroup Wb ⊂ W upon this summation. Therefore, later on,

when we write formulas in terms of Φ ∈ tC, we can insert arbitrary polynomials P (Φ) in [P (Φ)Mb].
8The factor |Wb|−1 only appears when we sum over elements of W, while equations written directly in

terms of a sum over the Weyl orbit do not need such a factor.
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so the group Gb includes Z(T) as a subgroup. In particular, it means that P (Φ) is Z(T)-

invariant, and hence the action of w ∈ N(T)/Z(T) on P (Φ) is unambiguous — this is the

action that appears in (2.5).

This is not the only subtlety to take care of. It is also worth noting that the action of the

Weyl group on the dressing factor is different from its action on b. The fundamental reason

for this is that Φ represents a “non-defect” observable (given by an insertion of fundamental

fields in the path integral), while b characterizes the defect: namely, it describes the strength

of the monopole singularity that plays the role of a boundary condition for the fundamental

fields. In appendix B.1 of [38], it was explained how symmetries act on observables of these

two types (it was emphasized for global symmetries there, but the argument is exactly the

same for gauge symmetries): the actions are inverses of each other. Namely, in our case,

both b and Φ are elements of g, and if the gauge symmetry acts on Φ by U (Φ 7→ UΦU−1),

then it acts on b by U−1 (b 7→ U−1bU). The monopole singularity is labeled by b ∈ t, and

the Weyl group has a natural action on it coming from the identification W = N(T)/Z(T).

The dressing factor is a Gb-invariant polynomial P (Φ) that is also acted on by W, as we

just explained. If we act on b by w ∈ W (that is, b 7→ w · b), then we should act on P (Φ)

by w−1: P (Φw) = w−1 · P (Φ). After restricting Φ to take values in tC (which happens

after localization and gauge fixing), it is convenient to note that W acts on t by orthogonal

matrices, and hence the left action by w−1 is the same as the right action by w. This

provides a convenient way to perform actual calculations: the Weyl group acts from the

left on b ∈ t and from the right on Φ ∈ t once we represent them as a column vector (bi)

and a row vector (Φi), respectively, in some orthonormal basis of t.

Another convention that we choose to follow is that by b in [P (Φ)Mb], we mean

some weight of LG within the given Weyl orbit, though not necessarily the dominant one.

Whenever we label monopoles by dominant weights, we explicitly say so. The polynomial

P (Φ) appearing inside the square brackets is always the one attached to the charge-b

singularity (whether or not b is dominant), while the Weyl-transformed singularities w · b
are multiplied by Weyl-transformed polynomials, as in (2.5).

In this paper, we develop methods for computing correlation functions of dressed mon-

opole operators of the form (2.5). There are several techniques that we combine in order

to achieve our results: cutting and gluing techniques [45, 66], localization, and algebraic

consistency of the resulting OPE. In what follows, we describe each of them and what role

they play in the derivation.

2.2 Gluing formula

The cutting and gluing property [45, 66] holds in any local quantum field theory, and it has

already been applied to the abelian version of our problem in [38]. This is also one of the

key ingredients in the non-abelian generalization here. We can motivate its application as

follows. As explained in [38], only a very restricted class of configurations of twisted CBOs

on S3 is amenable to a direct localization computation. A less direct approach is to endow

the path integral on S3 with extra structure by dividing it into path integrals on two open

halves. These path integrals individually prepare states in the Hilbert space of the theory

on S2. The advantage of this procedure is that it allows for operator insertions within S3
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to be implemented by acting on these boundary states with operators on their associated

Hilbert spaces.

Specifically, the round S3 is glued from two hemispheres, HS3
+ and HS3

−, and we

need to know how this procedure is represented at the level of quantum field theories

living on them. Recall that gluing corresponds to taking 〈Ψ−|Ψ+〉, where |Ψ+〉 ∈ HS2

and 〈Ψ−| ∈ H∨S2 are states generated at the boundaries of the two hemispheres. Fur-

thermore, in Lagrangian theories with no more than two derivatives, this operation is

represented by an integral over the space of polarized boundary conditions [45, 66] for

a choice of polarization on P(S2), the phase space associated with S2 = ∂HS3. For a

special choice of supersymmetry-preserving polarization, this integral can be localized to

the finite-dimensional subspace of half-BPS boundary conditions of a certain type, which

results in a simple gluing formula [38, 45]:

〈Ψ−|Ψ+〉 =
1

|W|
∑
B∈Λ∨w

∫
t

drσ µ(σ,B) 〈Ψ−|σ,B〉〈σ,B|Ψ+〉. (2.6)

Here, the integration goes over the Cartan t ⊂ g, Λ∨w ⊂ t is the coweight lattice, µ(σ,B) is

the gluing measure given by the one-loop determinant on S2,

µ(σ,B) = Zc.m.
one-loop(σ,B)Zv.m.

one-loop(σ,B)J (σ,B),

Zv.m.
one-loop(σ,B)J (σ,B) =

∏
α∈∆+

(−1)α·B

[(α · σ
r

)2
+

(
α ·B

2r

)2
]
,

Zc.m.
one-loop(σ,B) =

∏
w∈R

(−1)
|w·B|−w·B

2

Γ
(

1
2 + iw · σ + |w·B|

2

)
Γ
(

1
2 − iw · σ + |w·B|

2

) , (2.7)

and 〈Ψ−|σ,B〉, 〈σ,B|Ψ+〉 are the hemisphere partition functions with prescribed boundary

conditions determined by σ ∈ t and B ∈ Λ∨w ⊂ t.9 We think of 〈Ψ−|σ,B〉, 〈σ,B|Ψ+〉 as

wavefunctions on t × Λ∨w: they are elements of an appropriate functional space, such as

L2(t × Λ∨w), a precise identification of which is not important. The boundary conditions

parametrized by σ,B are half-BPS boundary conditions on bulk fields preserving 2D (2, 2)

SUSY on S2, namely an su(2|1) subalgebra of s containing QC . In terms of the on-shell

components of the multiplets H = (qa, q̃
a, ψαȧ, ψ̃αȧ) and V = (Aµ,Φȧḃ, λαaȧ), as well as the

variables q± ≡ q1 ± iq2 and q̃± ≡ q̃1 ± iq̃2, these boundary conditions are given by:

q+

∣∣= q̃−
∣∣=(D⊥q−+

Φ1̇1̇−Φ2̇2̇

2
q−

)∣∣∣∣=(D⊥q̃++
Φ1̇1̇−Φ2̇2̇

2
q̃+

)∣∣∣∣= 0,

(ψ1̇−σ3ψ2̇)
∣∣= (ψ̃1̇+σ3ψ̃2̇)

∣∣= 0,

A‖
∣∣=±B

2
(sinθ−1)dτ,

Φ1̇1̇+Φ2̇2̇

2i

∣∣∣∣= B

2r
, Φ1̇2̇

∣∣= σ

r
,

(λ12̇−iλ22̇+σ3(λ11̇−iλ21̇))
∣∣= (λ12̇+iλ22̇−σ3(λ11̇+iλ21̇))

∣∣= 0. (2.8)

9In (2.7), J is a standard Vandermonde determinant and we have omitted an overall power of r from

the logarithmic running of the 2D FI parameters.
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Note that such boundary conditions specify the magnetic flux B ∈ Λ∨w through the bound-

ary S2. Thus we could alternatively think of B as the corresponding cocharacter, i.e., the

full Weyl orbit WB, in which case the sum in (2.6) would run over the set of cocharacters

(allowed magnetic charges) Γm = Λ∨w/W. In such a case, the boundary conditions above

would have to be understood in the same way as the definition of the monopole operator:

one would have to evaluate the hemisphere partition function for every element of the Weyl

orbit WB ⊂ Λ∨w and sum the results. We find it more convenient to treat B as an element

of Λ∨w, in which case we simply sum over B ∈ Λ∨w in the gluing formula and there is no

need for a separate sum over Weyl reflections.

The gluing formula (2.6) holds as long as the states Ψ± are supersymmetric, i.e.,

annihilated by QC [38, 45]. This is true for the state generated at the boundary of the

empty hemisphere, and remains valid if we start inserting QC-closed observables inside.

Such insertions will modify the hemisphere partition function, and can be represented as

certain operators acting on the empty hemisphere partition function. In this paper, we are

only concerned with local observables, described above as gauge-invariant polynomials in

Φ(ϕ) and dressed monopole operators. Such local observables form an OPE algebra AC ,

which will turn out to be a quantization of the Coulomb branch. Therefore, all we need to

do is find how Φ(ϕ) and dressed monopoles act on the hemisphere partition function.

2.3 Input from localization

An important step is to compute the hemisphere partition function with insertions of local

QC-closed observables. As explained in [38], because correlation functions do not depend

on the positions of the insertions, we can move them all to the tip of the hemisphere and

replace them by an equivalent composite operator located there. In the abelian case, the

GNO charge of the twisted CBO at the tip is equal to the sum of the GNO charges of

all insertions, while in the non-abelian case, it is determined by taking tensor products of

representations of LG. It suffices to consider a bare monopole at the tip, as it is trivial to

include insertions of (gauge-invariant monomials in) the scalar Φ(ϕ) anywhere along S1
ϕ.

The hemisphere partition function can be computed using supersymmetric localization.

In fact, half of the computation that we need has already been performed in [38], whose

conventions we closely follow. Recall that the round sphere is parametrized by 0 ≤ θ ≤ π/2,

0 ≤ ϕ ≤ 2π, and −π ≤ τ ≤ π, and S1
ϕ is located at θ = π/2, where the τ -circle shrinks.

The sphere is cut into two hemispheres along the S2 located at ϕ = 0 and ϕ = ±π. It is

also sometimes convenient to use spherical coordinates (η, ψ, τ), which are related to the

“fibration” coordinates (θ, ϕ, τ) by

(cos θ, sin θ cosϕ, sin θ sinϕ) = (sin η sinψ,− sin η cosψ, cos η), τ = τ, (2.9)

where η, ψ ∈ [0, π]. In terms of such coordinates, the cut is located at η = π/2.

We place the monopole of charge b at (θ, ϕ) = (π/2, π/2), which is the tip of the

hemisphere, by imposing (2.4) there. In spherical coordinates, the monopole insertion

point is η = 0. We also impose the conditions (2.8) at the boundary of the hemisphere.
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The BPS equations that follow from QC can be conveniently written in terms of

R ≡ sin θ, Φr ≡ Re(ReiϕΦ1̇1̇), Φi ≡ Im(ReiϕΦ1̇1̇), (2.10)

and they take the form:

[Φ1̇2̇,Φi] = [Φ1̇2̇,Φr] = 0,

D12 = Re(D11) = 0, Im(D11) =−1

r
Φ1̇2̇,

DµΦ1̇2̇ =DτΦi = 0, DτΦr = ir[Φr,Φi],

RDRΦi+DϕΦr = 0, R(1−R2)DRΦr−DϕΦi = 0,

Fµν =
√
gεµνρκρDρΦr, where κρ =

(
1,1,

1

sin2 θ

)
ρ

. (2.11)

In the last equation, the index ρ is summed over, and indices are raised and lowered using

the metric in [38]. These equations have a straightforward (non-bubbling) solution that

only exists if the boundary (flux) coweight B matches one of the coweights in the Weyl

orbit corresponding to the monopole charge. In other words, if the monopole’s dominant

coweight is b, then the straightforward solution exists iff B = wb for some w ∈ W . This

solution has vanishing fields in the hypermultiplet as well as vanishing fermions in the

vector multiplet, while the bosons in the vector multiplet take the form:

D12 = 0, Φ1̇2̇ = irD11 = irD22 =
σ

r
∈ t,

Φ1̇1̇ = Φ2̇2̇ =
iB

2r sin η
=

iB

2r
√

cos2 θ + sin2 θ cos2 ϕ
,

A± = −B
2

(cosψ ∓ 1) dτ =
B

2

(
sin θ cosϕ√

1− sin2 θ sin2 ϕ
± 1

)
dτ, (2.12)

where A− is defined everywhere on the hemisphere except the interval π/2 ≤ ϕ ≤ π at

θ = π/2; similarly, A+ is defined everywhere except on 0 ≤ ϕ ≤ π/2, θ = π/2. Here, Dab

are the auxiliary fields in the vector multiplet.

The above straightforward solution is a direct generalization of the abelian one

from [38]. Therefore, (2.12) can be called the “abelian solution.” Indeed, since B ∈ t, we

see that only components valued in the maximal torus of the gauge group have VEVs. It is

known, however, that in the non-abelian case, the equations (2.11) might have additional

loci of solutions. They correspond to screening effects that go by the name of “monopole

bubbling” [52]. In particular, one notices that close to the special circle θ = π/2, the last

equation in (2.11) becomes the Bogomolny equation, and the bubbling loci in the moduli

spaces of Bogomolny equations have been an active area of study. We will discuss bubbling

in more detail soon, but for now let us focus on (2.12).

The abelian solution (2.12) has the feature that all fields with nontrivial VEVs on the

localization locus are vector multiplet fields valued in t. In other words, the VEVs look as

though the gauge group were actually T, the maximal torus of G. This is essentially how

the “abelianization” of [59] makes an appearance in our approach.
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Note that since the Yang-Mills action is QC-exact [37, 38], one can use it for localization

and to compute the relevant determinants in the weak-coupling limit gYM → 0. The action

(with boundary terms included such that the sum of the bulk and boundary pieces is QC-

exact [38]) vanishes on the localization locus, and it remains only to compute the one-loop

determinants in the background of (2.12).

The action for hypermultiplets in the background of (2.12) becomes quadratic, so there

is no need to localize them separately: one can directly integrate them out. Furthermore,

this action is simply that of free hypermultiplets coupled to the T-valued gauge back-

ground. Each representation R of G gives a set of abelian charges under T given by the

weights w ∈ R. Therefore, we can borrow the corresponding one-loop determinant from

the previous work [38], where the abelian case was studied:

Zhyper
1-loop =

∏
w∈R

1

r
|w·B|

2

Γ
(

1+|w·B|
2 − iw · σ

)
√

2π
. (2.13)

The only novelty in the computation of non-abelian one-loop determinants is that vector

multiplets contribute: we need to include the contributions of W-bosons and gaugini. An

indirect derivation of these determinants will be presented in section 2.6. The answer is

given by

Zvec
1-loop =

∏
α∈∆

r
|α·B|

2

√
2π

Γ
(

1 + |α·B|
2 − iα · σ

) . (2.14)

Therefore, the contribution from the abelian solution to the hemisphere partition function

with a monopole labeled by a coweight b ∈ Λ∨w ⊂ t inserted at the tip is given by

Z(b;σ,B) =
∑
b′∈Wb

δB,b′

∏
w∈R

1
√

2πr
|w·b′|

2

Γ
(

1+|w·b′|
2 − iw · σ

)
∏
α∈∆

1
√

2πr
|α·b′|

2

Γ
(

1 + |α·b′|
2 − iα · σ

) ≡ ∑
b′∈Wb

Z0(b′;σ,B), (2.15)

where the δB,b′ enforces flux conservation: the flux sourced by the monopole equals the flux

exiting through S2. We have introduced the notation Z0 for an “incomplete” partition func-

tion that does not include a sum over the Weyl orbit of b. Such a quantity does not represent

a physical monopole operator, but it will prove to be convenient in the following sections.10

In general, Z as given above is not the full answer, because there are contributions

from additional loci in the localization computation. We now discuss them.

2.4 Monopole bubbling

Close to the monopole insertions, our BPS equations behave as Bogomolny equations on

R3 with a monopole singularity at the origin. Such equations are known to have “screening

solutions” in addition to the simple abelian “Dirac monopole” solution described in the

previous subsection. The main property of such solutions is that while at the origin of R3

10We do not keep careful track of the overall sign of the hemisphere wavefunction, as it cancels in the

gluing formula.
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they have a monopole singularity characterized by b ∈ Λ∨w, at infinity they behave as Dirac

monopoles of different charges v ∈ Λ∨w. It is also known that such solutions only exist when

v is a weight in the representation determined by the highest weight b such that |v| < |b|
(in which case v is said to be “associated to” b, sometimes written simply as v < b). Let

M(b, v) denote the moduli space of such screening solutions. For given b and v, let ρ be

the length scale over which the screening takes place. It is one of the moduli for solutions

of the Bogomolny equations, and taking ρ → 0 corresponds to going to the boundary of

M(b, v). In this limit, the solution approaches a Dirac monopole of charge v everywhere on

R3 except for an infinitesimal neighborhood of the origin where the non-abelian screening

takes place. This solution can be thought of as a singular (Dirac) monopole screened by

coincident and infinitesimally small smooth (’t Hooft-Polyakov) monopoles; the latter have

GNO charges labeled by coroots. It is natural to suppose that such solutions also exist on

S3: while at finite ρ they are expected to receive 1/r corrections compared to the flat-space

case, in the ρ→ 0 limit, they should be exactly the same bubbling solutions as on R3.

Notice that our general BPS equations require solutions to be abelian away from the

insertion point. However, within the radius ρ, the screening solutions to the Bogomolny

equations are essentially non-abelian. Therefore, smooth screening solutions corresponding

to generic points of M(b, v) cannot give new solutions to the BPS equations. However,

boundary components ofM(b, v) where ρ→ 0 can give new, singular solutions to the BPS

equations, which fail to be abelian only at the insertion point of the monopole operator.

They should therefore be taken into account in the localization computation. Since such a

solution behaves as an abelian Dirac monopole of charge v everywhere except at the inser-

tion point, it is convenient to factor out Z(v;σ,B) computed in the previous subsection,

and to say that the full contribution from the “b→ v” bubbling locus is given roughly by

Zmono(b, v;σ,B)Z(v;σ,B), (2.16)

where Zmono characterizes the effect of monopole bubbling. We call it the bubbling factor.

In fact, such a simple presentation is not quite correct, and we need to be more precise

here. Recall that the monopole insertion is not just defined by a single singular boundary

condition (2.4): rather, one sums over the Weyl orbit of such singular boundary conditions.

Therefore, the above expression is expected to have sums over such orbits for both b and

v. A more general expectation, which turns out to be correct, is that the contribution of

the bubbling locus takes the form∑
b′∈Wb
v′∈Wv

Zab
mono(b′, v′;σ,B)Z0(v′;σ,B) (2.17)

where, as before, b and v are understood to be (dominant) coweights representing magnetic

charges, and we sum over their Weyl orbits. The new quantity appearing in this equation,

Zab
mono(b′, v′;σ,B), (2.18)

is called the “abelianized bubbling factor.” It depends on coweights b′, v′ ∈ Λ∨w ⊂ t rather

than on cocharacters, while physical answers in the full non-abelian theory depend on
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cocharacters and thus always include sums over Weyl orbits. The abelianized bubbling

factors introduced here prove to be of great importance for the formalism of this paper.

Later on, we will provide more rigorous evidence for their relevance based purely on group

theory arguments that are independent of the heuristic path integral-inspired explanation

of this section. Note also that the abelianized bubbling factors are expected to behave

under Weyl reflections in the following way:11

Zab
mono(w · b,w · v; w · σ,w ·B) = Zab

mono(b, v;σ,B), w ∈ W . (2.19)

Now we can write the complete answer for the hemisphere partition function:

〈σ,B|Ψb〉 = Z(b;σ,B) +
∑
|v|<|b|

∑
b′∈Wb
v′∈Wv

Zab
mono(b′, v′;σ,B)Z0(v′;σ,B), (2.20)

where Ψb represents the state generated at the boundary of the hemisphere with a physical

monopole of charge b inserted at the tip. Here, the first sum goes over dominant coweights

v satisfying |v| < |b|, while the second sum goes over the corresponding Weyl orbits.

The localization approach to the computation of Zmono(b, v;σ,B) is quite technical,

having been a subject of several works in the past [53–55], and more recently [56, 58].

In the current paper, we do not attempt a direct computation of Zmono(b, v;σ,B) or

Zab
mono(b, v;σ,B). Instead, we describe a roundabout way to find them from the alge-

braic consistency of our formalism. We find that the Zab
mono(b, v;σ,B) are always given by

certain rational functions, but we do not need to assume anything about their form.

2.5 Shift operators

In this section, we derive how insertions of local QC-closed observables are represented

by operators acting on the hemisphere wavefunction (up to the so-far unknown bubbling

factors). The easiest ones are polynomials in Φ(ϕ). Just like in [38], we can think of them

as entering the hemisphere either through the North pole (ϕ, θ) = (0, π/2) or through the

South pole (ϕ, θ) = (π, π/2). Then we simply substitute the solution (2.12) into the defi-

nition of Φ(ϕ) either for 0 < ϕ < π/2 or for π/2 < ϕ < π. We find that for the North pole,

Φ(ϕ = 0) =
1

2
(Φ1̇1̇ + 2Φ1̇2̇ + Φ2̇2̇) =

1

r

(
σ +

i

2
B

)
. (2.21)

Similarly, for the South pole,

Φ(ϕ = π) =
1

2
(−Φ1̇1̇ + 2Φ1̇2̇ − Φ2̇2̇) =

1

r

(
σ − i

2
B

)
. (2.22)

This operator simply measures the values of σ and B away from the monopole insertion,

and bubbling is accounted for trivially. In particular, on the unbubbled locus, B evaluates

to b, while for the bubbling loci it evaluates to the corresponding B = v. Thus we conclude

that Φ(ϕ) is represented by the following North and South pole operators:

ΦN =
1

r

(
σ +

i

2
B

)
∈ tC, ΦS =

1

r

(
σ − i

2
B

)
∈ tC, (2.23)

11Here, all variables take values in t, so the action of W is unambiguous.
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where B should be thought of as measuring B ∈ Λ∨w at the boundary S2, i.e., it multiplies

the wavefunction Ψ(σ,B) by B, and thus is simply a diagonal multiplication operator.

It is also not too hard to obtain the generalizations of the abelian shift operators

from [38] that represent insertions of non-abelian monopoles. From the structure of the

partition functions above, it is clear that they take the following form:

Mb =
∑
b′∈Wb

M b′ +
∑
|v|<|b|

∑
b′∈Wb
v′∈Wv

Zab
mono(b′, v′;σ,B)Mv′ . (2.24)

Here, M b is an abelianized (non-Weyl-averaged) shift operator which represents the inser-

tion of a bare monopole singularity characterized by the coweight (not cocharacter!) b, and

whose definition ignores bubbling phenomena. The inclusion of abelianized bubbling coef-

ficients Zab
mono takes care of screening effects, and summing over Weyl orbits corresponds

to passing to cocharacters, i.e., true physical magnetic charges.

The expression (2.24) is evident from the structure of the hemisphere partition function

with a monopole inserted, as described in the previous subsections. Indeed, away from the

monopole insertion, its effect must be represented by a sum over bubbling sectors, and

within each bubbling sector, the contribution must take the form of a sum over the Weyl

reflections of the basic contribution. The expression (2.24), in fact, represents nothing else

but the abelianization map proposed in [59]: the full non-abelian operator Mb is written

in terms of the abelianized monopoles M b acting on Ψ(σ,B), wavefunctions on t× Λ∨w.

It remains to determine the expressions for M b acting on wavefunctions Ψ(σ,B). Just

like in [38], there are separate sets of operators that implement insertions through the North

and South poles. These generate isomorphic algebras, and they are uniquely determined

by the following set of consistency conditions:

1) They should shift the magnetic flux at which Ψ(σ,B) is supported by b ∈ Λ∨w.

2) They should commute with Φ at the opposite pole, i.e., [M b
N ,ΦS ] = [M b

S ,ΦN ] = 0.

3) They should commute with another monopole at the opposite pole, i.e., [M b
N ,M

b′
S ] = 0.

4) When acting on the vacuum (empty hemisphere) wavefunction, the result should agree

with (2.15).

This set of conditions determines the North shift operator to be

M b
N =

∏
w∈R

[
(−1)(w·b)+

r|w·b|/2

(
1
2 + irw · ΦN

)
(w·b)+

]
∏
α∈∆

[
(−1)(α·b)+

r|α·b|/2
(irα · ΦN )(α·b)+

] e−b·(
i
2
∂σ+∂B), (2.25)

where (a)+ ≡ a if a ≥ 0 and (a)+ ≡ 0 otherwise, (x)n stands for the Pochhammer symbol

Γ(x+ n)/Γ(x), and x · y represents the canonical pairing t∗× t→ R. The analogous South

pole operator is

M b
S =

∏
w∈R

[
(−1)(−w·b)+

r|w·b|/2

(
1
2 + irw · ΦS

)
(−w·b)+

]
∏
α∈∆

[
(−1)(−α·b)+

r|α·b|/2
(irα · ΦS)(−α·b)+

] eb·(
i
2
∂σ−∂B). (2.26)
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By counting powers of r−1 in the general expression (2.25), we find that the dimension of

a charge-b monopole is

∆b =
1

2

(∑
w∈R
|w · b| −

∑
α∈∆

|α · b|

)
. (2.27)

This dimension formula will come in handy later.

The shift operators satisfy an important multiplication property, which later on will al-

low us to generate monopoles of arbitrary charge starting from a few low-charge monopoles:

M b1
N ? M b2

N = Pb1,b2(Φ)M b1+b2
N for dominant b1 and b2, (2.28)

and similarly for the South pole operators, where Pb1,b2(Φ) is some polynomial in Φ. We

use ? to denote products as operators (in particular, shift operators act on the Φ-dependent

prefactors in MN,S), emphasizing that they form an associative noncommutative algebra.

In fact, (2.28) holds slightly more generally than for dominant weights: if ∆+ is some

choice of positive roots (determined by a hyperplane in t∗), then (2.28) holds whenever the

condition (b1 ·α)(b2 ·α) ≥ 0 is satisfied for all α ∈ ∆+. The property (2.28) ensures that in

the product of two physical bare monopoles, the highest-charge monopole appears without

denominators. If in addition, b1 and b2 satisfy the property that (b1 ·w)(b2 ·w) ≥ 0 for all

matter weights w ∈ R, then a stronger equality holds:

M b1
N ? M b2

N = M b1+b2
N . (2.29)

Finally, for general b1 and b2, we have:

M b1
N ? M b2

N =

∏
w∈R(−iw · ΦN )(w·b1)++(w·b2)+−(w·(b1+b2))+∏
w∈∆(−iα · ΦN )(α·b1)++(α·b2)+−(α·(b1+b2))+

M b1+b2
N +O(1/r). (2.30)

These are precisely the abelian chiral ring relations of [59].

In addition to defining MN,S , we also need to properly define dressed monopoles. This

is an important and somewhat subtle consideration, especially due to the interplay with

bubbling. We discuss it in section 3. Before doing so, let us first fill a gap in the above

discussion by comparing our results to supersymmetric indices in four dimensions, which

provide a way to derive the vector multiplet one-loop determinant.

2.6 Reduction of Schur index

Our setup has a natural uplift to a supersymmetric index of 4D N = 2 theories on S3×S1.

The operators constructed from Φ(ϕ) lift to supersymmetric Wilson loops wrapping the

S1, while monopole operators correspond to supersymmetric ’t Hooft loops on S1. Certain

questions relevant to this 4D setup have been studied in the literature in great detail, and

we can use the answers to determine the unbubbled partition functions. By shrinking the

S1 factor, the 4D results allow us to infer the unbubbled one-loop determinants mentioned

in the previous subsections. Doing this for the bubbling contributions is more subtle and

is discussed in appendix D, where we find agreement with our method of deriving bubbling

terms in cases where the 4D results are known. For simplicity, let us first set the radius r
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of S3 to 1, and let us denote the circumference of S1 by β. To restore r, we simply send

β → β/r in all formulas.

Since the one-loop determinant for hypermultiplets is already known, we concern our-

selves only with determining the vector multiplet contribution. This can be done in a

theory with any conveniently chosen matter content. We can always choose the matter

content in such a way that both the 4D N = 2 and the 3D N = 4 theories are conformal.

The corresponding 4D index is known as the Schur index. The Schur index is defined as

I(p) = TrHS3 (−1)F pE−R (2.31)

where the trace is taken over the Hilbert space of the 4D theory on S3 and R is the Cartan

generator of the su(2) R-symmetry, normalized so that the allowed charges are quantized

in half-integer units. In the path integral description, I(p) evaluated when p = e−β is given

by an S3×S1 partition function, with S1 of circumference β and with an R-symmetry twist

by eβR as we go once around the S1. This S3 × S1 partition function is invariant under

all 4D superconformal generators that commute with E −R, or in other words, that have

E = R. One can easily list these generators and check that they form an su(2|1)⊕ su(2|1)

superalgebra. Thus the superconformal index (2.31) is invariant under su(2|1) ⊕ su(2|1).

It is also invariant under all continuous deformations of the superconformal theory: in

particular, it is independent of gYM and can be computed at weak coupling.

One can additionally insert an ’t Hooft loop of GNO charge b (taken to be a dominant

coweight) wrapping S1 at one pole of S3 and the oppositely charged loop at the opposite

pole of S3. The answer for this modified index in a general 4D N = 2 gauge theory, up to

a sign and ignoring the bubbling effect, can be found in [55]:12

Ib(p) =
1

|Wb|

∫ rank(G)∏
i=1

dλi
2π

 [∏
α∈∆

(
1− eiα·λp

|α·b|
2

)]
P.E.[Iv(e

iλi , p)] P.E.[Ih(eiλi , p)],

(2.32)

where ∆ is the set of all roots, P.E. is the plethystic exponential defined as P.E.[f(x)] ≡
exp

[∑∞
n=1

f(xn)
n

]
, Iv is the contribution from the N = 2 vector, and Ih is the contribution

from the N = 2 hyper in the representation R:

Iv(e
iλi , p) = −2

∑
α∈adj

p1+
|α·b|

2

1− p
eiα·λ ,

Ih(eiλi , p) =
∑
w∈R

p
1
2

+
|w·b|

2

1− p
(eiw·λ + e−iw·λ) . (2.33)

Using the identity exp
[
−
∑∞

n=1
an

n(1−qn)

]
= (a; q) where (a; q) ≡

∏∞
n=0(1 − aqn) is the

q-Pochhammer symbol, we can rewrite Ib(p) as

Ib(p) =
(p;p)2rank(G)

|Wb|

∫ π

−π

rank(G)∏
i=1

dλi
2π

∏α∈∆

[(
1−eiα·λp

|α·b|
2

)
(eiα·λp1+

|α·b|
2 ;p)2

]
∏
w∈R(eiw·λp

1
2

+
|w·b|

2 ;p)(e−iw·λp
1
2

+
|w·b|

2 ;p)
. (2.34)

12We set ηa = 1 and x =
√
p in equation (3.44) of [55].
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We would like to determine the 3D hemisphere partition function. One way to do so is to

use the results of [45] to first extract the 4D half-index from (2.34), and then dimensionally

reduce it. Alternatively (and this is how we proceed), we first reduce the index (2.34) to

3D to find the S3 partition function, and then use the gluing formula from section 2.2 to

recover the hemisphere partition function as the square root of the absolute value of the

integrand. One can then fix signs by consistency with gluing.

To reduce (2.34) down to three dimensions, we take the β → 0 limit, where in addition

to setting p = e−β , we scale the integration variable accordingly:

λ = βσ ∈ t. (2.35)

The angular variable λ (parametrizing the maximal torus T ⊂ G) then “opens up” into an

affine variable σ ∈ t. To take the limit, one needs the following identities (see [38]):

1

(px; p)
= e

π2

6β βx−
1
2

1√
2π

Γ(x)(1 +O(β)) , (p; p) =

√
2π

β
e
−π

2

6β (1 +O(β)) , (2.36)

which give

Ib ≈
e
−π

2r
3β

(
dimG−

∑Nf
I=1 dimRI

)
|Wb|

∫ ∞
−∞

rank(G)∏
i=1

dσi

 ∏
α∈∆+

(
(α · σ)2 +

|α · b|2

4

)

×

∏
w∈R

∣∣∣∣ β
|w·b|

2

√
2πr

|w·b|
2

Γ
(

1+|w·b|
2 − iw · σ

)∣∣∣∣2∏
α∈∆

∣∣∣∣ β
|α·b|

2

√
2πr

|α·b|
2

Γ
(

1 + |α·b|
2 − iα · σ

)∣∣∣∣2
(2.37)

as β → 0. In (2.37), we restored the radius r of S3 by dimensional analysis.

The exponential prefactor in (2.37) is precisely the Cardy behavior of [67]. In the

integrand, we recognize the one-loop contribution of the hypermultiplet to the S3 partition

function,

Zhyper
1-loop, S3(σ) =

∏
w∈R

∣∣∣∣∣ 1
√

2πr
|w·b|

2

Γ

(
1 + |w · b|

2
− iw · σ

)∣∣∣∣∣
2

, (2.38)

multiplied by β
|w·b|

2 . The remaining factor in the integrand must be proportional to the

one-loop contribution of the vector multiplet to the S3 partition function. Assuming that

the one-loop vector multiplet contribution comes multiplied by β−
|α·b|

2 (by analogy with

the hypermultiplet factor), we conclude that it is equal to

Zvec
1-loop, S3(σ) =

∏
α∈∆+

(
(α · σ)2 + |α·b|2

4

)
∏
α∈∆

∣∣∣∣ 1
√

2πr
|α·b|

2

Γ
(

1 + |α·b|
2 − iα · σ

)∣∣∣∣2
. (2.39)

The S3 partition function is then given by the expression

Zb =
1

|Wb|

∫ ∞
−∞

rank(G)∏
i=1

dσi

Zvec
1-loop, S3(σ)Zhyper

1-loop, S3(σ) . (2.40)
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Note that using this method, the overall normalization of Zb is ambiguous, but we propose

that the correct expression is given by (2.40). This expression passes the check that when

b = 0, it reduces to the S3 partition function derived in [29], namely

Z = Z0 =
1

|W|

∫ ∞
−∞

rank(G)∏
i=1

dσi

 ∏α∈∆+ 4 sinh2(πα · σ)∏
w∈R 2 cosh(πw · σ)

. (2.41)

What remains to be done is to use (2.38) and (2.39) to verify the hemisphere one-loop

determinants given in (2.13) and (2.14). To do so, we use the gluing formula (2.6) as

well as the explicit expression for the gluing measure in (2.7). It immediately follows that

the hypermultiplet and vector multiplet contribute (2.13) and (2.14) to the hemisphere

partition function, respectively. The hypermultiplet contribution (2.13) was previously

determined by an explicit computation of the one-loop determinant on the hemisphere [38].

It would be interesting to carry out the analogous computation for the non-abelian vector

multiplet, which we have bypassed by means of the above argument.13

3 Dressing and abelianized bubbling

We have now derived the structure of bare monopoles, up to the bubbling factors. In this

section, we extend this construction to more general dressed monopoles. Recall that the

magnetic charge b breaks the gauge group at the insertion point down to Gb, the centralizer

13Note that the hemisphere and the QC-invariant background (2.12) with a monopole at the tip η = 0

preserve an N = 2 subalgebra su(2|1), generated by what are called Q±1 and Q±2 in [38]. The suggestive

form of (2.14) then leads one to wonder whether it can be explained by a Higgsing argument familiar in

the study of theories with four supercharges (see, e.g., [68]). Namely, with respect to the aforementioned

N = 2 subalgebra, the hypermultiplet decomposes into N = 2 chiral multiplets of R-charge 1/2 and the

vector multiplet decomposes into an N = 2 vector multiplet and an adjoint chiral multiplet of R-charge

1. Suppose that one could deform the action in such a way as to accommodate arbitrary R-charge q for

the chiral multiplets transforming in representations R,R of G (as in, e.g., [50, 51]) while preserving the

N = 2 superpotential coupling that descends from the ΦȧḃΦȧḃ term in the N = 4 Lagrangian. Then one

might expect the corresponding chiral multiplet one-loop determinant on the hemisphere to take the form

of a product over weights w ∈ R of

Zqchiral(w · σ) ∼ Γ

(
1− q +

|w ·B|
2

− iw · σ
)
, (2.42)

so that the numerator of Z0(b′;σ,B) in (2.15) comes from Z
1/2
chiral(w · σ) and the denominator from

Zvector(α · σ) =
1

Z0
chiral(−α · σ)

, (2.43)

by reflection symmetry of the roots α. Here, (2.43) follows from the Higgs mechanism and Zvector(α · σ)

denotes the contribution to the vector multiplet one-loop determinant from a mode in the α-direction.

It would be interesting to make this intuition precise. However, due to our choice of N = 2 superalgebra

on S3, ours is not the standard N = 2 Coulomb branch localization, where chiral multiplet fields vanish

on the localization locus. Indeed, (2.12) implies a nontrivial background for the scalar in the adjoint chiral

multiplet (i.e., σ/r) as well as for the scalar in the N = 2 vector multiplet (i.e., −B/r sin η). In particular,

σ ∈ t is not the standard Coulomb branch parameter: it labels the scalar zero mode of the adjoint chiral

and not of the vector.
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of b. As is well-known in the literature [59] and as reviewed in section 2.1.2, one may dress

the monopole operator by some Gb-invariant polynomial P (Φ) in the variable Φ(ϕ).

If P (Φ) is invariant under the full gauge group G, then it is a validQC-closed observable

on its own. This makes the definition of the corresponding dressed monopole essentially

trivial: we simply “collide” two separate observables P (Φ) and Mb, which within our

formalism means multiplying them as operators acting on the hemisphere wavefunction.

Using the star product notation for such multiplication, we thus have:[
P (Φ)Mb

]
:= P (Φ) ?Mb. (3.1)

When the polynomial P (Φ) is only invariant under a subgroup Gb rather than the full gauge

group G, we must proceed differently because P (Φ) only makes sense as part of [P (Φ)Mb],

not as a separate observable. Had bubbling not been an issue, the solution would again

be straightforward: we would simply define [P (Φ)Mb] = |Wb|−1
∑

w∈W P (Φw)Mw·b. In

general, however, the presence of bubbling makes such a simple definition incomplete.

For the remainder of this section, we focus on the case of a simple gauge group G.

The generalization to the situation where G is a simple factor of a larger gauge group

is straightforward: different simple factors couple to each other only through the matter

multiplets, and representation-theoretic issues can be addressed for each simple factor

separately. The final conclusion of this section, theorem 1, holds for general G with the

understanding that for non-simple gauge groups, bubbling terms for a monopole operator

magnetically charged under one simple factor might also depend on scalars Φ from other

simple factors. From the point of view of a given simple factor G, Φ’s valued in other

simple factors G′ act as twisted masses for G′.

3.1 Dressed monopoles and invariant theory

A general dressed monopole operator takes the form[
P (Φ)Mb

]
=

1

|Wb|
∑

w∈W
P (Φw)Mw·b + · · · (3.2)

where the ellipses stand for bubbling contributions. It is intuitively clear that such ob-

servables, constructed for all possible choices of P (Φ), cannot all be independent: there

should exist a minimal set of dressed monopoles, a basis in some sense, from which all

other dressed monopoles follow. In this subsection, we make this intuition precise by rig-

orously proving that for a given magnetic charge b, there exists a set of primitive dressed

monopoles that accomplish this.

Definition 1. Dressed monopoles [P1(Φ)Mb], [P2(Φ)Mb], . . . , [Pp(Φ)Mb] are called prim-

itive (of magnetic charge b) if they form a basis for the (free) module of dressed charge-b

monopoles over the ring of G-invariant polynomials. This means that by taking linear

combinations
p∑
i=1

Qi(Φ) ?
[
Pi(Φ)Mb

]
(3.3)
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where the Qi(Φ) are G-invariant polynomials, we obtain dressed monopoles with all possible

leading terms of the form (3.2), and furthermore, that p is the minimum number that makes

this possible. We will always assume P1(Φ) = 1, so that the first primitive monopole is the

bare monopole itself.

Example. In SU(2) gauge theory, the Weyl group is Z2, which simply flips b → −b and

Φ → −Φ ∈ tC. A dressed monopole of charge b takes the form P (Φ)M b + P (−Φ)M−b +

bubbling. In this case, there are only two primitive dressed monopoles for each b:

Mb = M b +M−b + bubbling,[
ΦMb

]
= Φ(M b −M−b) + bubbling. (3.4)

By writing

P (Φ) =
P (Φ) + P (−Φ)

2
+
P (Φ)− P (−Φ)

2Φ
Φ, (3.5)

it becomes obvious that any other dressed monopole can be defined as:[
P (Φ)Mb

]
:=

P (Φ) + P (−Φ)

2
?Mb +

P (Φ)− P (−Φ)

2Φ
?
[
ΦMb

]
. (3.6)

To describe primitive monopoles for general gauge groups, it is enough to focus on the

leading term of (3.2), as we do in this subsection. Bubbling contributions will be analyzed

from this point of view in the next subsection.

The leading term in (3.2) is constructed to be invariant under the Weyl group action.

Therefore, we can classify such leading terms by identifying invariants of the Weyl group in

the corresponding (reducible) representations ofW. Alternatively, we could achieve this by

focusing on the dressing factors and classifying polynomials P (Φ) invariant under Gb. Since

Φ ∈ tC after localization and gauge fixing, it is enough to impose invariance under Wb (the

Weyl group of Gb). Thus dressed monopoles can be classified by Wb-invariant polynomials

in Φ.14 Nevertheless, we find it more convenient to study the invariants of W directly.

Proposition 1. Let G be a simple Lie group, W its Weyl group, and b a dominant coweight

(a magnetic charge). Then there exists a set of primitive monopoles (of magnetic charge b)

[P1(Φ)Mb], [P2(Φ)Mb], . . . , [Pp(Φ)Mb], where p = |Wb| is the size of the Weyl orbit of b.

The remainder of this subsection is devoted to proving this proposition using classical

facts from invariant theory. Less mathematically inclined readers are free to skip it.

Proof. Consider ρb, a representation of W spanned as a C-linear space by the Weyl orbit

of the coweight b. We write it in terms of shift operators Mw·b, w ∈ W , as

ρb := SpanC{Mw·b |w ∈ W}. (3.7)

This representation is reducible: in particular, it contains a trivial subrepresentation

spanned by
∑

b′∈WbM
b′ , which is the simplest invariant corresponding to the bare mono-

pole operator.

14Wb-invariant polynomials on t can be uniquely extended to Gb-invariant polynomials on g.
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The Cartan subalgebra t itself is also a W-module: W acts on it in an irreducible

r-dimensional representation, where r = rank(G). We will denote such a representation

simply by t. The variable Φ =
∑r

a=1 Φah
a clearly takes values in this representation.

However, recall from the discussion after (2.5) that when w ∈ W acts on a dressed

monopole operator by transforming the weight according to b 7→ w · b, physics tells us that

the dressing factor should be acted on by w−1: Φ 7→ Φw = w−1 ·Φ. Since w is represented

by an orthogonal matrix on t, this is the same as acting with wT from the left or with w

from the right. This is how one acts in a dual representation. Thus in a dressed monopole

operator, we think of Φ as transforming in the dual representation t∗. The dressing factor

P (Φ) entering (3.2), being a polynomial in Φ, transforms in St∗, the symmetric algebra of t∗,

or equivalently, the algebra C[t] of polynomial functions on t. This implies that any dressed

monopole operator is determined by an invariant vector inside the following W-module:

Rb := St∗ ⊗ ρb ∼= C[t]⊗ ρb. (3.8)

Thus the leading terms in dressed monopoles of charge b are classified by invariants RWb .

Questions of this sort have been studied extensively in the ancient subject of invariant

theory (see, for example, [69]). To begin, let us understand the structure of St∗ ∼= C[t]

as a representation of W, in particular its isotypic decomposition. It is well-known that

the ring of invariants for a reflection group (such as the Weyl group) has the structure of

another polynomial ring (see [69, Part V], in particular [69, section 18-1]):

C[t]W ∼= C[f1, . . . , fr], where r = dim t = rank(G). (3.9)

Here, the fi are invariant homogeneous polynomials whose degrees di satisfy
∏r
i=1 di = |W|.

Another well-known object is the ring of covariants [69, Part VII], which is defined as fol-

lows. Consider an ideal in C[t] generated by non-constant invariant polynomials:

I =
(
C[t]Wdeg>0

)
= (f1, . . . , fr). (3.10)

The ring of covariants is defined as

C[t]W = C[t]/I. (3.11)

It is again well-known [69, section 24-1] that C[t]W ∼= C[W] as a W-module, where C[W]

is the regular representation. Since W maps I to itself, Maschke’s theorem implies that

one can find a W-invariant subspace MW ⊂ C[t] such that C[t] ∼= I ⊕ MW , and this

MW ∼= C[t]W ∼= C[W]. Finally, [69, section 18-3] implies that C[t] is a free C[t]W -module

generated by the basis of MW : C[t] ∼= C[t]W ⊗C MW . To summarize, the structure of

St∗ ∼= C[t] as a W-module is

C[t] ∼= C[t]W ⊗C C[W], (3.12)

where C[W] is realized on polynomials from MW ⊂ C[t]. Equation (3.12) also encodes the

isotypic decomposition since every m-dimensional irrep of W appears in C[W] precisely

m times.
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With this knowledge, our representation of interest becomes

Rb
∼= C[t]W ⊗C C[W]⊗C ρ

b. (3.13)

Now the problem of identifying RWb simplifies substantially:

RWb
∼= C[t]W ⊗C

(
C[W]⊗C ρ

b
)W

. (3.14)

Namely, we must find an invariant subspace in C[W]⊗Cρ
b, which is a product of two finite-

dimensional representations of W. Any other element of RWb is obtained by multiplication

with invariant polynomials from C[t]W = C[f1, . . . , fr].

What we have proven so far is the following: RWb is a free C[t]W -module, and any C-

basis of
(
C[W]⊗C ρ

b
)W

gives a C[t]W -basis of RWb , i.e., a set of primitive dressed monopoles

of magnetic charge b.

To compute
(
C[W]⊗C ρ

b
)W

, we simply decompose each of the two representations

into irreducible components and pair up dual representations. Indeed, by Schur’s lemma,

only tensor products like V ⊗ V ∗, where V is some irrep and V ∗ is its dual, can contain

invariant subspaces. We can also easily find the dimension of
(
C[W]⊗C ρ

b
)W

. Since C[W]

contains each irreducible representation ρi of W exactly dim(ρi) times,

(C[W]⊗C ρi)
W ∼= Cdim(ρi). (3.15)

Decomposing ρb into irreducible components as ρb ∼= ⊕i∈I(b)ρi, this obviously gives:(
C[W]⊗C ρ

b
)W ∼= ⊕i∈I(b) (C[W]⊗C ρi)

W ∼= Cdim(ρb). (3.16)

Hence there are exactly dim(ρb) = |Wb| primitive dressed monopoles of charge b.

We have now classified the leading terms in dressed monopoles. Any such leading term

must be extended by the appropriate bubbling contributions to give a complete physical

dressed monopole, and primitive monopoles are no exception:[
Pi(Φ)Mb

]
=

1

|Wb|
∑

w∈W
Pi(Φ

w)Mw·b + bubbling, i = 1, . . . , |Wb|. (3.17)

We now turn to the study of these bubbling contributions.

3.2 Abelianized monopole bubbling

Suppose we have found a set of polynomials P1, . . . , P|Wb| such that the dressed monopoles

[Pi(Φ)Mb] form the primitive set for a given magnetic charge b, in the sense explained in

the previous subsection. That is, |Wb|−1
∑

w∈W Pi(Φ
w)Mw·b for i = 1, . . . , |Wb| form a

basis for RWb (the space of dressed charge-b monopoles) over C[t]W (the algebra of gauge-

invariant polynomials in Φ). In this subsection, we will show that there exists a special

bubbled and abelianized monopole shift operator M̃ b = M b + · · · such that[
Pi(Φ)Mb

]
=

1

|Wb|
∑

w∈W
Pi(Φ

w)M̃w·b. (3.18)
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The left-hand side has the following structure: for each i,

[
Pi(Φ)Mb

]
=

1

|Wb|
∑

w∈W
Pi(Φ

w)Mw·b +
1

|Wb|
∑
|v|<|b|

∑
w∈W

V b→v
i (Φw)Mw·v. (3.19)

Here, the first sum corresponds to the sector with no screening effects, and the remaining

terms describe monopole bubbling, with V b→v
i given by some rational functions of Φ ∈ tC

that encode the bubbling data (because the Vi are not yet known, the |Wb|−1 in the second

term is optional). By equating the right-hand sides of (3.18) and (3.19), we obtain a system

of linear equations for M̃w·b, w ∈ W :

∑
w∈W

Pi(Φ
w)M̃w·b =

∑
w∈W

Pi(Φ
w)Mw·b +

∑
|v|<|b|

∑
w∈W

V b→v
i (Φw)Mw·v. (3.20)

Its solution provides the definition of M̃ b, but first we need to show that such a solution

exists, i.e., that the matrix of coefficients Pi(Φ
w) is nondegenerate. This essentially follows

from the primitivity of [Pi(Φ)Mb], and the proof is given in appendix C.

The solution to (3.20) takes the form

M̃ b = M b +
∑
|v|<|b|

Zab
b→v(Φ)Mv, (3.21)

where the first term has an obvious origin: it is the shift operator that describes the sector

without bubbling. Here b is a fixed coweight, whereas the sum in the second term is taken

over all coweights whose length is less than that of |b|.
The functions Zab

b→v(Φ) are some rational functions of Φ ∈ tC that encode the bubbling

phenomena. They do not have any invariance property under the action of W. We may

extend them to non-dominant b by postulating the following transformation property:

Zab
w·b→w·v(Φ) = Zab

b→v(Φ
w), (3.22)

consistent with (2.19). These functions are what we refer to as abelianized bubbling factors.

Recall that we previously argued for their existence using heuristic path integral reasoning.

We have now rigorously proven their existence by relying solely on group theory.

As also mentioned in appendix C, the expression for M̃w·b can be obtained from the

expression for M̃ b by a Weyl reflection:

M̃w·b = Mw·b +
∑
|v|<|b|

Zab
b→v(Φ

w)Mw·v = Mw·b +
∑
|v|<|b|

Zab
w·b→w·v(Φ)Mw·v. (3.23)

Having established the existence of abelianized and bubbled monopoles M̃ b, one can very

easily construct arbitrary dressed monopoles. In fact, this proves the following theorem.
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Theorem 1. A shift operator describing an arbitrary physical dressed monopole of mag-

netic charge b can be constructed as

1

|Wb|
∑

w∈W
F (Φw)M̃w·b, (3.24)

where F (Φ) is a polynomial in Φ ∈ tC.

Such an expression will automatically produce, in the leading term, F averaged over

Wb, the stabilizer of b in W, as well as generating the appropriate subleading terms de-

scribing bubbling.

The abelianized bubbling coefficients prove to be very useful below.

3.3 Relation to the abelianization map

Before putting the notion of abelianized bubbling to work, let us comment on how it fits

into the context of previous studies.

One approach to understanding the geometry of the Coulomb branch of a 3D N = 4

theory was proposed in [59]. Let Mabel
C ⊂MC denote the generic points on the Coulomb

branch where the gauge group G is broken to its maximal torus T. Using the fact that

the chiral ring is independent of gauge couplings, it was argued in [59] that the abelianized

chiral ring C[Mabel
C ] can be determined by integrating out the massive W-bosons at one

loop, ignoring nonperturbative effects. This ring is generated by (VEVs of) dressed chiral

monopole operators of T, the complex scalars Φa (a = 1, . . . , r), and the inverses of the

W-boson complex masses α(Φ) for all roots α ∈ ∆. At points on MC where a non-

abelian subgroup of G is restored, some α(Φ)→ 0 and hence C[Mabel
C ] becomes ill-defined.

Nonperturbative effects cannot be ignored at such points.

These nonperturbative effects are encoded in the so-called abelianization map, which

expresses a chiral monopole operatorM in the non-abelian theory as a linear combination

of monopole operators M in the low-energy abelian gauge theory, with coefficients being

meromorphic functions of the complex abelian vector multiplet scalars. In our notation, this

map takes precisely the form (2.24) or, before Weyl-averaging, (3.21). The abelianization

map realizes C[MC ] as the subring of C[Mabel
C ] generated by the operators on the r.h.s.

of (2.24). To obtain C[MC ], all we need are the abelianized bubbling coefficients Zab.

These bubbling coefficients ensure that C[MC ] closes without needing to include α(Φ)−1,

so that it is well-defined everywhere on MC .

The shift operators that we construct allow us to directly compute the OPE of chiral

monopole operators within a cohomological truncation of a given 3D N = 4 gauge theory.

As explained in the introduction, this OPE encodes information about the geometry of

the Coulomb branch beyond the chiral ring data. In particular, our shift operators give a

concrete realization of the abelianization map of [59], allowing us to determine the bubbling

coefficients from the bottom up. In our approach, the bubbling coefficients so obtained can

further be used as input to calculate SCFT correlators via the gluing formula of section 2.2.

In fact, as explained in appendix D.1, previous formulations of the abelianization map

do not distinguish between the abelianized bubbling coefficients Zab and certain coarser,
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Weyl-averaged counterparts thereof (denoted by Zmono), as written in (A.8). To our knowl-

edge, even the Zmono remain inaccessible to direct localization computations except in a few

classes of examples, namely G = U(N) with fundamental and adjoint hypermultiplets [54].

The fact that the previously considered Weyl-averaged bubbling coefficients Zmono can be

written in terms of the more basic Zab is one of the key observations of our work, and the

computability of Zab is one of our main results.15

For a bare monopole, decomposing Zmono into Zab is merely a rewriting of the Weyl

sum. However, the refinement of bubbling by abelianized bubbling turns out to be crucial

for constructing dressed monopoles. Given a bare monopole, its abelianized bubbling

coefficients allow us to construct all of its dressings in a way that guarantees closure of

the star algebra. As we discuss next, our claim is that the closure of this algebra, or

“polynomiality,” determines Zab uniquely up to operator mixing, in a sense to be made

precise. By taking star products of (dressed) monopoles whose bubbling coefficients are

known, one can inductively extract Zmono for all pairs of monopole charges (b, v) with v < b.

4 Bubbling from polynomiality

The algebra of quantum Coulomb branch operators, AC , is believed to consist of gauge-

invariant polynomials P (Φ) in theQC-closed variable Φ(ϕ) and dressed monopole operators

[F (Φ)Mb], where the dressing factor F (Φ) is a Gb-invariant polynomial in Φ(ϕ). Note that

the subleading (bubbling) terms in [F (Φ)Mb] can involve rational functions of Φ, but the

leading term must be built solely from the polynomial F (Φ). Such an assumption has also

been made in the recent literature on 3D N = 4 Coulomb branches [59, 70]. One of the

reasons that we expect this to be true is that VEVs of such operators should be algebraic

functions on the Coulomb branch. Thus it would be unnecessary (and problematic) to

introduce poles by choosing P (Φ) or F (Φ) rational. The appearance of rational functions

in the OPE can be ruled out using similar reasoning.

In good or ugly theories, we can make this argument slightly more explicit. The

Coulomb branch in such theories is expected to be a hyperkähler cone. Furthermore,

because conformal dimensions are bounded from below, there are only finitely many op-

erators below any fixed conformal dimension, and because 1/r has dimension one, only

finitely many operators can appear on the right in any OPE. In particular, this should

hold for star products in AC , which is simply a sector of the OPE algebra in the IR CFT.

This excludes denominators of the form (1/r + P (Φ))−1 where P (0) = 0, as such denomi-

15Some hints as to the necessity of the refined quantities Zab were obtained for USp(2N) theories with

fundamental matter in [49]. There, a proposal was made for extending the abelianized chiral ring relations

to the full Coulomb branch, relying on a subtle change of variables for abelian monopole operators ((2.3)

in [49]). While not phrased in the language of monopole bubbling, this proposal should really be understood

as a conjecture for the abelianized bubbling coefficients of this class of theories (in the commutative limit).

Indeed, the prediction of [49] agrees with what we explicitly derive in section 4.4 for the case N = 2:

compare to the r → ∞ limit of our (4.65). To match conventions, note that our abelianized monopoles

whose charges are the four Weyl images of ω∨2 in USp(4) gauge theory correspond to what are called u±a
(a = 1, 2) in [49]. Our perspective puts the proposal of [49] into the more general context of abelianized

monopole bubbling.
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nators, when expanded in 1/r, give infinitely many terms. The remaining possibility is to

have denominators of the form 1/P (Φ) where P (0) = 0. But such operators blow up at

the origin of the cone: they are not part of the coordinate ring and thus should not appear

in the algebra.

In general, it is hard to give a more rigorous argument for polynomiality of observ-

ables due to the absence of a mathematical definition of the QFTs that concern us here.

Nevertheless, we proceed under the assumption that polynomiality holds, using the above

heuristic reasoning and support from the existing literature as good evidence for it. Fur-

thermore, the results that we describe are in complete agreement with this assumption,

implying that the algebra AC constructed to satisfy polynomiality is self-consistent.

One important observation is that if we neglect to include bubbling terms in the

definition of [P (Φ)Mb], then polynomiality in general fails: operator products of such

observables produce denominators that do not cancel. Therefore, one role of the bubbling

terms is to guarantee polynomiality. In this section, we argue that polynomiality actually

fully determines the algebra AC , up to the natural ambiguity of operator mixing.

4.1 Mixing ambiguity and deformation quantization

In quantum field theories, an arbitrarily chosen basis of observables need not be diagonal

with respect to the two-point function, nor does it need to diagonalize the dilatation op-

erator in the case of a CFT. Observables can mix with others of the same dimension, and

on curved spaces, they can also mix with those of lower dimension, the difference being

compensated for by powers of background (super)gravity fields. The mixing patterns often

depend on short-distance effects, in particular how we define composite observables, creat-

ing ambiguities that must be resolved in the end by diagonalizing the two-point function.

For our theories on S3, the Riemann curvature is proportional to 1/r2. Mixing with

odd powers of 1/r might not necessarily be generated by coupling to background SUGRA,

but we include it in the formalism because it helps with the polynomiality argument in the

following sections. It could be that imposing some other requirement along with polyno-

miality would allow us to determine bubbling coefficients uniquely up to mixing with only

even powers of 1/r. However, we will not need to do so in this paper: mixing ambigui-

ties can still be resolved in the end. The presence of operator mixing implies that in our

problem, it is natural to make r-dependent basis changes of the form

O 7→ O +
∑
n≥0

1

rn
On (4.1)

where if O has dimension ∆, then On has dimension ∆ − n. Other quantum numbers, if

present, should also be preserved by such transformations.

One might recognize redefinitions of the form (4.1) as typical “gauge” transformations

considered in (equivariant) deformation quantization. In the present context, they were

discussed in [36], where the problem was posed for SCFTs in flat space and transformations

of the form (4.1) were less relevant due to the absence of a natural “mixing” parameter

like 1/r. In the S3 setup, however, (4.1) does naturally arise due to mixing. Such trans-

formations first appeared in the deformation quantization literature [71–77], where the
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classification of quantizations often drastically simplifies once the problem is studied mod-

ulo (4.1). It is therefore reasonable to first solve our problem of constructing AC modulo

transformations of the form (4.1) (or rather, similar ones defined in the next paragraph).

After that, the mixing ambiguities can be resolved. In an SCFT, this can be achieved by

diagonalizing the two-point function: the diagonalization determines a preferred basis of

“SCFT operators” in the algebra AC . Alternatively, it might sometimes be enough to have

an answer given in some basis, not necessarily the diagonal one (especially in bad theories,

where one cannot straightforwardly compute correlators).

For the study of Coulomb branch operators, transformations of the general form (4.1)

might not be the most adequate choice. We wish to think of the leading (i.e., no-bubbling)

term of a dressed monopole [P (Φ)Mb] as canonically defined, while the subleading bubbling

terms might be ambiguous. If P (Φ) has large enough degree, one can find other monopole

operators in the theory that have higher magnetic charge but lower dimension. According

to (4.1), they can mix with [P (Φ)Mb]. This can indeed happen in physical operator mixing.

However, for studying the structure of monopole operators, such a mixing is too crude, as

it would alter the leading term of [P (Φ)Mb]. We therefore define a class of less general

transformations that respect the GNO charge. Namely, if O is a monopole operator of

GNO charge b, we only consider mixing with operators corresponding to GNO charges v

(including zero) such that b can bubble into v. Recall that this means |v| < |b| and that v

belongs to the LG-representation of highest weight b. Such a relation determines a partial

order on the set of monopole operators, and we denote by |On| < |O| the situation where

the GNO charge of O “can bubble” into the GNO charge of On. Then we may consider

more restrictive transformations of the form

O 7→ O +
∑
n≥0

|On|<|O|

1

rn
On, (4.2)

where as before, the dimension of On is n units smaller than that of O.

We wish to first study monopole operators modulo such transformations. This means

that for a given monopole [P (Φ)Mb], the bubbling terms are not uniquely determined.

We can shift [P (Φ)Mb] by a linear combination of dressed monopoles of lower magnetic

charge and lower dimension (differences in dimension being compensated for by powers

of 1/r), in this way obtaining a valid, though different, definition of a dressed monopole

operator. We refer to (4.2) as the mixing ambiguity later on in this paper. The more general

mixing (4.1) would only be relevant in an SCFT if we were to look for an orthonormal basis

of observables in the end.

Such shifts significantly alter the bubbling coefficients V b→v
i (Φ) appearing in the def-

inition of [P (Φ)Mb]: they can be shifted by polynomials or even by multiples of other

bubbling terms, which translates into complicated rational ambiguities of abelianized bub-

bling coefficients Zab
b→v(Φ). Any concrete expressions for bubbling coefficients available in

the literature always implicitly refer to some choice of basis, thus resolving the mixing

ambiguity in the algebra of observables. The presence of such ambiguities inherent to AC
means that there is no chance of determining AC simply from polynomiality. In partic-

ular, this gives a negative answer to a question raised, e.g., in [70] on whether structural
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properties of AC (polynomiality and gauge invariance) determine it uniquely. We argue,

however, that the next simplest possibility holds: AC is uniquely determined by polynomi-

ality precisely up to mixing ambiguities of the form (4.2). We start by proving this claim

in the simplest cases.

4.2 Baby case: theories with minuscule monopoles

The simplest case is that in which the algebra AC is fully generated by monopole operators

in minuscule representations of LG. Such monopoles cannot bubble because for minuscule

coweights b, there are no v such that both |v| < |b| holds and b − v is a coroot. For such

monopole operators, we have the following simple expressions:[
P (Φ)Mb

]
=

1

|Wb|
∑

w∈W
P (Φw)Mw·b. (4.3)

Higher-charge monopole operators might contain bubbling terms, but they are easily deter-

mined by taking products of lower-charge monopoles. Such cases were previously addressed

in the literature using different methods, and essentially comprise the main examples in [59]

because abelianization has a simpler structure in these cases.

Theories with minuscule generators include those with the gauge group PSU(N) =

SU(N)/ZN , whose Langlands dual is SU(N): the fundamental weights of SU(N) are mi-

nuscule and thus cannot bubble. Another example is U(N) gauge theory, since U(N) is

self-dual and its fundamental weights are also minuscule.16 We discuss further aspects

of these theories in section 5 and appendix E. We now move on to the more interesting

(and novel) case of theories with no minuscule generators, starting from the lower-rank

gauge groups.

4.3 Rank-one theories

The only rank-one gauge theory with no minuscule generators is SU(2) gauge theory. The

dual group is SO(3), so the lowest monopole operator corresponds to a root, i.e., the vector

representation of SO(3). In a normalization where the weights of SU(2) are half-integers

and products of weights with monopole charges (cocharacters, or dominant coweights) are

integers, the minimal monopole has b = 2. It can bubble to the zero-charge sector, because

0 < |b| and b− 0 is a root. The abelianized monopole operator takes the form

M̃2 = M2 + Z(Φ) (4.4)

with a single abelianized bubbling term, a function Z(Φ). Knowledge of Z(Φ) allows one

to construct arbitrary dressed monopole operators of charge 2, and ultimately, by taking

star products of the latter, monopoles of arbitrary charge.

For the sake of generality, we may suppose that SU(2) is a simple factor in a larger

gauge group G = SU(2) × · · · . Therefore, we implicitly assume that Z(Φ) might also

16One can also use the U(N) results to solve the SU(N) theory, even though the latter has no minuscule

monopoles. This point will be discussed later.
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depend on scalars Φ valued in other simple factors of G, which from the point of view of a

given SU(2) factor play the role of masses.

The basic shift operator of charge b ∈ Z is (we work in the North picture from now

on, so we drop the “N” subscripts):

M b =

∏
w∈R

[
(−1)(w·b)+

r|w·b|/2

(
1
2 + irw · Φ

)
(w·b)+

]
∏
α∈{+1,−1}

[
(−1)(α·b)+

r|α·b|/2
(irα · Φ)(α·b)+

]e−b·( i2∂σ+∂B). (4.5)

By counting powers of r−1, we read off the dimension of a bare monopole of charge b:

∆b =
∑
w∈R

|w · b|
2
− |b|. (4.6)

The dressed monopole is constructed as17

[
P (Φ)M2

]
= P (Φ)M̃2 + P (−Φ)M̃−2

= P (Φ)M2 + P (−Φ)M−2 + P (Φ)Z(Φ) + P (−Φ)Z(−Φ). (4.7)

Since an arbitrary P (Φ) can be written as (3.5), we clearly see that the primitive dressed

monopoles in this case are:

M2 = M2 +M−2 + Z(Φ) + Z(−Φ),[
ΦM2

]
= Φ(M2 −M−2) + Φ(Z(Φ)− Z(−Φ)). (4.8)

We then compute the following star products of these primitive monopoles with the Weyl-

invariant polynomial Φ2:

M2?Φ2 =

[(
Φ− 2i

r

)2

M2

]
+

4

r2
(Z(Φ)+Z(−Φ))+

4i

r
Φ(Z(Φ)−Z(−Φ)) ,

[
ΦM2

]
?Φ2 =

[(
Φ− 2i

r

)2

ΦM2

]
+

4

r2
Φ(Z(Φ)−Z(−Φ))+

4i

r
Φ2 (Z(Φ)+Z(−Φ)) , (4.9)

with the first terms on the right being dressed monopoles with dressing factors
(
Φ− 2i

r

)2
and

(
Φ− 2i

r

)2
Φ, respectively. The polynomiality condition implies that the remaining

terms must be Weyl-invariant polynomials in Φ ∈ su(2) (and possibly other simple factors):

4

r2
(Z(Φ) + Z(−Φ)) +

4i

r
Φ (Z(Φ)− Z(−Φ)) ≡ 1

r
A0(Φ2) ∈ C[Φ2],

4

r2
Φ (Z(Φ)− Z(−Φ)) +

4i

r
Φ2 (Z(Φ) + Z(−Φ)) ≡ 1

r
A1(Φ2) ∈ C[Φ2]. (4.10)

Recall that the operator mixing ambiguity allows one to shift the bubbling factors Z(Φ) +

Z(−Φ) and Φ (Z(Φ)− Z(−Φ)) by arbitrary Weyl-invariant polynomials whose degrees are

17If Z(Φ) and/or P (Φ) depend on Φ’s valued in other simple factors, we only reverse the sign of Φ valued

in SU(2), as we are only concerned with the action of the Weyl group of SU(2) here.
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fixed by dimensional analysis. Using the freedom to shift Φ (Z(Φ)− Z(−Φ)), we can make

A0(Φ2) vanish. After doing so, we solve equation (4.10) for Z(Φ):

Z(Φ) = − iA1(Φ2)

8Φ(Φ− i
r )
. (4.11)

We have not yet used the ambiguity to shift Z(Φ)+Z(−Φ) by a Weyl-invariant polynomial.

Such shifts that leave 1
r (Z(Φ) + Z(−Φ)) + iΦ (Z(Φ)− Z(−Φ)) invariant (because we have

fixed the latter expression by demanding A0(Φ) = 0) give one the freedom to shift Z(Φ) by

∆Z(Φ) =
Φ + i

r

2Φ
V (Φ2), (4.12)

with V (Φ2) an arbitrary Weyl-invariant polynomial. Adding this ambiguity to (4.11) gives:

Z(Φ) = −i
A1(Φ2) + 4i(Φ2 + 1

r2 )V (Φ2)

8Φ(Φ− i
r )

. (4.13)

For any A1(Φ2), there exists a unique polynomial V (Φ2) such that the numerator A1(Φ2)+

4i(Φ2+ 1
r2 )V (Φ2) ≡ 8ic does not depend on Φ ∈ su(2), where c is a dimensionful constant.18

Therefore, by completely fixing the mixing ambiguity, we find that:

Z(Φ) =
c

Φ(Φ− i
r )
. (4.14)

It remains to determine c. To this end, we compute the following expression:

M2 ?
[
ΦM2

]
−
[
(Φ− 2i/r)M2

]
?M2, (4.15)

which must satisfy the polynomiality constraint. This is where the answer starts to depend

on the precise matter content of the theory (all previous steps apply equally well to all mat-

ter representations R). Assume that the gauge group is precisely SU(2) (with no other

simple factors), and that the theory has Nf fundamental and Na adjoint hypermultiplets.

The dimension of a charge-b monopole is hence

∆b =
|b|
2
Nf + |b|(Na − 1). (4.16)

A straightforward computation with shift operators gives

(4.15) =
8ic2r3

(1+r2Φ2)2
+

[
1

2Φ

(
i

2r
+

Φ

2

)2(Nf−1)( 3i

2r
+Φ

)2Na( i

2r
+Φ

)2Na

+(Φ↔−Φ)

]
.

(4.17)

At this point, we see that the precise answer for c depends on whether Nf ≥ 1 or Nf = 0.

If Nf ≥ 1, then the second term on the right is a Weyl-invariant polynomial and the only

18However, it can still depend on Φ valued in other simple factors.
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non-polynomial piece is 8ic2r3

(1+r2Φ2)2 , implying that only c = 0 is consistent with polynomial-

ity. However, if Nf = 0, then one finds that the poles at Φ = ±i/r (whose presence would

violate polynomiality) vanish when

c2 = (2r)−4Na =⇒ c = ±(2r)−2Na . (4.18)

The sign of c remains undetermined, and indeed, the algebra is consistent for both signs

of c. In fact, it is not hard to see that flipping the sign of c has the same effect on the

algebra AC as flipping the overall sign of M2, which is simply a change of basis. This,

in particular, shows that after performing Gram-Schmidt orthogonalization, the algebra is

unaffected, and the physical correlation functions do not depend on the sign of c.

We will soon see that, quite curiously, such a sign ambiguity is not present in higher-

rank cases. In the present case, there exists a convenient way to fix the sign. Notice that

a theory with only adjoint matter admits two possible global forms of the gauge group:

either SU(2) or SO(3). They differ by the spectrum of allowed monopole operators. While

M2 is the lowest monopole in the SU(2) case, the SO(3) gauge theory also admits M1.

Indeed, the Langlands dual of SO(3) is SU(2), andM1 is in the fundamental representation.

Because M1 is minuscule, it contains no bubbling term:

M1 = M1 +M−1,[
ΦM1

]
= Φ(M1 −M−1). (4.19)

We can then defineM2 =M1?M1 and
[
ΦM2

]
=
[
ΦM1

]
?M1, and calculate the bubbling

term generated in this way. This gives the following value of c for the SO(3) gauge theory:

c = (−4r2)−Na . (4.20)

One could wonder whether the SU(2) global form corresponds to a different sign, but this

is not the case. There exists another trick to access bubbling terms in SU(2) (and more

generally, in SU(N)) gauge theory. It consists of studying the U(2) theory first, and then

gauging the U(1)top symmetry that rotates the dual photon in the diagonal U(1) gauge

group (this approach was also used in [48, 49]). In a U(2) gauge theory, monopole charges

are labeled by two integers (n,m) ∈ Z2, and some of them are minuscule. In particular,

M(1,0) and M(−1,0) are minuscule, and their product can be used to determine the non-

minuscule M(1,−1). After gauging U(1)top, the latter becomes M2 of the SU(2) gauge

theory. Proceeding along these lines gives the same value for c as in (4.20).

So in the end, we find that the bubbling coefficient in SU(2) (or SO(3), when possible)

gauge theory with Nf fundamentals and Na adjoints, up to the operator mixing ambiguity,

takes the form

Z(Φ) =

0 if Nf > 0,
(−4r2)−Na

Φ(Φ− i
r

)
if Nf = 0,

(4.21)

which then determines M̃2 = M2 + Z(Φ).

– 33 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
9

Let us now generalize to the case where SU(2) is a simple factor in a larger gauge group,

that is, G = SU(2)×G′. Then the Nf fundamentals of SU(2) form some generally reducible

representation R′f of G′, while the Na adjoints of SU(2) form another representation R′a
of G′. This modifies the computation of (4.15) as follows:

(4.15) =
8ic2r3

(1+r2Φ2)2
+

[
1

2Φ
(
i

2r+ Φ
2

)2 ∏
w∈R′f

((
i

2r
+

Φ

2

)2

−(w ·Φ′)2

)

×
∏
w∈R′a

((
3i

2r
+Φ

)2

−(w ·Φ′)2

)((
i

2r
+Φ

)2

−(w ·Φ′)2

)
+(Φ↔−Φ)

]
, (4.22)

where Φ ∈ t ⊂ su(2) and Φ′ ∈ t′ ⊂ Lie(G′). The cancellation of poles determines c:

c =
∏
w∈R′a

(
− 1

4r2
− (w · Φ′)2

) ∏
w∈R′f

(−iw · Φ′), (4.23)

where the sign was fixed by passing to the U(2) theory and applying the “gauging U(1)top”

trick. This shows that in a general gauge theory with gauge group G = SU(2) × G′, the

abelianized bubbling term for monopoles magnetically charged under the SU(2) factor takes

the same form c
Φ(Φ− i

r
)

where Φ ∈ t ⊂ su(2), while c is no longer a constant, but rather a

nontrivial function of Φ′ from the G′ vector multiplets. This last result is enough to study

the algebra AC and corresponding correlators for arbitrary quivers of SU(2) gauge groups.

4.4 Rank-two theories

In this subsection, we repeat the above analysis for rank-two gauge groups, namely SU(3),

PSU(3), USp(4) ∼= Spin(5), SO(5), and G2, demonstrating how polynomiality determines

bubbling coefficients. This will further clarify the general procedure, which was applied to

rank-one theories in the previous subsection.

4.4.1 A2 theories

Consider the A2 gauge theories, i.e., those based on either SU(3) or PSU(3) = SU(3)/Z3

gauge group. The PSU(3) case is trivial, as the theory admits monopoles in fundamental

representations of the dual group SU(3). Such monopoles are minuscule, so they do not

bubble, and being the generators, they fully determine the algebra. In the SU(3) gauge

theory, however, the monopole charges take values in the weight lattice of PSU(3), which

coincides with its root lattice. Letting α1 and α2 denote simple roots of SU(3), the coroots

α∨1 = 2α1/(α1, α1) and α∨2 = 2α2/(α2, α2) generate the root lattice of PSU(3), and physical

monopole charges (cocharacters) correspond to Weyl orbits in this lattice.

The minimal monopole operator corresponds to the Weyl orbit of α∨1 , which coincides

with the root system of PSU(3). In standard conventions, α∨1 +α∨2 is the dominant coroot,

so we could use it to label the minimal-charge monopole operator [P (Φ)Mα∨1 +α∨2 ]. In

practice, we find it slightly more convenient to label it by α∨1 . Such a monopole can only

bubble to a trivial representation, since the only weight shorter than |α∨1 | is a zero weight,
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and it belongs to the highest-weight representation generated by α∨1 +α∨2 . Therefore, there

exists only one bubbling coefficient in this case, Z(Φ), which determines the abelianized

version of the minimal monopole and its dressings:

M̃α∨1 = Mα∨1 + Z(Φ),[
P (Φ)Mα∨1

]
=
∑

w∈W
P (Φw)M̃w·α∨1 . (4.24)

In the A2 case, Φ = (Φ1,Φ2) and W = S3; the ring of invariants can be described as

C[Φ1,Φ2]W = C [f1, f2] where f1 = Φ2
1 + Φ2

2, f2 = Φ2(Φ2
2 − 3Φ2

1). (4.25)

There are six primitive dressed monopoles of minimal charge that generate the space of

dressed monopoles (of minimal charge) as a C[Φ1,Φ2]W -module. They can be chosen as:

Mα∨1 ,
[
Φ1Mα∨1

]
,

[
Φ2Mα∨1

]
,[

Φ2
1Mα∨1

]
,
[
Φ1Φ2Mα∨1

]
,
[
Φ3

1Mα∨1
]
. (4.26)

The next step, just like in the rank-one case, is to compute star products of these with the

lowest invariant polynomial Φ2
1 + Φ2

2 (often referred to as the quadratic Casimir in physics

literature). A straightforward computation for general dressed [P (Φ)Mα∨1 ] gives:19

[
P (Φ)Mα∨1

]
? (Φ2

1 + Φ2
2) =

[
((Φ1 − 2i/r)2 + Φ2

2)P (Φ)Mα∨1
]

+
∑

w∈W

(
4

r2
+

4i

r
Φw

1

)
P (Φw)Z(Φw). (4.28)

The last term above must be a Weyl-invariant polynomial for all possible polynomials P .

It is enough to impose this requirement for P = 1,Φ1,Φ2,Φ
2
1,Φ1Φ2,Φ

3
1. Recall that

[
Φj

1Φk
2Mα∨1

]
=
∑

w∈W
(Φw

1 )j(Φw
2 )kMw·α∨1 + Vjk(Φ), Vjk(Φ) ≡

∑
w∈W

(Φw
1 )j(Φw

2 )kZ(Φw).

(4.29)

19Our conventions are that W = {1,wa,w2
a,wb,wbwa,wbw

2
a} where

wa =

(
−1/2 −

√
3/2√

3/2 −1/2

)
, wb =

(
−1 0

0 1

)
, (4.27)

and w :
(

Φ1 Φ2

)
7→
(

Φ1 Φ2

)
w for w ∈ W.
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We see that the last term in (4.28) for P = 1,Φ1,Φ2,Φ
2
1,Φ1Φ2,Φ

3
1 is simply:

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
Z(Φw) =

4

r2
V00(Φ) +

4i

r
V10(Φ),

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
Φw

1 Z(Φw) =
4

r2
V10(Φ) +

4i

r
V20(Φ),

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
Φw

2 Z(Φw) =
4

r2
V01(Φ) +

4i

r
V11(Φ),

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
(Φw

1 )2Z(Φw) =
4

r2
V20(Φ) +

4i

r
V30(Φ), (4.30)

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
Φw

1 Φw
2 Z(Φw) =

4

r2
V11(Φ) +

4i

r
V21(Φ),

∑
w∈W

(
4

r2
+

4i

r
Φw

1

)
(Φw

1 )3Z(Φw) =
4

r2
V30(Φ) +

4i

r
V40(Φ).

The right-hand side of each of these equations should be a Weyl-invariant polynomial. This

linear system can be solved for Z(Φ), but we will do better if we first use the operator

mixing freedom. Recall that V00, V10, V01, V20, V11, V30, being the bubbling terms in (4.26),

can be shifted by Weyl-invariant polynomials in Φ1,Φ2 (and r−1). Using such shifts of V10,

V20, V11, V30, we can make the right-hand sides of the first four equations in (4.30) vanish,

while those of the fifth and sixth ones should be Weyl-invariant polynomials. In other

words, we obtain:

4

r2
V00(Φ) +

4i

r
V10(Φ) = 0,

4

r2
V10(Φ) +

4i

r
V20(Φ) = 0,

4

r2
V01(Φ) +

4i

r
V11(Φ) = 0,

4

r2
V20(Φ) +

4i

r
V30(Φ) = 0, (4.31)

4

r2
V11(Φ) +

4i

r
V21(Φ) =

1

r
A(Φ),

4

r2
V30(Φ) +

4i

r
V40(Φ) =

1

r
B(Φ),

where A and B are Weyl-invariant polynomials (hence polynomials in f1 and f2). Inserting

this into (4.30), we solve the resulting linear system for Z(Φ) to find that

Z(Φ) =
i(Φ2A(Φ)−B(Φ))

6Φ1(Φ1 − i/r)(Φ2
1 − 3Φ2

2)
. (4.32)

So far, we have not used the freedom to shift V00 and V01 by Weyl-invariant polynomi-

als F00(Φ) = F00(f1, f2) and F01(Φ) = F01(f1, f2). To preserve the first four equations

in (4.31), such shifts should be accompanied by

Vk0 → Vk0 +

(
i

r

)k
F00 (k = 1, 2, 3), V11 → V11 +

i

r
F01. (4.33)
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Solving another linear system, namely∑
w∈W

∆Z(Φw) =F00(Φ),
∑

w∈W
Φw

2 ∆Z(Φw) =F01(Φ),

∑
w∈W

(Φw
1 )k∆Z(Φw) =

(
i

r

)k
F00(Φ) (k= 1,2,3),

∑
w∈W

Φw
1 Φw

2 ∆Z(Φw) =
i

r
F01(Φ),

(4.34)

we find that such shifts trace back to the following shift in Z(Φ):

∆Z(Φ) = −Φ2[(f1 + 4/r2)F01(Φ)− f2F00(Φ)] + (f1 + 1/r2)(f1 + 4/r2)F00(Φ)− f2F01(Φ)

6Φ1(Φ1 − i/r)(Φ2
1 − 3Φ2

2)
.

(4.35)

Shifting Z by such an expression is equivalent to shifting A(Φ) = A(f1, f2) and

B(Φ) = B(f1, f2) by

∆A(f1, f2) = i(f1 + 4/r2)F01(f1, f2)− if2F00(f1, f2),

∆B(f1, f2) = if2F01(f1, f2)− i(f1 + 1/r2)(f1 + 4/r2)F00(f1, f2). (4.36)

We can use such shifts to eliminate the f2-dependence of A and B. Indeed, we first choose

F00 to eliminate the f2-dependence of A. We then choose F01(f1, f2) = F (f1) to preserve

the condition that A(f1, f2) = A(f1). Noting that shifts of the form

∆F00(f1, f2) = (f1 + 4/r2)P (f1, f2),

∆F01(f1, f2) = f2P (f1, f2) (4.37)

leave ∆A(f1, f2) invariant, we still have the freedom to shift B by

∆B(f1, f2) = if2F (f1) + i(f2
2 − (f1 + 1/r2)(f1 + 4/r2)2)P (f1, f2). (4.38)

The P -dependent part of this shift can be used to make B at most linear in f2 (by polyno-

mial long division), whereupon F can be chosen to eliminate the remaining f2-dependence

of B. Having completely used the mixing freedom in this way, we find that the abelianized

bubbling term takes the form:

Z(Φ) =
i(Φ2A(f1)−B(f1))

Φ1(Φ1 − i/r)(Φ2
1 − 3Φ2

2)
, f1 = Φ2

1 + Φ2
2, f2 = Φ2(Φ2

2 − 3Φ2
1). (4.39)

We have now reached the limits of what can be done based on the gauge group only. The

concrete expressions for the polynomials A(f1) and B(f1) depend on the matter content,

as in the rank-one case. For simplicity, let us consider only the case of an SU(3) vector

multiplet coupled to Nf fundamental flavors. We then compute the following star product:

Mα∨1 ?
[
Φ1Mα∨1

]
−
[
(Φ1 − 2i/r)Mα∨1

]
?Mα∨1 =

[
P (Φ)Mα∨1

]
+R(Φ). (4.40)

The combination above is devised in such a way thatM2α∨1 does not show up on the right.

The monopoleMα∨2 +2α∨1 would be present for more general matter representations (e.g., if

we included adjoint matter), but it does not show up in our case either, which is why the
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theory with only fundamental matter is somewhat simpler. Here, P (Φ) is some polynomial

dressing factor, while R(Φ) is a Weyl-invariant polynomial.

The expressions for P and R are lengthy, so we do not provide them here for brevity.

Polynomiality of P (Φ) — that is, cancellation of poles — determines the unknown terms

A(f1) and B(f1). We find that

for even Nf : A(f1) = 0, B(f1) = −4i

(
−i

2
√

3

)Nf
(f1 + 1/r2)Nf/2,

for odd Nf : B(f1) = 0, A(f1) = 4i

(
−i

2
√

3

)Nf
(f1 + 1/r2)(Nf−1)/2.

(4.41)

We have thus determined (4.39).

As in the rank-one case, this result can be generalized to a gauge group G = SU(3)×G′

and SU(3)-valued monopoles. If the Nf fundamentals of SU(3) form a representation R′

of G′, then the no-pole condition encodes the polynomials A(f1) and B(f1) as follows:

xA(x2 − r−2)−B(x2 − r−2) = 4i
∏
w∈R′

(
− ix

2
√

3
− iw · Φ′

)
. (4.42)

Here, Φ′ corresponds to scalars from the G′ vector multiplet. This formula reproduces (4.41)

if we take R′ = CNf to be a trivial representation of G′, that is, all weights w to be zero.

This final result allows one to study quivers of SU(3) groups in which every gauge node

only couples to fundamental matter; it also allows for the inclusion of masses by treating

Φ′ as a background.

Higher magnetic charges. Finally, we would like to explain how to construct monopoles

of other magnetic charges. This is straightforward in the theory with PSU(3) gauge group:

the dual group is SU(3), so both fundamental representations of SU(3) give allowed mon-

opole charges. Their tensor products generate arbitrary representations of SU(3). In the

case of SU(3) gauge theory, things are slightly more involved, but still tractable.

We have derived an expression for Z(Φ), which is enough to build a dressed monopole

[P (Φ1,Φ2)Mα∨1 ] corresponding to the Weyl orbit of α∨1 , with arbitrary polynomial P . Is it

enough to construct all allowed monopoles in the theory? After all, the coroots take values

in a two-dimensional lattice spanned by α∨1 , α
∨
2 , and merely on representation-theoretic

grounds, one cannot construct all representations labeled by dominant weights in this

lattice just from tensor products of the adjoint representation. However, by taking star

products of dressed monopoles [P (Φ1,Φ2)Mα∨1 ], one can actually generate everything else.

From (2.27), we see that in an SU(3) theory with Nf fundamentals, the dimensions of

three lowest bare monopoles are

∆α∨1
= Nf − 4, ∆2α∨1

= 2Nf − 8, ∆α∨2 +2α∨1
= 2Nf − 6. (4.43)

Since 2∆α∨1
<∆α∨2 +2α∨1

, the product of two bare monopolesMα∨1 cannot generateMα∨2 +2α∨1 .

However, the latter can appear if we compensate for the mismatch in dimensions by dressing

the monopoles with an appropriate number of Φ’s. For example, the star product[
Φ1(Φ1 − 2i/r)Mα∨1

]
?Mα∨1 −

[
Φ1Mα∨1

]
?
[
Φ1Mα∨1

]
(4.44)
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hasMα∨2 +2α∨1 as a leading term, and can therefore serve as a definition of Mα∨2 +2α∨1 . Sim-

ilarly taking products of monopoles dressed by higher-degree polynomials, we can obtain

dressed versions of Mα∨2 +2α∨1 . Having constructed in this way both Mα∨1 , Mα∨2 +2α∨1 and

their dressed versions, we can generate all other allowed monopoles.

4.4.2 B2
∼= C2 theories

There are two compact rank-two gauge groups that correspond to the B2
∼= C2 Lie algebra:

USp(4) ∼= Spin(5) and SO(5) ∼= USp(4)/Z2, which are Langlands dual to each other. The

group USp(4) is often called Sp(2), but we will use the former notation. The root lattice

is generated by the short simple root α and the long simple root β. In our conventions,

we write them in Cartesian coordinates as α = (1, 0) and β = (−1, 1). The coroots are

α∨ = 2α = (2, 0) and β∨ = β = (−1, 1), so that α∨ is a long coroot.

SO(5) gauge theory. First consider the SO(5) gauge theory. The monopoles are labeled

by (Weyl orbits of) the dominant weights of the dual group USp(4), whose root lattice is

generated by α∨ and β∨. The group USp(4) has two fundamental representations: the

four-dimensional defining representation and the five-dimensional vector representation of

SO(5) = USp(4)/Z2. The four-dimensional representation has weights

ω∨1 =
1

2
α∨ = (1, 0), ω∨1 + β∨ = (0, 1),

ω∨1 − α∨ = (−1, 0), ω∨1 − α∨ − β∨ = (0,−1). (4.45)

This representation is minuscule, so the smallest monopole of the model does not bubble:[
P (Φ)Mω∨1

]
=
∑

w∈W
P (Φw)Mw·ω∨1 . (4.46)

The five-dimensional representation of USp(4) is not minuscule. Its weights are

ω∨2 = α∨ + β∨ = (1, 1), ω∨2 − α∨ = β∨ = (−1, 1),

−β∨ = (1,−1), −β∨ − α∨ = (−1,−1), (0, 0). (4.47)

We see that the charge-ω∨2 monopole can bubble to zero magnetic charge. Therefore, the

abelianized monopole takes the form

M̃ω∨2 = Mω∨2 + Z(Φ). (4.48)

This Z(Φ) can be deduced by computing star products involving only the minimal monopole

[P (Φ)Mω∨1 ]. On the other hand, it can also be found using our algorithmic polynomiality

approach (which is really a different application of the same idea, namely consistency of

the OPE algebra). Let us determine it using such an approach — both for practice, and

because it will soon be useful for the study of the USp(4) gauge theory.

The charge-ω∨2 dressed monopoles are constructed as[
P (Φ)Mω∨2

]
=

1

2

∑
w∈W

P (Φw)M̃w·ω∨2 . (4.49)
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As before, Φ = (Φ1,Φ2) ∈ tC. The Weyl group is D4 = Z4oZ2, and the ring of invariants is

C[Φ1,Φ2]W = C[f1, f2] where f1 = Φ2
1 + Φ2

2, f2 = Φ2
1Φ2

2. (4.50)

Notice that ω∨2 is preserved by the subgroup of W that switches Φ1 ↔ Φ2, which explains

the 1
2 in (4.49). Therefore, such monopoles can only be dressed by polynomials symmetric

under Φ1 ↔ Φ2 (this happens automatically once we apply (4.49)). Dressing by a sym-

metric polynomial only depends on the symmetric part of Z(Φ1,Φ2). Therefore, we may

assume that Z(Φ1,Φ2) = Z(Φ2,Φ1).

Since the Weyl orbit of ω∨2 has four elements, there are four primitive dressed monopoles

that generate all dressed charge-ω∨2 monopoles as a C[Φ1,Φ2]W -module. Choose them to be:

Mω∨2 ,
[
(Φ1 + Φ2)Mω∨2

]
,
[
(Φ1 + Φ2)2Mω∨2

]
,
[
(Φ1 + Φ2)3Mω∨2

]
. (4.51)

The next step is to compute their star products with f1. For arbitrary P (Φ), we find:[
P (Φ)Mω∨2

]
? (Φ2

1 + Φ2
2)−

[((
Φ1 −

i

r

)2

+

(
Φ2 −

i

r

)2
)
P (Φ)Mω∨2

]

=
∑

w∈W

(
1

r2
+
i

r
(Φw

1 + Φw
2 )

)
P (Φw)Z(Φw). (4.52)

We require that the second line be a polynomial, in particular for P = 1, Φ1+Φ2, (Φ1+Φ2)2,

and (Φ1 + Φ2)3. Using notation similar to that in the SU(3) case,[
(Φ1 + Φ2)kMω∨2

]
=

1

2

∑
w∈W

(Φw
1 +Φw

2 )kM̃w·ω∨2 +Vk(Φ), Vk(Φ) ≡ 1

2

∑
w∈W

(Φw
1 +Φw

2 )kZ(Φw),

(4.53)

we identify the last term in (4.52) for P (Φ) = (Φ1 + Φ2)k as 2
r2Vk(Φ) + 2i

r Vk+1(Φ), which

we demand to be a Weyl-invariant polynomial. Using the operator mixing freedom to shift

V1, V2, and V3, we can make the first three of these polynomials vanish, but not the last:

2

r2
Vk(Φ) +

2i

r
Vk+1(Φ) = 0 (k = 0, 1, 2),

2

r2
V3(Φ) +

2i

r
V4(Φ) =

1

r
A(Φ2

1 + Φ2
2,Φ

2
1Φ2

2) ∈ C[Φ2
1 + Φ2

2,Φ
2
1Φ2

2]. (4.54)

Using the expressions Vk(Φ) =
∑

w∈W(Φw
1 + Φw

2 )kZ(Φw), we solve this system of four

equations under the assumption that Z(Φ1,Φ2) = Z(Φ2,Φ1) to find:

Z(Φ) = − iA(Φ2
1 + Φ2

2,Φ
2
1Φ2

2)

32Φ1Φ2(Φ1 + Φ2)(Φ1 + Φ2 − i/r)
. (4.55)

The next step is to fix the remaining mixing freedom, which allows for shifts of V0 by

Weyl-invariant polynomials F (Φ2
1 + Φ2

2,Φ
2
1Φ2

2), namely V0 → V0 +F . To preserve the form

of the equations (4.54), we also shift Vk → Vk +
(
i
r

)k
F for k = 1, 2, 3. This can be solved

for the corresponding shift ∆Z(Φ) of Z(Φ):

∆Z(Φ) = −
(Φ1 + Φ2 + i/r)(Φ1 − Φ2 + i/r)(Φ1 − Φ2 − i/r)F

(
Φ2

1 + Φ2
2,Φ

2
1Φ2

2

)
16Φ1Φ2(Φ1 + Φ2)

. (4.56)
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Comparing with (4.55), we see that such shifts are equivalent to shifting A by

∆A =

(
2

r4
+

4f1

r2
+ f2

1 − 4f2

)
F (f1, f2), (4.57)

where f1 = Φ2
1 +Φ2

2 and f2 = Φ2
1Φ2

2. Because the expression in parentheses is no more than

linear in f2, such shifts can completely eliminate the f2-dependence from A. Indeed, for an

arbitrary polynomial A(f1, f2), there is a unique F (f1, f2) such that A(f1, f2) + ∆A(f1, f2)

depends only on f1. This fully fixes the mixing freedom, so that in the end, we have

Z(Φ) =
a(Φ2

1 + Φ2
2)

Φ1Φ2(Φ1 + Φ2)(Φ1 + Φ2 − i/r)
. (4.58)

Determining a requires computing an appropriate star product. The answer depends on

the matter content, and in this case it is not too hard to include both Nf five-dimensional

flavors of SO(5) and Na adjoint flavors. We consider the following star product of minimal

monopoles, which is enough to generate the next-to-minimal monopole of charge ω∨2 :

Mω∨1 ?
[
Φ3

1Mω∨1
]
−
[
(Φ1 − i/r)3Mω∨1

]
?Mω∨1 . (4.59)

The reason for including Φ3
1 can be seen from the dimensions of the monopoles:

∆ω∨1
= Nf + 3(Na − 1), ∆ω∨2

= 2Nf + 4(Na − 1). (4.60)

Only with the insertion of (at least) Φ3
1 do we find that the dimension of (4.59), given by

2∆ω∨1
+ 3 = 2Nf + 6Na − 3, exceeds ∆ω∨2

for all values of Na, thus allowing the monopole

of charge ω∨2 to appear on the right. It indeed appears, in bare form for Na = 0 and in

dressed form for Na 6= 0. We subtract it from the above star product and look at the free

(charge-zero) term, demanding its polynomiality. This determines a(Φ2
1 +Φ2

2). For brevity,

we do not present the cumbersome intermediate formulas and only give the final answer:

a(x) = −
(
x

2
+

1

4r2

)Nf (
− x

8r2
− 1

16r4

)Na
. (4.61)

This expression determines Z(Φ), from which we can construct arbitrary dressed monopoles

of charge ω∨2 . With the two monopoles corresponding to fundamental weights of USp(4) in

hand, we can construct arbitrary monopoles in the SO(5) gauge theory. Notice that it was

clear from the beginning that the charge-ω∨1 monopole suffices to generate the algebra.

Like in all cases so far, it is not hard to generalize to a non-simple gauge group

G = SO(5)×G′, assuming that the Nf fundamentals of SO(5) form a representation R′f
of G′ while the Na adjoints transform in R′a of G′. Modifying the above calculation appro-

priately gives

a(x) =−
∏
w∈R′f

(
x

2
+

1

4r2
−(w ·Φ′)2

) ∏
w∈R′a

[(
− 1

4r2
−(w ·Φ′)2

)(
x

2
+

1

4r2
−(w ·Φ′)2

)]
.

(4.62)

Here, as before, Φ′ is valued in the G′ vector multiplets. This answer for a(x) of course

reduces to (4.61) when all weights in R′f and R′a vanish. As usual, Φ′ plays the role of a

mass matrix if we treat G′ as a global symmetry.

– 41 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
9

USp(4) gauge theory. Consider the USp(4) gauge theory. It has the same simple roots

α, β and simple coroots α∨, β∨ as in the SO(5) case. Only the lattice of allowed weights

of matter representations is different.

The dual group is SO(5), which has no minuscule representations. The minimal mon-

opole has charge ω∨2 , like the next-to-minimal monopole of the SO(5) gauge theory. It

is defined by the same equations (4.48) and (4.49). Further steps involving the ring of

invariants, the primitive dressed monopoles, and ultimately the answer (4.58) are appli-

cable to the USp(4) case as well — they do not depend on the global form of the gauge

group. To proceed, we need to find the polynomial a entering the abelianized bubbling

coefficient (4.58). This step depends on the matter content, and hence on the global form

of the gauge group.

Let us consider for simplicity a theory which only has matter in N4 copies of the

four-dimensional representation of USp(4). We compute the star product

Mω∨2 ?
[
(Φ1 + Φ2)Mω∨2

]
−
[
(Φ1 + Φ2 − 2i/r)Mω∨2

]
?Mω∨2 . (4.63)

The charges 2ω∨2 and 2ω∨1 cancel from the result. Polynomiality of the remainder requires

a(x) to be a constant, and determines its square. We describe the answer in the more

general case of G = USp(4)×G′, assuming that the N4 fundamentals of USp(4) transform

in R′4 of G′:

a = −
∏
w∈R′4

(−iw · Φ′), (4.64)

which determines the bubbling coefficient

Z(Φ) =
a

Φ1Φ2(Φ1 + Φ2)(Φ1 + Φ2 − i/r)
. (4.65)

The situation here is reminiscent of the SU(2) case: without an extra group G′, all weights w

vanish, and we find that a = 0. In other words, in the USp(4) gauge theory with N4 > 0, in

the absence of extra gaugings and masses, the bubbling coefficient of the minimal monopole

can be removed using operator mixing. If N4 = 0, then a = −1, where the sign was chosen

to agree with the SO(5) answer (in the N4 = 0 case, the absence of matter allows for both

USp(4) and SO(5) gauge groups, and we can determine the USp(4) answer from the SO(5)

answer: the theories differ only by a Z2 gauging). For other values of N4, we fixed the sign

of a arbitrarily, since it only affects the algebra AC up to a change of basis.

Finally, let us add that at this point, using some physics intuition, we can easily guess

the answer for a(x) in the more general case where we have matter in a representation

[4⊗R′4]⊕ [5⊗R′5]⊕ [adj⊗R′a] of the gauge group G = USp(4)×G′. Here, 4, 5, and adj

are the four-dimensional, five-dimensional, and adjoint representations of USp(4), and R′4,

R′5, R′a are some representations of G′. We have seen before that contributions of different

matter multiplets enter the answer for a(x) multiplicatively. This makes sense from the

localization point of view: bubbling terms are given by one-loop determinants around

fixed points in the bubbling loci, and one-loop determinants of various matter multiplets

contribute multiplicatively. So it is natural to expect that the answer in this general case
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should be given by

a(x) = −
∏
w∈R′4

(−iw · Φ′)
∏
w∈R′5

(
x

2
+

1

4r2
− (w · Φ′)2

)

×
∏
w∈R′a

[(
− 1

4r2
− (w · Φ′)2

)(
x

2
+

1

4r2
− (w · Φ′)2

)]
. (4.66)

Above, we borrowed the contributions of 5 and adj from the subsection on the SO(5) case,

as the theory with only these types of matter allows for either SO(5) or USp(4) gauge group.

4.4.3 G2 theories

The remaining rank-two simple gauge group is G2. It has only one compact form, which

is of course centerless and Langlands dual to itself, meaning that we do not have to study

various cases as before. We describe the root system ∆ of G2 in Cartesian coordinates

such that the short simple root is α = (1, 0) and the long simple root is β = (−3
2 ,
√

3
2 ).

The corresponding coroots are α∨ = 2α = (2, 0) and β∨ = 2
3β = (−1,

√
3

3 ), which are

now long and short, respectively, and generate the root system ∆∨ of the dual G2. It is

convenient to describe ∆∨ in terms of another pair of simple coroots, which we define as

αmon = α∨ + 2β∨ = (0, 2√
3
) and βmon = −2α∨ − 3β∨ = (−1,−

√
3), where now αmon is

short and βmon is long.

The smallest irreducible representation is 7-dimensional: its weights are given by a zero

weight (0, 0) and the six short roots in ∆, namely α and its Weyl images. Because of the zero

weight, the representation is not minuscule. The next-smallest irreducible representation is

the 14-dimensional adjoint representation. The 7 and 14 are fundamental representations,

but we will refer only to 7 as the fundamental, and to 14 as the adjoint.

The minimal monopole charge is described by the nonzero weights in the 7 of the dual

G2, i.e., by the Weyl orbit of the short coroot αmon (or equivalently, by β∨, which belongs

to the same Weyl orbit). Because 7 is not minuscule, it can bubble into the identity:

M̃αmon = Mαmon + Z(Φ), (4.67)

and the physical dressed monopole of minimal charge is defined by

[P (Φ)Mαmon ] =
1

2

∑
w∈W

P (Φw)M̃w·αmon . (4.68)

The Weyl group is W = D6 = Z6 o Z2, the group of symmetries of a hexagon. As usual,

Φ = (Φ1,Φ2) ∈ tC, and the ring of invariants is

C[Φ1,Φ2]W = C[f1, f2] where f1 = Φ2
1 + Φ2

2, f2 = Φ2
2(Φ2

2 − 3Φ2
1)2. (4.69)

Because the Weyl orbit of αmon has order 6, there are six primitive dressed monopoles:

Mαmon , [Φ2Mαmon ] ,
[
Φ2

2Mαmon
]
,[

Φ3
2Mαmon

]
,
[
Φ4

2Mαmon
]
,
[
Φ5

2Mαmon
]
. (4.70)
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The next few steps are exactly the same as before. Namely, we compute the star product

[P (Φ)Mαmon ] ? (Φ2
1 + Φ2

2)−

[(
Φ2

1 +

(
Φ2 −

2i

r
√

3

)2
)
P (Φ)Mαmon

]

=
1

2

∑
w∈W

(
4

3r2
+

4i

r
√

3
Φw

2

)
P (Φw)Z(Φw) (4.71)

and demand polynomiality for P = 1,Φ2, . . . ,Φ
5
2. Because αmon is preserved by the Weyl

reflection (Φ1,Φ2) → (−Φ1,Φ2), it is sufficient to consider only dressings by polynomials

invariant under such a reflection (which also explains the factor of 1
2 in the definition of

the monopole). Therefore, one can assume from the beginning that

Z(Φ1,Φ2) = Z(−Φ1,Φ2). (4.72)

Polynomiality of the last term in (4.71) and the operator mixing freedom almost completely

determine Z(Φ). To avoid repetition, we simply state the final answer:

Z(Φ) =
A(Φ2

1 + Φ2
2)

Φ2(
√

3Φ2 − i
r )(Φ2

1 − 3Φ2
2)(3Φ2

1 − Φ2
2)
. (4.73)

Finally, to determine the polynomial A, we compute another star product:

Mαmon ? [Φ2Mαmon ]−
[(

Φ2 −
2i

r
√

3

)
Mαmon

]
?Mαmon . (4.74)

At this point, we limit ourselves to the theory with Nf seven-dimensional flavors of G2.

In this case, higher magnetic charges 2αmon and βmon cancel from the above expression.

The monopole of charge 2αmon cancels because (4.74) is specifically constructed to ensure

its cancellation, while the charge βmon cannot appear for dimensional reasons. Indeed, the

dimensions of the lowest monopoles are

∆αmon = 2Nf − 6, ∆βmon = 4Nf − 10. (4.75)

The dimension of (4.74) is 2∆αmon + 1 < ∆βmon , so the monopole of dimension ∆βmon

cannot appear on the right. However, the dressed monopole of charge αmon appears, and

demanding polynomiality of its dressing factor determines A to be

A(x) =
16

3
√

3

(
x

4
+

1

12r2

)Nf
. (4.76)

It is also not difficult to generalize to the case of a gauge group G = G2×G′, assuming

that the Nf fundamentals of G2 transform in a representation R′ of G′:

A(x) =
16

3
√

3

∏
w∈R′

(
x

4
+

1

12r2
− (w · Φ′)2

)
. (4.77)
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4.5 General case

The detailed exploration of the lower-rank theories in the above subsections should give the

reader a sense of what polynomiality-based computations look like. Further, it shows a clear

pattern and allows us to formulate a strategy that should work for general gauge groups.

To begin, one identifies the set of minimal monopoles that are expected to generate

the algebra. They can either be minuscule or bubble into the charge-zero sector (which we

refer to as “bubbling into the identity”). They cannot bubble into smaller nonzero charges,

as that would contradict their minimality. If all of them are minuscule, we are done: it only

remains to make sure that they indeed generate everything, and to determine the relations.

If there exists a minimal monopole of charge ω that is not minuscule, then it can bubble

into the identity, and we should determine the corresponding abelianized bubbling factor

Z(Φ). First, we use invariant theory to identify the set of primitive dressed monopoles of

charge ω. Then we compute their star products with the quadratic Casimir f1 =
∑r

i=1 Φ2
i .

By demanding polynomiality of the answer and using the operator mixing freedom, we

almost completely determine the bubbling factor Z(Φ), up to an unknown Weyl-invariant

polynomial A. These steps clearly work in an arbitrary gauge theory. The next step is the

most challenging one: we need to construct a star product that determines the unknown

polynomial A. We have seen that at this step, sometimes A is uniquely determined, and

sometimes it is only determined up to a sign, which is a harmless ambiguity that can be

related to a change of basis in AC .

We consider the above procedure as strong evidence that polynomiality fully determines

the algebra AC (if not a proof, at a physical level of rigor). It would still be desirable to

find a more elegant and mathematically illuminating way to reach this conclusion.

5 Applications and examples

We now demonstrate the applications of our shift operator formalism in a number of simple

examples. More elaborate examples can be found in the appendices.

5.1 Chiral rings and Coulomb branches

In the commutative limit (r → ∞), the quantum algebra AC reduces to the Coulomb

branch chiral ring. Because finite-r computations, as shown above, allow one to determine

bubbling coefficients and thus AC in any theory, this provides a simple way to construct

Coulomb branches even when other approaches face difficulties. However, finite-r com-

putations can be very hard, so it is convenient to first develop the commutative version

of shift operators. This is the subject of this section, and the answer takes the form of

abelianization as in [59].

We begin by noting that the shift operator M b
N from (2.25) has a well-defined r →∞

limit. First, because the operator e−b·(
i
2
∂σ+∂B) acts on Φ by a shift

Φ 7→ Φ− i

r
b, (5.1)

– 45 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
9

this shift vanishes in the r →∞ limit, so that e−b·(
i
2
∂σ+∂B) no longer acts on Φ-dependent

terms. Instead, it effectively turns into a generator of the group ring C[Λ∨w] associated to

the lattice of coweights (considered as an abelian group). Such generators, denoted by e[b],

are subject to the relations

e[b1]e[b2] = e[b1 + b2]. (5.2)

Next, we observe that the Φ-dependent rational prefactor in the definition (2.25) of M b
N

also has a well-defined r →∞ limit. Denoting the commutative limit of M b
N by vb, we find

that it looks as follows:20

vb =

∏
w∈R (−iw · Φ)(w·b)+∏
α∈∆ (−iα · Φ)(α·b)+

e[b]. (5.3)

This expression includes the case where some matter multiplets have masses, in which case

R is considered to be a representation of both gauge and flavor groups, and some Φ’s are

VEVs of the background vector multiplets (that is, masses). Note that (5.3) immediately

implies (2.30).

This (5.3) is precisely as in [59], showing that we indeed recover their abelianization

map in the r → ∞ limit. A bonus of our formalism is that the abelianized bubbling

coefficients of sections 3 and 4 are known, and also have a well-defined r → ∞ limit.

Introducing the notation

zb→v(Φ) ≡ lim
r→∞

Zab
b→v(Φ) (5.4)

and the corresponding notation for the commuting abelianized monopole shift operator,

ṽb ≡ lim
r→∞

M̃ b = vb +
∑
|u|<|b|

zb→u(Φ)vu, (5.5)

we conclude that the commuting versions of general physical dressed monopoles are given by[
P (Φ)V b

]
=

1

|Wb|
∑

w∈W
Pi(Φ

w)ṽw·b. (5.6)

Let us consider a few examples of Coulomb branches determined using this technique.

5.1.1 SU(2) with Nf fundamentals and Na adjoints

In section 4.3, we showed that in the SU(2) gauge theory with Nf > 1 fundamentals and

any number Na of adjoints, the abelianized bubbling coefficient Zab
2→0(Φ) is a polynomial.

Hence, up to operator mixing, we can take Zab
2→0(Φ) = 0. The same is then true for its

r →∞ limit, z2→0(Φ) = 0.

When Nf = 0, the bubbling term is a nontrivial rational function,

Z2→0(Φ) =
(−4r2)−Na

Φ(Φ− i
r )
. (5.7)

20The (w · b)+ in the exponent is not a typo. It was previously the lower index of a Pochhammer symbol,

but in the commutative limit, it turns into a power. Note also that (5.3), as written, holds for semisimple

gauge groups, for which the sum of the weights w vanishes. Otherwise, it should include an additional

factor of rbΣ/2 where Σ is the sum of all U(1) charges of hypermultiplets in the theory, as can be seen by

writing (w · b)+ = (|w · b|+ w · b)/2 in (2.25).
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However, we see that its r → ∞ limit is zero unless Na = 0. Hence we can again take

z2→0(Φ) = 0, except in a pure gauge theory, which will be treated separately.

Since the Cartan is one-dimensional, we write the Cartan-valued Φ simply as a complex

number. The two primitive monopoles of minimal charge b = 2 in the commuting limit

take the form:

v2 + v−2 =

(
−iΦ

2

)Nf
(iΦ)2(Na−1)(e[2] + (−1)Nf e[−2]),

Φ(v2 − v−2) = Φ

(
−iΦ

2

)Nf
(iΦ)2(Na−1)(e[2]− (−1)Nf e[−2]). (5.8)

In addition, we have the variable Φ2. Define:

U = 2Nf−1(v2 + v−2), V = −i2Nf−1Φ(v2 − v−2), W = Φ2. (5.9)

The only relation between these variables follows from e[2]e[−2] = 1 and takes the form

V2 + U2W =WNf+2Na−1, (5.10)

which is the defining equation of a DNf+2Na singularity. According to equation (4.16), the

dimension of the lowest monopole operator is ∆2 = Nf + 2Na − 2. We see that the theory

is good whenever Nf + 2Na > 2. Precisely for such values, (5.10) determines a cone. For

Nf + 2Na = 2, U has dimension (or rather R-charge) zero, while for Nf + 2Na = 1, that

is, Na = 0 and Nf = 1, the monopole has negative R-charge — in both of these cases, the

theory is bad and (5.10) is not a cone.

It is also straightforward to include masses by turning on background VEVs for flavor

symmetries. In such a case, the bubbling term remains nontrivial in the r → ∞ limit, as

we know from (4.23), and is given by

z2→0(Φ) =

∏Na
a=1

(
−M2

a

)∏Nf
i=1(−iMi)

Φ2
(5.11)

where Ma and Mi are the masses of the adjoint and fundamental hypers, respectively. The

expressions for the commuting shift operators are also modified (as follows from coupling

to the background multiplet):

v2 =

∏Nf
i=1

(
−iΦ

2 − iMi

)∏Na
a=1(iΦ + iMa)

2

(iΦ)2
e[2],

v−2 =

∏Nf
i=1

(
iΦ

2 − iMi

)∏Na
a=1(−iΦ + iMa)

2

(iΦ)2
e[−2]. (5.12)

Using the variables

U = 2Nf−1(v2 + v−2 + 2z2→0(Φ)), V = −i2Nf−1Φ(v2 − v−2), W = Φ2 (5.13)

and the relation e[2]e[−2] = 1, we find:

V2W +

UW − Na∏
a=1

(
−M2

a

) Nf∏
i=1

(−2iMi)

2

=

Nf∏
i=1

(
W − 4M2

i

) Na∏
a=1

(
W −M2

a

)2
, (5.14)

which at Na = 0 agrees with the result in [49] found by gauging U(1)top of the U(2) theory.
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5.1.2 Pure SU(2)

For a pure SU(2) gauge theory, the bubbling term in the commutative limit is

z2→0(Φ) =
1

Φ2
, (5.15)

so the abelianized shift operators are

ṽ±2 = v±2 +
1

Φ2
. (5.16)

The primitive monopoles take the form

ṽ2 + ṽ−2 = − 1

Φ2
(e[2] + e[−2]) +

2

Φ2
,

Φ(ṽ2 − ṽ−2) = − 1

Φ
(e[2]− e[−2]). (5.17)

If we define

U =
1

2
(ṽ2 + ṽ−2), V =

1

2
Φ(ṽ2 − ṽ−2), W = Φ2, (5.18)

then we find that e[2]e[−2] = 1 implies the relation

V2 = U2W − 2U , (5.19)

which does not belong to the series (5.10) and agrees with (A.9) in [49].

5.1.3 G2 with Nf fundamentals

To demonstrate the effectiveness of our formalism, we now discuss the theory with gauge

group G2 and Nf hypermultiplets in the seven-dimensional fundamental representation of

G2. Recall from section 4.4.3 that the lattice of coweights is generated by a short coroot

αmon and a long coroot βmon. At zero magnetic charge, there are two Casimir invariants

f1 = Φ2
1 + Φ2

2, f2 = Φ2
2(Φ2

2 − 3Φ2
1)2, (5.20)

and at magnetic charge αmon, there are six primitive dressed monopoles, which in the

commutative limit give six primitive commutative monopoles:

m0 = V αmon , m1 = [Φ2V
αmon ], m2 = [Φ2

2V
αmon ],

m3 = [Φ3
2V

αmon ], m4 = [Φ4
2V

αmon ], m5 = [Φ5
2V

αmon ]. (5.21)

In section 4.4.3, we found the abelianized bubbling factor Z(Φ) for “αmon → 0.” Its r →∞
limit is

z(Φ) =
42−Nf (Φ2

1 + Φ2
2)Nf

9Φ2
2(Φ2

1 − 3Φ2
2)(3Φ2

1 − Φ2
2)
. (5.22)

We now have the ingredients in place to determine the chiral ring.

We first observe from (4.75) that by taking the products

m2
1 −m2m0, m2m1 −m3m0, m3m1 −m4m0,

m4m1 −m5m0, m4m2 −m5m1, m4m3 −m5m2, (5.23)
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we can obtain all six primitive dressed monopoles of magnetic charge βmon. Because αmon

and βmon are fundamental coweights, they obviously generate the rest of the charges.

Furthermore, (5.23) implies that monopoles of charge βmon are generated from those of

charge αmon. Therefore, the six monopoles m0, . . . ,m5 and two Casimirs f1 and f2 generate

the full chiral ring.

It remains to determine their relations. They follow from the relations in C[Λ∨w]:

e[αmon]e[−αmon] = 1,

e[βmon + αmon]e[−βmon − αmon] = 1,

e[βmon + 2αmon]e[−βmon − 2αmon] = 1,

e[βmon + αmon]e[αmon]− e[βmon + 2αmon] = 0. (5.24)

These relations can easily be seen to follow, in turn, from linear dependences between the

short (co)roots of G2. Moreover, they generate a complete set of relations in C[Λ∨w]: short

(co)roots generate the full (co)weight lattice, and relations between the short (co)roots

determine everything.

Using the definition (5.3) of commuting shift operators, incorporating the abelianized

bubbling factor (5.22) according to (5.5) and (5.6), and using the relations (5.24), one can

derive the relations

Li = [Pi(Φ)V αmon ] + Fi(Φ) (i = 1, 2, 3, 4) (5.25)

between the chiral ring generators, where

L1 ≡ m2
2 +

1

2
m4m0 −

3

2
m3m1 +

3

8
(m2

1 −m2m0)f1,

L2 ≡ m3m2 +m5m0 − 2m4m1 +
3

4
(m2m1 −m3m0)f1, (5.26)

L3 ≡ m2
3 +

1

2
m5m1 −

3

2
m4m2 +

3

16
(m3m1 −m4m0)f1 −

9

64
(m2

1 −m2m0)f2
1 ,

L4 ≡ 2m5m2 −m4m3 −
1

16
m1m0f2 −

3

4
(3m4m1 −m5m0)f1 +

9

16
(2m2m1 −m3m0)f2

1 ,

and Pi and Fi are Nf -dependent polynomials in Φ that can be expressed in terms of known

generators. The simplest case is Nf = 0, where most of the right-hand sides vanish:

([Pi(Φ)V αmon ] + Fi(Φ))i=1,2,3,4 =

(
0, 0,−1

3
m0, 0

)
. (5.27)

For Nf = 1, the answer is:

([Pi(Φ)V αmon ]+Fi(Φ))i=1,2,3,4 =

(
1

3
m0,

2

3
m1,−

11

24
f1m0+

1

3
m2, f1m1−

2

3
m3

)
. (5.28)

Note that we have not checked whether this is a complete set of equations, i.e., whether

the Coulomb branch is a complete intersection, though it should be possible to do so from

a more careful analysis of the relations. However, these equations are locally independent,

so the Coulomb branch is at least a local complete intersection.
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5.2 Quantized chiral rings

Having explained how our formalism can be used to derive the Coulomb branch chiral rings

of the gauge theories under study, we now turn to a more refined observable: the OPE of

the Coulomb branch 1D sector. As explained in [36, 37], the OPE

Oi(ϕ)Oj(0)
ϕ→0−−−−−→

∑
k

cij
kOk(0)

r∆i+∆j−∆k
(5.29)

can be interpreted as a noncommutative star product

Oi ?Oj =
∑
k

cij
kOk

r∆i+∆j−∆k
(5.30)

on the chiral ring that reduces to ordinary commutative multiplication of the corresponding

holomorphic functions as we take r →∞:

Oi ?Oj |O(r0) = OiOj = OjOi. (5.31)

Here, Oi(ϕ) denotes a twisted CBO on S1
ϕ, and the S3 radius r keeps track of differences

in conformal dimension. The topological property of cohomology classes of QC ensures

that (5.30) is position-independent. This star product has the interpretation as a quanti-

zation of the ring of holomorphic functions on the Coulomb branch, with 1/r serving as the

quantization parameter. In particular, the terms of order 1/r in the OPE are interpreted

as the Poisson bracket of the holomorphic functions from the r →∞ limit, induced by the

holomorphic symplectic form on MC :

[Oi,Oj ]∗|O(r−1) = {Oi,Oj}. (5.32)

5.2.1 SU(2) with Nf fundamentals and Na adjoints

To illustrate that the OPE indeed gives more information than the chiral ring, let us present

an example where distinct 3D theories have the same Coulomb branch chiral ring but

different star products. Such an example was in fact already encountered in section 5.1.1:

it is the SU(2) gauge theory with Nf fundamental and Na adjoint hypermultiplets. In

the previous subsection, we showed that the Coulomb branch is a DNf+2Na singularity,

so it depends only on the combination n = Nf + 2Na. We now show that the OPE does

not depend only on this combination, so that for any fixed n, we obtain dn/2e distinct

quantizations of the ring of holomorphic functions on the cone over the Dn singularity.

We restrict to the case Nf + 2Na > 2, where the theory is good, and to Nf > 0, where

all bubbling coefficients can be set to zero. The operators of dimension ∆U = Nf +2Na−2,

∆V = Nf + 2Na − 1, and ∆W = 2 whose flat-space limits are given in (5.13) are

U = 2Nf−1(M2 +M−2), V = −i2Nf−1Φ(M2 −M−2), W = Φ2. (5.33)

Using the corresponding shift operators obtained from (4.5), we then find

V2 + U ?W ? U = P (W) +
2

r
U ? V , (5.34)
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where all products are understood to be star products and P (W) =WNf+2Na−1 +O(1/r)

is the following polynomial in W:

P (W)≡

(√
W+ 2i

r

)(√
W+ i

r

)2(Nf−1) [(√
W+ i

2r

)(√
W+ 3i

2r

)]2Na

2
√
W

+(i↔−i) (5.35)

(despite appearances, this expression is indeed a polynomial). To leading order in 1/r, we

reproduce (5.10). We can also compute various OPEs such as the antisymmetrized OPEs

of the Coulomb branch chiral ring generators (5.33):

[U ,W]? =
4

r
V − 4

r2
U ,

[V,W]? = −4

r
W ? U − 4

r2
V ,

[U ,V]? = −2

r
U2 +Q(W) ,

(5.36)

where Q(W) is a polynomial in W given by

Q(W) ≡
i
(√
W + i

r

)2(Nf−1) [(√
W + i

2r

)(√
W + 3i

2r

)]2Na

2
√
W

+ (i↔ −i) (5.37)

(this expression is again a polynomial in W, despite its appearance).

We see that (5.34) and (5.36) do not depend only on the combination Nf + 2Na that

determines the Coulomb branch, thus providing an example of different quantizations of

the same chiral ring.21 Note, however, that the 1/r terms in (5.36), like the chiral ring

relation (5.10), do depend only on Nf + 2Na: thus the Poisson structure on DNf+2Na is

the same for all of the distinct quantizations.

For other examples where our formalism can be used to determine the quantization of

the Coulomb branch chiral ring, see appendix E.

5.2.2 G2 with Nf fundamentals

Let us make a few comments on the theory with gauge group G2, which appeared as one of

our earlier examples. At the very least, the same two Casimirs and six primitive monopoles

of minimal charge αmon are expected to generate the noncommutative algebra AC :

f1 = Φ2 + Φ2
2, f2 = Φ2

2(Φ2
2 − 3Φ2

1)2,

m0 =Mαmon , m1 = [Φ2Mαmon ], m2 = [Φ2
2Mαmon ],

m3 = [Φ3
2Mαmon ], m4 = [Φ4

2Mαmon ], m5 = [Φ5
2Mαmon ]. (5.38)

They satisfy the same relations as in (5.25), (5.26), with the left-hand side written in terms

of the star product and the right-hand side receiving 1/r corrections.

21One may ask, however, whether a change of basis for the generators U , V, and W could render (5.34)

and (5.36) dependent only on Nf + 2Na. For changes of basis where we only allow ourselves to redefine

each operator by adding operators of strictly lower dimension multiplied by appropriate factors of 1/r, it

is impossible to make (5.34) and (5.36) depend only on Nf + 2Na.
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Interestingly, however, one can find simple relations that identify a much smaller set

of generators of AC as a noncommutative algebra, or alternatively (but not equivalently in

general), as a commutative Poisson algebra. Namely, we find that

mi ? f1 − f1 ? mi = − 4i

r
√

3
mi+1 −

4

3r2
mi, i = 0, . . . , 5, (5.39)

implying that it is enough to have f1, f2, and m0 to generate the rest of the algebra through

star products. The above equation also implies the Poisson bracket {mi, f1} = − 4i√
3
mi+1.

In order to compute star products, we must use the bubbling factor derived in section 4.4.3.

5.3 Correlation functions and mirror symmetry

We now demonstrate the utility of the shift operator formalism for computing correlation

functions of twisted CBOs, with applications to non-abelian 3D mirror symmetry [78–80].

We first review the general setup for the computation of correlation functions before giving

an example.

5.3.1 Matrix model

The three ingredients for computing correlation functions are the vacuum hemisphere wave-

function, the gluing measure, and the shift operators. The vacuum hemisphere wavefunc-

tion Ψ0(σ,B) (where σ is valued in the Cartan of g and B in the coweight lattice) can be

read off from (2.15) by setting b = 0:

Ψ0(σ,B) ≡ Z0(~0;σ,B) = δB,~0

∏
w∈R

1√
2π

Γ(1
2 − iw · σ)∏

α∈∆
1√
2π

Γ(1− iα · σ)
, (5.40)

where R denotes the weights of the hypermultiplet representation R of G and ∆ denotes

the roots of G. The gluing measure µ(σ,B) is as in (2.7), namely

µ(σ,B) =
∏
α∈∆+

(−1)α·B

[(α · σ
r

)2
+

(
α ·B

2r

)2
] ∏
w∈R

(−1)
|w·B|−w·B

2

Γ
(

1
2 + iw · σ + |w·B|

2

)
Γ
(

1
2 − iw · σ + |w·B|

2

)
(5.41)

(note that
∏
α∈∆+(−1)α·B = e2πiρ·B where ρ is the Weyl vector). The shift operators are

given by (3.18) combined with (3.21) (see also appendix A). Without loss of generality, we

work in the North picture, where

M b
N =

∏
w∈R

[
(−1)(w·b)+

r|w·b|/2

(
1
2 +irw ·ΦN

)
(w·b)+

]
∏
α∈∆

[
(−1)(α·b)+

r|α·b|/2
(irα·ΦN )(α·b)+

] e−b·(
i
2
∂σ+∂B) , ΦN =

1

r

(
σ+i

B

2

)
, (5.42)

and therefore drop the N subscripts.

With these ingredients, the matrix model expression for the correlator of twisted CBOs

Oi(ϕi), i = 1, . . . , n, inserted at points ϕi obeying 0 < ϕ1 < · · · < ϕn < π, takes the form

of an inner product (see also [38])

〈O1(ϕ1) · · · On(ϕn)〉S3 =
1

|W|ZS3

∑
~B

∫
d~σ µ(~σ, ~B)Ψ0(~σ, ~B)Ô1 · · · ÔnΨ0(~σ, ~B) , (5.43)
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where Ôi are the shift operators corresponding to Oi and ZS3 is the vacuum S3 partition

function by which we divide to obtain a normalized correlator:

ZS3 =
1

|W|
∑
~B

∫
d~σ µ(~σ, ~B)Ψ0(~σ, ~B)2. (5.44)

This is a special case of the gluing formula of section 2.2. From here on, we drop the hats

on the shift operators and therefore do not make a notational distinction between a shift

operator and the twisted CBO that it represents.

5.3.2 An N = 8 example

As a concrete example, let us consider the U(Nc) gauge theory with one adjoint hypermul-

tiplet and one fundamental hypermultiplet. This theory has N = 8 SUSY enhancement

(being IR dual to N = 8 U(Nc) SYM) and is therefore self-mirror [81]. This theory is ugly

in the sense of Gaiotto and Witten [30], so the monopoles of lowest dimension saturate the

unitarity bound ∆ = 1/2 and generate a free subsector. The S3 partition function is

ZS3 =
1

Nc!

∫ Nc∏
I=1

dσI

∏
I<J 4 sinh2(πσIJ)∏

I,J 2 cosh(πσIJ)
∏
I 2 cosh(πσI)

, (5.45)

where I, J = 1, . . . , Nc and σIJ ≡ σI − σJ .

The weight lattice ZNc is generated by the Nc fundamental weights (1,~0), . . . , (~0, 1),

and the N2
c − Nc roots are the pairwise differences of these fundamental weights. Since

U(Nc) is its own Langlands dual, we can think of ~σ and ~B as taking values in ZNc . The

vacuum wavefunction (5.40) in this theory simplifies to

Ψ0(~σ, ~B) = δ ~B,~0

Nc∏
I=1

1√
2π

Γ

(
1

2
− iσI

)∏
I,J

1√
2π

Γ

(
1

2
− iσIJ

)∏
I<J

2 sinh(πσIJ)

σIJ
, (5.46)

and omitting factors of r for convenience, the gluing measure is22

µ(~σ, ~B) =
∏
I<J

(
σ2
IJ +

1

4
B2
IJ

) Nc∏
I=1

(−1)(−BI)+
Γ(1+|BI |

2 + iσI)

Γ(1+|BI |
2 − iσI)

. (5.47)

The partition function obtained by the gluing formula (5.44) then reproduces (5.45).

The operators in the 1D Higgs branch sector of the same theory can be written as

U(Nc)-invariant products of antiperiodic adjoint scalars Q(ϕ) and Q̃(ϕ) on S1
ϕ. The correla-

tion functions of these operators can be computed via the prescription of [37] (in particular,

see section 7.3 of [37]). They reduce to calculations in a free theory with 1D propagator

〈Qij(ϕ1)Q̃i′
j′(ϕ2)〉σ = −δii′δjj

′ sign(ϕ12) + tanh(πσij)

8πr
e−σijϕ12 , (5.48)

22The adjoint hyper contributes a sign (−1)|BIJ | = (−1)(BIJ )++(−BIJ )+ to the
∏
I<J , which cancels with

the (−1)BIJ in (2.7).
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where σij ≡ σi−σj . Here, 〈〉σ denotes an auxiliary correlator from which the full correlator

〈〉 is obtained by an appropriate integral over σ. In particular, for operators Oi constructed

from Q and Q̃, the correlation function is

〈O1(ϕ1) · · · On(ϕn)〉 =
1

ZS3Nc!

∫ Nc∏
i=1

dσi

∏
i<j 4 sinh2(πσij)∏

i,j 2 cosh(πσij)
∏
i 2 cosh(πσi)

× 〈O1(ϕ1) · · · On(ϕn)〉σ , (5.49)

where 〈O1(ϕ1) · · · On(ϕn)〉σ is computed via Wick contractions with the propagator (5.48).

5.3.3 U(2) with Na = Nf = 1

Consider the case of smallest rank, U(2) with Na = Nf = 1. The Coulomb branch chiral

ring operators of lowest dimension areM(±1,0) (with ∆ = 1/2) and tr Φ,M±(1,1),M(1,−1),

M(±2,0) (with ∆ = 1). Particular linear combinations of these operators comprise the

chiral ring generators, namely M±(1,0), M±(1,1), and −M(1,−1) − 2i tr Φ. They satisfy the

single relation (see appendix E.2.1)[
(M(−1,0))2 − 4M(−1,−1)

] [
(M(1,0))2 − 4M(1,1)

]
= (−M(1,−1) − 2i tr Φ)2. (5.50)

The products in this equation are commutative chiral ring products, not star

products. Thus the Coulomb branch factorizes into free and interacting sectors as

Sym2(C2) ∼= C2 × (C2/Z2).

By matching all two- and three-point functions of these lowest-dimension twisted CBOs

and HBOs across mirror symmetry, computed within their respective 1D topological sec-

tors, we can derive the mirror map (see appendix F)

1

(4π)1/2
M(∓1,0) ↔ trQ, tr Q̃, (5.51)

1

4π
M(∓2,0) ↔ (trQ)2, (tr Q̃)2, (5.52)

1

2π
M∓(1,1) ↔ trQ2, tr Q̃2, (5.53)

1

4π

(
M(1,−1) − 1

r

)
↔ trQ tr Q̃, (5.54)

− i

4π
tr Φ↔ trQQ̃. (5.55)

The operators on the l.h.s. in the Coulomb branch TQFT have precisely the same correla-

tion functions as the operators on the r.h.s. in the Higgs branch TQFT.

A complementary way of deriving the mirror map, which does not require computing

all correlation functions to a given order, is as follows. First, we match certain “basic”

operators by computing their correlation functions. Next, we generate composite operators

from these basic operators via the star product and use the fact that the structure of

the star product is the same on both sides to deduce the map between these composite

operators (whose one-point functions can then be matched, as a further consistency check;

in our basis, mixing with the identity renders one-point functions nonzero). This point of
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view emphasizes that the shift operators themselves, which generate the star product via

composition, are more fundamental than the correlators that they compute in that one can

write all correlators as expectation values of composite operators obtained via the OPE.

For an illustration of this procedure, see appendix F.

5.3.4 U(Nc) with Na = Nf = 1

We do not study the case Nc > 2 in detail, but let us point out that the mirror map in this

case takes

1

(4π)1/2
M(−1,~0) ↔ trQ,

1

(4π)1/2
M(1,~0) ↔ tr Q̃, (5.56)

with normalizations being fixed by the two-point functions

1

4π
〈M(−1,~0)(ϕ1)M(1,~0)(ϕ2)〉 = 〈trQ(ϕ1) tr Q̃(ϕ2)〉 = −Nc signϕ12

8πr
. (5.57)

By taking star products, it also follows that the suitably normalized monopoles M(∓p,~0)

(which can bubble) map to (trQ)p and (tr Q̃)p.23

Going beyond the free sector, it is natural to conjecture that the monopoles

M(∓~1p,~0Nc−p) (which do not bubble) map to trQp and tr Q̃p for p = 1, . . . , Nc, although

we have been unable to demonstrate this analytically. These monopoles are special for

several reasons. First, assuming the correctness of the stated map, they correspond to all

of the independent traces of powers of Q and Q̃ individually. Second, it seems that they

comprise the minimal set of bare monopoles needed to generate all other bare monopoles

via star products.

6 Discussion

6.1 Summary

This work ties various loose ends together. First, it extends the formalism of shift operators

for Coulomb branch operators [38] to arbitrary non-abelian 3D N = 4 gauge theories with

hypermultiplet matter. In the process, it provides an alternative approach to the abelian-

ization description of the Coulomb branch and clarifies the meaning of the abelianization

map [59]. In particular, it can be seen as a derivation of the latter from first principles.

Our approach additionally allows for the computation of correlation functions of

Coulomb branch operators in good and ugly theories, thus providing natural choices of

basis that relate the noncommutative star product algebra AC of Coulomb branch oper-

ators to these correlation functions. The relation between AC and correlation functions

seems to become transparent only when quantizing the Coulomb branch by placing the

N = 4 theory on a sphere rather than by studying it in an Ω-background: the latter route

to quantization has a less straightforward connection to SCFT operators.

23More generally, we expect the Higgs branch operators tr(Q1 · · ·QNf ) and tr(Q̃Nf · · · Q̃1) in the U(Nc)
Nf

necklace quiver with one fundamental node to map to monopole operators of GNO charge (∓1,~0) in U(Nc)

SQCD with Na = 1 and Nf ≥ 1, but for Nf > 1, the insertion on the Coulomb branch side does not

simplify so easily, and correlators on the Higgs branch side also become difficult to compute.
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Finally, on our way to achieving these goals, we gained an improved understanding of

monopole bubbling phenomena, which are crucial nonperturbative effects in the description

of magnetic defects. Our approach to bubbling is purely algebraic in nature, based on sym-

metries and algebraic consistency of the OPE. It avoids the technicalities of previous ana-

lytic bubbling computations [53, 54, 56, 58], which involve equivariant integration over the

moduli space of bubbling solutions to the Bogomolny equation, therefore serving as a good

check and testing ground for them. Our approach further allows for the determination of

previously unknown bubbling coefficients, such as in theories without minuscule monopoles.

While the focus of this paper is mostly on developing the general formalism, we also

provide some explicit applications and examples in theories of small rank. In section 4,

we derive the “abelianized bubbling coefficients” for a large family of rank-one and rank-

two gauge theories, which can be used to extract data on the Coulomb branch operators of

these theories (including the algebra AC and its correlators) in a completely straightforward

and algorithmic fashion. We then illustrate these results in section 5. While the abelian

examples in [38] provide quantizations of AN singularities, we present in section 5 the

example of SU(2) gauge theory with fundamental and adjoint matter, resulting in many

inequivalent quantizations of the DN singularity. For the purpose of illustration, we also

apply our formalism to the G2 gauge theory, as no other techniques are available in this

case. Looking ahead, shift operators provide a method to potentially determine previously

unknown Coulomb branch chiral rings and their quantizations, such as those of bad theories.

Finally, we use our matrix model for correlation functions of twisted CBOs to derive,

in some cases, how Higgs and Coulomb branch chiral ring operators map across non-

abelian 3D mirror symmetry. Using our formalism, we are able to derive the precise

normalization factors in the mirror map and distinguish operators that could mix on the

basis of symmetries. Further applications are gathered in the appendices.

6.2 Future directions and open problems

At a computational level, there exist numerous directions in which the discussion of sec-

tion 5.3 could be generalized. The most well-known families of mirror theories are those of

ADE type [78], as well as the higher-rank counterparts of those of A- and D-type [79, 80].

In [38], the abelian A series (i.e., the mirror duality between SQEDNf and the affine ANf−1

quiver) was analyzed in our formalism, resulting in a derivation of the precise mirror map

as a refinement of the known mapping of charge matrices [80]. The self-mirror duality

considered in section 5.3.2 is only a special case of the non-abelian generalizations of the

A-type mirror symmetries derived in [79].24 Aside from the ADE examples that we have

not investigated, more examples can be found in [82], and further examples can be gen-

erated via the procedure of [83], in the same spirit as the constructive approach of [84]

to abelian mirror symmetry. It remains to be seen what further lessons for 3D mirror

symmetry can be extracted from our formalism.

24Namely, the U(Nc)
n necklace quiver with vi ≥ 0 fundamentals charged under each gauge group is dual

to the U(Nc)
v necklace quiver where v =

∑
i vi and for every i, there is a fundamental charged under the

jth gauge group where j(i > 1) =
∑i−1
`=1 v` and j(1) =

∑n
`=1 v`.
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Besides further applications of our formalism to gather more data on various 3D N = 4

gauge theories (in particular SCFTs), or to check or discover new dualities, there are a

number of conceptual questions that present interesting avenues for future work:

• It would be interesting to extend our construction to more general gauge theories, namely

gauge theories that also have charged matter in half-hypermultiplets, those that involve

both ordinary and twisted multiplets at once, and/or theories with Chern-Simons cou-

plings. Understanding the moduli spaces of vacua, their quantization, and the corre-

sponding correlation functions in such theories, if possible, are among the outstanding

questions to address.

• It would be interesting to compare the bubbling terms obtained using our method to

those coming from the dimensional reduction of the 4D bubbling terms computed in [54].

We performed a few preliminary comparisons (summarized in appendix D) and found

that the two agree up to operator mixing and various normalization factors, but a more

systematic study is needed. Furthermore, it has been observed (already in [54], and later

in [56]) that the results of [54] sometimes involve discrepancies with those obtained using

the AGT correspondence, particularly in 4D N = 2 superconformal QCD (SU(Nc) with

Nf = 2Nc). A fix was recently proposed in [58]. Based on our preliminary checks, it

appears that all of the subtleties in 4D involving integration over monopole moduli space

disappear upon reduction to 3D, and it would be nice to understand why. Likewise, the

relation of our construction to the Moyal product of [54] and its implications for the line

operator OPE in 4D remain to be understood.

• It would be interesting to recast our construction of shift operators and bubbling coef-

ficients (or equivalently, abelianization) in a way that uses the mathematical definition

of the Coulomb branch [60–63]. It could also be of interest to understand whether the

abelianized bubbling terms introduced in this work, which provide an algebraic decom-

position of the Weyl-averaged bubbling terms considered heretofore in the literature,

have a corresponding geometric interpretation in terms of a decomposition of monopole

moduli space.25

• It would be interesting to understand more conceptually whether there exists a relation

between quantization on S3 and quantization via the Ω-background [42–44] (see also [85]).

Similar relations are abundant in various dimensions for problems involving a supercharge

(equivariant differential) Q such that Q2 is a vector field with fixed points. See, for

instance, the recent work [86] for the case of isolated fixed points.

• More broadly, our work fits into the larger program of constructing and classifying de-

formation quantizations arising from 3D N = 4 quantum field theories.26 While our

construction is certainly derived starting from a Lagrangian description, one may won-

der whether it can be generalized to non-Lagrangian theories (such as various classes of

SCFTs from [87]), and/or whether Lagrangian theories play a special role in the broader

classification program of deformation quantizations.
25We thank T. Dimofte for this last remark.
26We thank P. Etingof for a discussion about this topic.
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A Conventions

Here, we summarize our conventions and notation. Unless otherwise stated, G is assumed

to be a simple gauge group, g its Lie algebra, t its Cartan subalgebra, and tC = t ⊗ C
its complexification. The root system is denoted by ∆, the weight lattice by Λw, and the

coweight lattice (the weight lattice of LG) by Λ∨w. The matter representation is R⊕R.

The abelian North pole shift operator (2.25) is denoted by M b
N , while its South pole

analog is denoted by M b
S . These operators do not incorporate monopole bubbling effects.

Sometimes, we simply write M b, in which case it is assumed to be the North pole operator.

Here, b ∈ Λ∨w is a coweight of G. The abelianized shift operator (including bubbling) is

denoted by M̃ b
N , with the same remark concerning N/S:

M̃ b = M b +
∑
|v|<|b|

Zab
b→v(Φ)Mv, (A.1)

where the sum is over coweights shorter than b and Zab
b→v(Φ) are abelianized bubbling

coefficients. The commutative (r → ∞) limit of the shift operator M b
N is denoted by vb,

and the same for M b
S , as the N/S distinction disappears in the commutative limit. Similarly,

the abelianized bubbling factor in this limit is denoted by zb→v(Φ), and the abelianized

commutative shift operator is:

ṽb = vb +
∑
|u|<|b|

zb→u(Φ)vu. (A.2)

We deal with a number of objects that involve sums over Weyl orbits. If a quantity F (b)

depends on the coweight b, then we employ the following convention in summing over its

Weyl orbit: ∑
b′∈Wb

F (b′) ≡ 1

|Wb|
∑

w∈W
F (w · b), (A.3)
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where Wb ⊂ W is the stabilizer of b. In particular, we use it to define the Weyl-averaged

shift operator, the bare monopole operator, and the dressed monopole operator:

M b =
∑
b′∈Wb

M b′ ,

Mb =
∑
b′∈Wb

M̃ b′ =
1

|Wb|
∑

w∈W

Mw·b +
∑
|v|<|b|

Zab
b→v(Φ

w)Mw·v

 ,

[P (Φ)Mb] =
1

|Wb|
∑

w∈W

P (Φw)Mw·b + P (Φw)
∑
|v|<|b|

Zab
b→v(Φ

w)Mw·v

 . (A.4)

As explained in the main text, Φw = w−1 ·Φ, and Φ takes values in tC = t⊗C. If a monopole

of GNO charge b cannot bubble, then Mb = M b. The Weyl-averaged shift operator M b

defined here does not appear in the main text, but it plays a certain role in the appendices.

The dressed commuting monopole operator is defined as:

[P (Φ)V b] =
1

|Wb|
∑

w∈W
P (Φw)ṽw·b. (A.5)

Using the transformation property

Zab
w·b→w·v(Φ) = Zab

b→v(Φ
w), (A.6)

we might also introduce

Zb→vmono(Φ) =
∑
b′∈Wb

Zab
b′→v(Φ), (A.7)

so that the bare monopole becomes

Mb = M b +
∑
|v|<|b|

Zb→vmono(Φ)Mv. (A.8)

In the appendices, we sometimes omit brackets [] around dressed monopoles when no risk

of confusion is present.

B Twisted-translated operators

Here is a brief, qualitative review of twisted operators and their corresponding topological

sectors. Let us first recall the setup in R3.

In 3D N = 4 SCFTs, half-BPS operators are labeled by their charges (∆, j, jH , jC)

under the bosonic subalgebra so(3, 2)⊕ su(2)H ⊕ su(2)C of the 3D N = 4 superconformal

algebra osp(4|4). They are Lorentz scalars (j = 0) and can be classified as either HBOs

(∆ = jH , jC = 0) or CBOs (∆ = jC , jH = 0), which we write abstractly with su(2)H/C
spinor indices as O(a1···a2jH

) and O(ȧ1···ȧ2jC
). Hence su(2)H and su(2)C are spontaneously

broken on the Higgs and Coulomb branches, respectively. In a Lagrangian theory, the

vector multiplet contains adjoint scalars Φȧḃ in the triplet of su(2)C and the hypermultiplet
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contains scalars qa, q̃a in the doublet of su(2)H and in R,R of G. Then HBOs are precisely

gauge-invariant polynomials in qa, q̃a while CBOs consist of Φȧḃ and (dressed) monopole

operators Mb
ȧ1···ȧ2jC

.

The key fact is that twisted HBOs/CBOs, defined as

O(x) = ua1(x) · · ·ua2jH (x)Oa1···a2jH
(x), O(x) = vȧ1(x) · · · vȧ2jC (x)Oȧ1···ȧ2jC

(x) (B.1)

with appropriate position-dependent R-symmetry polarization vectors u and v, have topo-

logical correlation functions when the coordinate x is restricted to a line in R3. This is

because they represent equivariant cohomology classes of certain supercharges QH/C ∈
osp(4|4). In particular, they are annihilated by (QH/C)2, and operators O(x) at differ-

ent x are related by QH/C-exact operations called twisted translations. Hence the QH/C-

cohomology class of a twisted-translated operator O(x) is independent of its position x

along the line. It follows that each supercharge QH/C has an associated 1D topological

sector of cohomology classes: the OPE of these twisted HBOs/CBOs is an associative but

noncommutative product, since there exists an ordering along the line.

The setup on S3, where we localize with respect to QC , is essentially the same (up

to subtleties involving the “branch point” at infinity, discussed at length in [38]): the

distinguished line is stereographically mapped to a great circle S1
ϕ, so that twisted operators

are parametrized by ϕ rather than x in (B.1), and the deformation parameter r (implicit

in the definitions of QH/C) becomes the S3 radius. Taking gYM → ∞ at fixed r gives

an SCFT on S3 whose correlators are equivalent to those of the IR SCFT in flat space

by stereographic projection. The non-conformal 3D N = 4 superalgebra s contains the

su(2)` ⊕ su(2)r isometries of S3 as well as u(1)` ⊕ u(1)r R-symmetries. The supercharges

QH/C each contain terms from both su(2|1) factors of s, as required by the fact that they

square to isometries with nontrivial fixed points. The corresponding twisted translations

take the form Pϕ + RH/C = {QH/C , . . .}. Finally, the embedding of s into osp(4|4), as

well as the polarization vectors in (B.1), are specified by Cartan embeddings of the u(1)

R-symmetries into su(2)H and su(2)C .

These twisted operators are interesting for at least two reasons:

• Their two- and three-point functions fix those of HBOs and CBOs in the full 3D theory,

by conformal symmetry and R-symmetry (roughly, conformal symmetry suffices to put

any two or three operators on a great circle).

• At any fixed ϕ, twisted operators in the cohomology of QH/C are in one-to-one corre-

spondence with elements of the Higgs/Coulomb branch chiral ring. The R-symmetry

polarization vector u or v fixes a complex structure on the corresponding branch, so that

the operators are chiral with respect to an N = 2 superconformal subalgebra of osp(4|4)

whose embedding depends on the vector.

We focus on twisted CBOs representing nontrivial QC-cohomology classes, namely: the

twisted scalar Φ(ϕ) = vȧ(ϕ)vḃ(ϕ)Φȧḃ(ϕ), twisted bare monopoles Mb(ϕ), and twisted

dressed monopoles [P (Φ)Mb(ϕ)] (composite operators formed by monopoles and scalars).
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C Matrix nondegeneracy and abelianized bubbling

Here, we prove that the matrix determining the linear system (3.20) is nondegenerate, thus

implying that (3.20) has a unique solution.

The Weyl group might not act freely on the orbit of a general (dominant) coweight b,

meaning that |Wb| = dimC(ρb) < |W|. Each w · b ∈ Wb has a possibly nontrivial stabilizer

Stabw·b ≡ Ww·b ⊂ W , and as a result, M̃w·b in equation (3.20) is multiplied by
∑

w′∈Stabw·b

Pi(Φ
w′w). For brevity, let us denote Pi(Φ

w) averaged over Stabw·b by Pi(Φw). Let us

also pick representatives w1, . . . ,wdim(ρb) of classes in W/Stabb, so that the basis of ρb is

given by M b = Mw1·b,Mw2·b, . . . ,M
w

dim(ρb)
·b

(we assume that w1 = id represents the trivial

class). Then equation (3.18) can be written in matrix form as
Mb[
P2Mb

]
...[

Pdim(ρb)Mb
]
 = |Wb|−1P


M̃w1·b

M̃w2·b

...

M̃
w

dim(ρb)
·b

 , (C.1)

where

P =


P1(Φw1) P1(Φw2) P1(Φw3) · · · P1(Φ

w
dim(ρb))

P2(Φw1) P2(Φw2) P2(Φw3) · · · P2(Φ
w

dim(ρb))
...

...
...

. . .
...

Pdim(ρb)(Φ
w1) Pdim(ρb)(Φ

w2) Pdim(ρb)(Φ
w3) · · · Pdim(ρb)(Φ

w
dim(ρb))

 . (C.2)

In fact, this matrix is nondegenerate, meaning that its determinant is given by a polynomial

in Φ that is not identically zero, as we now show. By construction, |Wb|−1
∑

w∈WPi(Φ
w)Mw·b

for i = 1, . . . , dim(ρb) form a basis over C[t]W . This implies that the rows of the matrix P

are linearly independent over C[t]W , i.e., over Weyl-invariant polynomials.

Let us assume that the matrix is nonetheless degenerate: this means that one of the

rows, say the jth row, is a linear combination of the other rows with coefficients being

rational and generally non-Weyl-invariant functions Qi:

Pj(Φwa) =
∑

i=1,...,dim(ρb)
i 6=j

Qi(Φ)Pi(Φwa) for all a = 1, . . . , dim(ρb). (C.3)

This should hold as an identity for all a = 1, . . . , dim(ρb), with Qi(Φ) independent of a.

Acting with an element of the Weyl group w ∈ W on (C.3) should give another valid

identity for all a = 1, . . . , dim(ρb). On the other hand, doing so simply permutes the

columns of P. Thus it permutes the equations in (C.3), at the same time replacing Qi(Φ)

by Qi(Φ
w). Doing this for every element of W and averaging implies that we can replace

Qi(Φ) in (C.3) by its Weyl-averaged version. So we may assume that Qi are Weyl-invariant

rational functions. Every such Qi is a ratio

Qi(Φ) =
Ai(Φ)

Bi(Φ)
(C.4)
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of polynomials Ai and Bi. Let us consider

D(Φ) =
∏

i=1,...,dim(ρb)
i 6=j

Bi(Φ), (C.5)

which is the common denominator (not necessarily the minimal one) of all the Qi. Even if

this Di is not Weyl-invariant, one can define another polynomial that is:

DW(Φ) =
∏

w∈W
D(Φw). (C.6)

If we now multiply relation (C.3) by this DW(Φ), we obtain:

DW(Φ)Pj(Φwa) =
∑

i=1,...,dim(ρb)
i 6=j

DW(Φ)Qi(Φ)Pi(Φwa) for all a = 1, . . . , dim(ρb). (C.7)

This cancels all denominators of Qi. Furthermore, since both Qi(Φ) and DW(Φ) are Weyl-

invariant, their product DW(Φ)Qi(Φ) is a Weyl-invariant polynomial. So (C.7) says that

the rows of P are linearly dependent over the ring of Weyl-invariant polynomials C[t]W .

This is a contradiction, which proves that the matrix P is nondegenerate.

Having proven that P is nondegenerate, we can solve (3.18):
M̃w1·b

M̃w2·b

...

M̃
w

dim(ρb)
·b

 = |Wb|P−1


Mb[
P2Mb

]
...[

Pdim(ρb)Mb
]
 . (C.8)

Since the Weyl group simply permutes the columns of P, it is enough to have an expression

for M̃ b, with all other M̃w·b obtained as Weyl images thereof. Remembering that the leading

term in
[
Pi(Φ)Mb

]
takes the form |Wb|−1

∑
w∈W Pi(Φ

w)Mw·b, we write the solution as:

M̃ b = M b +

dim(ρb)∑
i=1

(P−1)1
i
∑
|v|<|b|

∑
w∈W

V b→v
i (Φw)Mw·v. (C.9)

Introducing the notation Zab
b→v(Φ) for the second term, the solution takes the form (3.21).

D Bubbling coefficients from 4D

In U(N) gauge theories, there exist known methods for computing monopole bubbling

coefficients in the 4D N = 2 context [54], the results of which can be used to infer bubbling

coefficients in the corresponding 3D N = 4 theories in a specific basis. However, the näıve

dimensional reduction prescription sometimes requires supplementing these known results

with nontrivial normalization factors to ensure polynomiality, at least for monopoles of

sufficiently high charge. Here, we comment on these subtleties, leaving a more complete

understanding for future work.
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D.1 The IOT algorithm

A systematic procedure for computing monopole bubbling coefficients relevant to the line

operator index of 4D N = 2 U(N) gauge theories with fundamental or adjoint hypermul-

tiplets was developed in [54] and adapted to S3 × S1 in [55]. We refer to it as the “IOT

algorithm.” It produces a function that we call Zb→vmono, IOT as follows. Consider the quantity

ZR3

mono(b, v) defined in [55]:27 with all flavor symmetry fugacities ηi set to 1, it is a function

of the thermal fugacity x (related to the size of the thermal circle by x2 = p = e−β) and

the Cartan variables λi (related to ours by λi = βσi). We set

Zb→vmono, IOT(β, σ) ≡ ZR3

mono(b, v;x, λ, η = 1). (D.1)

The bubbling coefficients Zb→vmono, IOT, and those considered in previous literature on 4D

N = 2 theories, share the property that they are Weyl-invariant in b but not in v:

Zb→vmono, IOT(β, σ) = Zw·b→v
mono, IOT(β, σ) = Zb→w·v

mono, IOT(β,w · σ). (D.2)

Hence they should be identified with our abelianized bubbling coefficients, which obey (2.19)

and are Weyl-invariant with respect to neither b nor v, only after Weyl-averaging over b as

in (A.7).28 As described in section 2.6, this identification involves a dimensional reduction

in which we keep only the leading term in Zb→vmono, IOT as a power series expansion in β,

which occurs at order β∆b−∆v . We then make an appropriate substitution β → −2i/r

(with the constant of proportionality determined empirically) to restore dimensions. How-

ever, our Zb→vmono is a function of Φ that is defined to multiply monopole shift operators on

the left, while Zb→vmono, IOT as given above is a function of σ. To adjust for this discrepancy,

we substitute Φ for σ after subtracting the B-dependent term evaluated in the appropriate

monopole background, i.e., the flux created by the charge-v monopole that the bubbling

coefficient multiplies. In the end, we arrive at the prescription

Zb→vmono(Φ) = Zb→vmono, IOT(β, σ)|O(β∆b−∆v ),β→−2i/r,σ→rΦ−iv/2 (D.6)

for going from the dimensionally reduced Zb→vmono, IOT to our Weyl-averaged bubbling coeffi-

cients Zb→vmono. It should be kept in mind that the Weyl-averaged bubbling coefficients (D.6)

27Alternatively denoted by ZNmono(b, v) or ZSmono(b, v), the square of which is ZS
3

mono(b, v) in [55].
28To illustrate the difference between Weyl-averaged and abelianized bubbling, consider a monopole whose

charge is a simple coroot and that can bubble only into the identity:

Mb = Mb + Zb→id
mono(Φ). (D.3)

The bar denotes Weyl averaging, and the bubbling term is a Weyl-symmetric rational function: Zb→id
mono(Φ) =

Zb→id
mono(Φ). If Zb→id

mono(Φ) were the whole story, then it would be natural to guess that

[P (Φ)Mb]
!
= P (Φ)Mb + P (Φ)Zb→id

mono(Φ) (D.4)

where P (Φ) is a (not necessarily Weyl-invariant) polynomial. However, such a guess turns out to be

inconsistent with polynomiality of the Coulomb branch algebra. Properly defining a dressed monopole

instead requires a more elementary bubbling term Zab
b→id(Φ) satisfying Zab

b→id(Φ) = Zb→id
mono(Φ):

[P (Φ)Mb] = P (Φ)Mb + P (Φ)Zab
b→id(Φ), (D.5)

where in general, Zab
b→id(Φ) 6= Zb→id

mono(Φ).
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computed via the IOT algorithm single out a basis of Coulomb branch operators, whose

star algebra must then be consistent with polynomiality. By contrast, our polynomiality-

based approach, which applies to a far more general class of theories, determines bubbling

coefficients up to a choice of basis.

D.2 Bubbling patterns

It turns out that (D.6) is not always sufficient to guarantee that the resulting 3D monopoles

satisfy polynomiality. We conjecture that in general, this prescription should be supple-

mented by signs and combinatorial factors unrelated to Weyl symmetrization, the latter of

which involve dividing by an integer that depends on the number of simple roots subtracted

to get from the bare monopole b to the bubbled monopole v. The pattern of combinatorial

factors depends on the “depth” to which the b monopole can bubble, i.e., the maximum of

the number of simple roots that must be subtracted from b to obtain any monopole charge

to which b can bubble. On the other hand, the possible dressing signs depend on the rank

and matter content of the theory, as well as on the monopole charges. Schematically, we

see from a number of examples that one possibility for the general bubbling pattern is

Mb = M b +
ε1,1
c1,1

∑
v∈Wv1

Zb→vmono(Φ)Mv, (D.7)

Mb = M b +

 ε2,1
c2,1

∑
v∈Wv1

+
ε2,2
c2,2

∑
v∈Wv2

Zb→vmono(Φ)Mv, (D.8)

Mb = M b +

 ε3,1
c3,1

∑
v∈Wv1

+
ε3,2
c3,2

∑
v∈Wv2

+
ε3,3
c3,3

∑
v∈Wv3

Zb→vmono(Φ)Mv (D.9)

at depth 1, 2, 3, respectively. Here, the subscript i on vi indicates the number of simple

roots by which it differs from b, the ci,j are positive integers with

c1,1 = c2,1 = c3,1 = 1, 2|c2,2, 4|c3,2, 24|c3,3, (D.10)

and εi,j ∈ {±1}. It would be interesting to determine the pattern for arbitrary depth, but

we are limited to relatively small charges b by our implementation of the IOT algorithm.29

Let us present some evidence for this conjecture in a few simple examples where the IOT

algorithm applies.

29The IOT algorithm for U(N) constructs Zb→vmono, IOT as a sum of functions labeled by N -tuples of Young

diagrams, and the bottleneck lies in enumerating these diagrams. Namely, given b, v in the Cartan of U(N)

where b bubbles into v, we define the matrix K = diag(K1, . . . ,Kk) by

Tr e2πibν = Tr e2πivν + (e2πiν + e−2πiν − 2) Tr e2πiKν , (D.11)

where ν is a dummy variable. This condition can be understood by fixing a Weyl ordering of v and

ordering the entries of K from greatest to least. Then the algorithm requires finding all N -tuples of Young

diagrams with k boxes in all, colored with the numbers s = 1, . . . , k, such that Ks = vα(s) + js − is where

α(s) = 1, . . . , N labels the diagram to which s belongs and is, js are the row and column positions.
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D.3 Examples

D.3.1 U(2) with Na = Nf = 1

We start with U(2) SQCD with one adjoint and one fundamental hypermultiplet, which

appears as a prototypical example throughout these appendices. Our conventions for U(N)

are as in section 5.3.2. For convenience, we first record some useful star products of CBOs

(to be derived below). The free sector is generated by the ∆ = 1/2 operators M(±1,0),

whose quadratic star products generate the ∆ = 1 operators M(±2,0) and M(1,−1):

(M(±1,0))2 =M(±2,0), (D.12)

M(−1,0) ?M(1,0) =M(1,0) ?M(−1,0) +
2

r
=M(1,−1). (D.13)

On the other hand, the ∆ = 1 operators tr Φ and M±(1,1) satisfy the quadratic relations

M±(1,1)?M±(1,1) =M±(2,2), (D.14)

M±(1,1)?M∓(1,1) =

(
1

2r
±iΦ1

)(
1

2r
±iΦ2

)
=

1

4r2
± i

2r
trΦ+

1

2
[trΦ2−(trΦ)2], (D.15)

[trΦ,M±(1,1)]? =±2i

r
M±(1,1), (D.16)

where we have defined the commutator [·, ·]? with respect to the star product. In the mixed

sector, we have the relations

M±(1,1) ?M(±1,0) =M(±1,0) ?M±(1,1) =M±(2,1), (D.17)

M±(1,1) ?M(∓1,0) ± 1

2r
M(±1,0) = −i[Φ2M(±1,0)], (D.18)

M(∓1,0) ?M±(1,1) ∓ 1

2r
M(±1,0) = −i[Φ2M(±1,0)], (D.19)

as well as the miscellaneous relations

M(1,−1) ?M(1,0) =M(1,0) ?M(1,−1) +
2

r
M(1,0) =M(2,−1), (D.20)

M(2,0) ?M(1,0) = (M(1,0))3 =M(3,0), (D.21)

M(1,−1) ?M(1,−1) =M(2,−2) − 2

r
M(1,−1). (D.22)

Implicit in the above relations is a choice of basis (monopole bubbling coefficients), which

we now specify.

In U(2) gauge theory, a monopole of charge (b1, b2) can bubble if and only if |b1−b2| ≥ 2.

In particular, the following monopoles cannot bubble:

M(1,0), M(1,1), M(2,1). (D.23)
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To examine some monopoles of small charge that can bubble, we compute that the IOT

algorithm yields the following bubbling coefficients in U(2) SQCD with Na = Nf = 1:

Z
(2,0)→(1,1)
mono, IOT = 2− 1

2(1+σ2
12)

+O(β), (D.24)

Z
(1,−1)→(0,0)
mono, IOT =

β

2

[
1− 1

8(1−iσ12)
− 1

8(1+iσ12)
− 1

i(σ1+σ2)

]
(σ1+σ2)+O(β2), (D.25)

Z
(3,0)→(2,1)
mono, IOT = 3− 3

9+4σ2
12

+O(β), (D.26)

Z
(2,−1)→(1,0)
mono, IOT = iβ

[
1−i(σ1+σ2)+

iσ1

2
− 1−iσ1

4(3−2iσ12)
+

1+iσ1

4(3+2iσ12)

]
+O(β2). (D.27)

In this theory, the leading power of β in Z
(b1,b2)→(v1,v2)
mono, IOT is ∆(b1,b2)−∆(v1,v2) = 1

2(|b1|+ |b2|−
|v1| − |v2|). Applying the prescription (D.6), we obtain

Z(2,0)→(1,1)
mono (Φ1,Φ2) = 2− 1

2(1+r2Φ2
12)

, (D.28)

Z(1,−1)→(0,0)
mono (Φ1,Φ2) =−i

[
1− 1

8(1−irΦ12)
− 1

8(1+irΦ12)
− 1

ir trΦ

]
trΦ, (D.29)

Z(3,0)→(2,1)
mono (Φ1,Φ2) = 3− 1

4(1−irΦ12)
− 1

4(2+irΦ12)
, (D.30)

Z(2,−1)→(1,0)
mono (Φ1,Φ2) =

1

2r

[
3−4ir trΦ+2irΦ1−

1−2irΦ1

4(1−irΦ12)
+

3+2irΦ1

4(2+irΦ12)

]
, (D.31)

which enter into the shift operators

M(2,0) = M (2,0) + Z(2,0)→(1,1)
mono (Φ1,Φ2)M (1,1), (D.32)

M(1,−1) = M (1,−1) + Z(1,−1)→(0,0)
mono (Φ1,Φ2), (D.33)

M(3,0) = M (3,0) + Z(3,0)→(2,1)
mono (Φ1,Φ2)M (2,1) + Z(3,0)→(2,1)

mono (Φ2,Φ1)M (1,2), (D.34)

M(2,−1) = M (2,−1) + Z(2,−1)→(1,0)
mono (Φ1,Φ2)M (1,0) + Z(2,−1)→(1,0)

mono (Φ2,Φ1)M (0,1). (D.35)

Using these shift operators, we can then reproduce the star products for this theory given

in (D.12), (D.13), (D.20), (D.21). Hence these results of the IOT algorithm are consistent

with polynomiality.

All of the bubbling monopoles considered in the previous paragraph bubble to depth 1,

and clearly satisfy (D.7) with ε1,1 = 1. To see some more complicated examples, let us first

consider monopoles whose charges take the form (a,−a). We have already seen howM(1,−1)

bubbles. For the star product relation (D.22) to hold, it turns out that we must define

M(2,−2) = M (2,−2) + Z(2,−2)→(1,−1)
mono (Φ1,Φ2)M (1,−1) + Z(2,−2)→(1,−1)

mono (Φ2,Φ1)M (−1,1)

+
1

2
Z(2,−2)→(0,0)

mono (Φ1,Φ2) (D.36)
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where Z
(2,−2)→(1,−1)
mono (Φ1,Φ2) and Z

(2,−2)→(0,0)
mono (Φ1,Φ2) are obtained via (D.6) from

Z
(2,−2)→(1,−1)
mono, IOT = β

[
2i+ σ1 + σ2 −

σ1 + σ2

4(4 + σ2
12)

]
+O(β2), (D.37)

Z
(2,−2)→(0,0)
mono, IOT =

β2

2

[
σ2

1 + σ2
2 + 4σ1σ2 + 4i(σ1 + σ2)− 3 +

9(3− 4σ1σ2)

32(4 + σ2
12)

(D.38)

+
15− 32i(σ1 + σ2)− 60σ1σ2

32(1 + σ2
12)

]
+O(β3). (D.39)

The factor of 1/2 in (D.36) is not accounted for by Weyl symmetrization. As for M(3,−3),

we must define

M(3,−3) = M (3,−3) + Z(3,−3)→(2,−2)
mono (Φ1,Φ2)M (2,−2) + Z(3,−3)→(2,−2)

mono (Φ2,Φ1)M (−2,2)

+
1

8

[
Z(3,−3)→(1,−1)

mono (Φ1,Φ2)M (1,−1) + Z(3,−3)→(1,−1)
mono (Φ2,Φ1)M (−1,1)

]
+

1

24
Z(3,−3)→(0,0)

mono (Φ1,Φ2) (D.40)

to ensure closure of the star algebra, namely for the relation

(M(1,−1))3 =M(3,−3) − 6

r
M(2,−2) +

4

r2
M(1,−1) (D.41)

to hold. The bubbling coefficients are obtained from

Z
(3,−3)→(2,−2)
mono, IOT =

3β

2

[
σ1+σ2+3i− σ1+σ2

4(9+σ2
12)

]
+O(β2), (D.42)

Z
(3,−3)→(1,−1)
mono, IOT = 3β2

[
2σ2

1 +2σ2
2 +6σ1σ2+12i(σ1+σ2)−15+

9(2−σ1σ2)

8(9+σ2
12)

− 31(σ1σ2−1)+24i(σ1+σ2)

8(4+σ2
12)

]
+O(β3), (D.43)

Z
(3,−3)→(0,0)
mono, IOT = 3β3

[
σ3

1 +σ3
2 +9σ1σ2(σ1+σ2)+9i(σ2

1 +σ2
2 +4σ1σ2)− 89

4
(σ1+σ2)−15i

+
225(σ1+σ2)(5−4σ1σ2)

1024(9+σ2
12)

+
3(108i+35(σ1+σ2))(3−4σ1σ2)

128(4+σ2
12)

+
9(480i+683(σ1+σ2)−1920iσ1σ2−380σ1σ2(σ1+σ2))

1024(1+σ2
12)

]
+O(β4). (D.44)

These examples exhibit the combinatorial factors in (D.8) and (D.9), with all signs εi,j = 1.

To substantiate this pattern, we now consider monopoles with charges of the form

(a, 0). For such monopoles, bubbling always occurs to operators of the same dimension,

and the polynomiality criterion (M(1,0))a = M(a,0) fixes the combinatorial factors. For

M(4,0), we must define

M(4,0) = M (4,0) + Z(4,0)→(3,1)
mono (Φ1,Φ2)M (3,1) + Z(4,0)→(3,1)

mono (Φ2,Φ1)M (1,3)

+
1

2
Z(4,0)→(2,2)

mono (Φ1,Φ2)M (2,2) (D.45)
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where the bubbling coefficients are obtained from

Z
(4,0)→(3,1)
mono, IOT = 4− 1

4+σ2
12

+O(β), (D.46)

Z
(4,0)→(2,2)
mono, IOT = 12− 15i

8(i+σ12)
− 15i

8(i−σ12)
− 9i

16(2i+σ12)
− 9i

16(2i−σ12)
+O(β). (D.47)

For M(5,0), we must define

M(5,0) = M (5,0) + Z(5,0)→(4,1)
mono (Φ1,Φ2)M (4,1) + Z(5,0)→(4,1)

mono (Φ2,Φ1)M (1,4)

+
1

4

[
Z(5,0)→(3,2)

mono (Φ1,Φ2)M (3,2) + Z(5,0)→(3,2)
mono (Φ2,Φ1)M (2,3)

]
(D.48)

where the bubbling coefficients are obtained from

Z
(5,0)→(4,1)
mono, IOT = 5− 5

25 + 4σ2
12

+O(β), (D.49)

Z
(5,0)→(3,2)
mono, IOT = 40− 115i

12(3i+ 2σ12)
− 115i

12(3i− 2σ12)
− 9i

4(5i+ 2σ12)
− 9i

4(5i− 2σ12)

+O(β). (D.50)

For M(6,0), we must define

M(6,0) = M (6,0) + Z(6,0)→(5,1)
mono (Φ1,Φ2)M (5,1) + Z(6,0)→(5,1)

mono (Φ2,Φ1)M (1,5)

+
1

8

[
Z(6,0)→(4,2)

mono (Φ1,Φ2)M (4,2) + Z(6,0)→(4,2)
mono (Φ2,Φ1)M (2,4)

]
+

1

24
Z(6,0)→(3,3)

mono (Φ1,Φ2)M (3,3) (D.51)

where the bubbling coefficients are obtained from

Z
(6,0)→(5,1)
mono, IOT = 6− 3

2(9+σ2
12)

+O(β), (D.52)

Z
(6,0)→(4,2)
mono, IOT = 120− 93i

8(2i+σ12)
− 93i

8(2i−σ12)
− 9i

4(3i+σ12)
− 9i

4(3i−σ12)
+O(β), (D.53)

Z
(6,0)→(3,3)
mono, IOT = 480− 2565i

32(i+σ12)
− 2565i

32(i−σ12)
− 315i

8(2i+σ12)
− 315i

8(2i−σ12)

− 225i

32(3i+σ12)
− 225i

32(3i−σ12)
+O(β). (D.54)

All of these examples are consistent with (D.8) and (D.9) for bubbling to depths 2 and 3,

again with all signs εi,j = 1. To explore higher monopole charges, it would be useful to

have a more efficient implementation of the IOT algorithm.

Contrary to the general expectation from (D.2), nearly all of the expressions for

Zb→vmono, IOT that we have encountered so far in this section are manifestly symmetric in

σ1 ↔ σ2: an exception is (D.27).
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D.3.2 U(2) with Na = 0 and Nf ≥ 0

In examining these theories, we arrive at examples of two interesting phenomena: the

fact that the additional combinatorial factors in (D.7)–(D.9) must be supplemented by

nontrivial signs, and bubbling into higher-dimension operators.30

This class of theories is ugly when Nf = 3 and good when Nf > 3. The dimension of

the (a, b) monopole is

∆(a,b) =
Nf

2
(|a|+ |b|)− |a− b|. (D.55)

Bubbling occurs to monopoles of smaller |a − b|, and we see that a monopole bubbles

into monopoles of equal or lower dimension only when a and b have opposite signs. In

particular, the (n, 0) monopoles have minimal dimension ∆(n,0) = |n|(Nf/2 − 1) for their

topological class, yet nonetheless bubble.

For example, we find that the relation (M(1,0))n =M(n,0) holds only after accounting

for bubbling into higher-dimension operators. For n > 0, the monopolesM(n,0) that bubble

to depth at most 2 are given by

(M(1,0))2 =M (2,0)− 2r2

(irΦ12+1)(irΦ12−1)
M (1,1), (D.56)

(M(1,0))3 =M (3,0)− 3r2

(irΦ12+2)(irΦ12−1)
M (2,1)− 3r2

(irΦ12+1)(irΦ12−2)
M (1,2), (D.57)

(M(1,0))4 =M (4,0)− 4r2

(irΦ12+3)(irΦ12−1)
M (3,1)− 4r2

(irΦ12+1)(irΦ12−3)
M (1,3)

+
6r4

(irΦ12+2)(irΦ12+1)(irΦ12−1)(irΦ12−2)
M (2,2), (D.58)

(M(1,0))5 =M (5,0)− 5r2

(irΦ12+4)(irΦ12−1)
M (4,1)− 5r2

(irΦ12+1)(irΦ12−4)
M (1,4)

+
10r4

(irΦ12+3)(irΦ12+2)(irΦ12−1)(irΦ12−2)
M (3,2)

+
10r4

(irΦ12+2)(irΦ12+1)(irΦ12−2)(irΦ12−3)
M (2,3). (D.59)

Using (D.6), all of these rational functions are accounted for by bubbling coefficients for

M(n,0) derived from the IOT algorithm if we set ε1,1 = ε2,1 = −1, ε2,2 = +1, and c2,2 = 2

in (D.7) and (D.8).

In this theory, we also have

M(−1,0)?M(1,0) =M (1,−1)+
(−1)Nf+1

rNf−2

[
(irΦ1−1/2)Nf

irΦ12(irΦ12−1)
+

(irΦ2−1/2)Nf

irΦ21(irΦ21−1)

]
, (D.60)

M(1,0)?M(−1,0) =M (1,−1)+
(−1)Nf+1

rNf−2

[
(irΦ1+1/2)Nf

irΦ12(irΦ12+1)
+

(irΦ2+1/2)Nf

irΦ21(irΦ21+1)

]
. (D.61)

30Heuristically, monopole bubbling is similar to operator mixing in that both effects are related to renor-

malization (in the case of bubbling, a renormalization of the GNO charge), and both relate operators with

the same global symmetry charges (e.g., topological charge). However, bubbling differs from mixing in that

it does not necessarily occur to monopoles of equal or lower dimension, and the bubbling coefficients that

account for differences in dimension are generally rational functions of Φ.
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The rational function appearing in the first line (D.60) is precisely the bubbling coefficient

Z
(1,−1)→(0,0)
mono computed via the IOT algorithm and (D.6), after adjusting for a minus sign:

M(−1,0) ?M(1,0) =M(1,−1) = M (1,−1) − Z(1,−1)→(0,0)
mono (Φ1,Φ2). (D.62)

The second line (D.61) simply differs from the first by a polynomial.31 Similarly, we find

it necessary to define

M(2,−2) = M (2,−2) − Z(2,−2)→(1,−1)
mono (Φ1,Φ2)M (1,−1) − Z(2,−2)→(1,−1)

mono (Φ2,Φ1)M (−1,1)

+
1

2
Z(2,−2)→(0,0)

mono (Φ1,Φ2) (D.64)

for star products involvingM(2,−2) to close, where the relevant bubbling coefficients follow

from applying (D.6) to

Z
(2,−2)→(1,−1)
mono, IOT =

βNf−2

2Nf−2

[
2(σ1 + i)Nf

σ12(σ12 + 2i)
+ (σ1 ↔ σ2)

]
+O(βNf−1), (D.65)

Z
(2,−2)→(0,0)
mono, IOT =

β2Nf−4

24Nf−5

[
(2σ1 + i)Nf

σ12(σ12 + i)2

(
(2σ1 + 3i)Nf

σ12 + 2i
+

2(2σ2 + i)Nf

σ12 − i

)
+ (σ1 ↔ σ2)

]
+O(β2Nf−3). (D.66)

Hence the shift operators forM(1,−1) andM(2,−2) fall in line with the general patterns (D.7)

and (D.8).

As an aside, examining some of the simplest relations involving M(2,−2) and dressings

of M(1,−1) allows us to determine the abelianized bubbling coefficients for M(1,−1) in the

“IOT basis,” which are not immediate consequences of the IOT algorithm. First, we obtain

the relation

(M(1,−1))2 =M(2,−2) + [P1(Φ1,Φ2)M(1,−1)], (D.67)

where we have defined the dressed and bubbled monopole

[P1(Φ1,Φ2)M(1,−1)] ≡ P1(Φ1,Φ2)M (1,−1) + P1(Φ2,Φ1)M (−1,1) −R1(Φ1,Φ2) (D.68)

(note the minus sign in front of R1, reflecting (D.62)) with P1 being the polynomial

P1(Φ1,Φ2) =
(−1)Nf

rNf−2(irΦ12+1)
(D.69)

×
[

(irΦ1−1/2)Nf−(irΦ2−1/2)Nf

irΦ12
− (irΦ1+1/2)Nf−(irΦ2−3/2)Nf

irΦ12+2

]
and R1 being a rational function whose explicit form we omit for brevity. We also have

M(−2,0) ?M(2,0) =M(2,−2). (D.70)

31Setting Φ1 = x+y
2ir

and Φ2 = y−x
2ir

, we check that [M(1,0),M(−1,0)]? is proportional to the polynomial

(x− 1)[(x+ y + 1)Nf − (y − x− 1)Nf ] + (x+ 1)[(y − x+ 1)Nf − (x+ y − 1)Nf ]

x(x− 1)(x+ 1)
(D.63)

in x and y (moreover, this polynomial is even in x, which guarantees that it is Weyl-invariant with respect

to Φ1 ↔ Φ2).
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On the other hand, reversing the order of the star product gives

M(2,0) ?M(−2,0) =M(2,−2) + [P2(Φ1,Φ2)M(1,−1)] +Q(Φ1,Φ2) (D.71)

where we have defined the dressed and bubbled monopole

[P2(Φ1,Φ2)M(1,−1)] ≡ P2(Φ1,Φ2)M (1,−1) + P2(Φ2,Φ1)M (−1,1) −R2(Φ1,Φ2), (D.72)

again accounting for the minus sign for bubbling at depth 1 in this theory. Here, the dressing

function P2 is a non-Weyl-invariant polynomial, Q (which appears in the star product) is a

Weyl-invariant polynomial, and R2 is a rational function, none of which we write explicitly.

We have seen that the correct dressing prescription is to associate a bubbling coefficient to

each abelian (non-Weyl-averaged) monopole shift operator. So we have

M̃ (1,−1) =M (1,−1)+R(Φ1,Φ2) =⇒ M(1,−1) =M (1,−1)+R(Φ1,Φ2)+R(Φ2,Φ1) (D.73)

for some (a priori, non-symmetric) rational function R(Φ1,Φ2). Given the relations stated

above, the bubbling function R(Φ1,Φ2) must satisfy the overconstrained system of

equations

R(Φ1,Φ2) +R(Φ2,Φ1) = −Z(1,−1)→(0,0)
mono (Φ1,Φ2), (D.74)

Pi(Φ1,Φ2)R(Φ1,Φ2) + Pi(Φ2,Φ1)R(Φ2,Φ1) = −Ri(Φ1,Φ2) (i = 1, 2), (D.75)

which require that

R(Φ1,Φ2) =
Pi(Φ2,Φ1)Z

(1,−1)→(0,0)
mono (Φ1,Φ2)−Ri(Φ1,Φ2)

Pi(Φ1,Φ2)− Pi(Φ2,Φ1)
(i = 1, 2) (D.76)

where Z
(1,−1)→(0,0)
mono and Ri are symmetric but Pi is (in general) not.32 These equations

indeed have a solution: using the known expressions for Pi, Ri (i = 1, 2), we deduce that

R(Φ1,Φ2) =


− (1− 2irΦ2)Nf

2Nf rNf−2(irΦ12)(1 + irΦ12)
for Nf ≥ 5,

−1

2
Z(1,−1)→(0,0)

mono (Φ1,Φ2) for Nf = 0, . . . , 4.

(D.78)

In particular, R(Φ1,Φ2) is symmetric for Nf = 0, . . . , 4, in which case

Ri(Φ1,Φ2) =

[
Pi(Φ1,Φ2) + Pi(Φ2,Φ1)

2

]
Z(1,−1)→(0,0)

mono (Φ1,Φ2) (D.79)

for i = 1, 2 (in words, the dressing factor for the identity is simply the Weyl-averaged

dressing polynomial).

32If Pi is symmetric, then the above expression is indeterminate and we have simply

Pi(Φ1,Φ2)Z(1,−1)→(0,0)
mono (Φ1,Φ2) = Ri(Φ1,Φ2). (D.77)
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D.3.3 U(3) with Na = 0 and Nf ≥ 0

A few new lessons can be learned by going to higher rank. For U(3) SQCD with fun-

damental flavors, we will be brief and discuss only the monopoles M(1,0,−1), M(2,−1,−1),

M(1,1,−2), which bubble to depth at most 2. The IOT results for the Weyl-averaged bub-

bling coefficients of these monopoles are as follows (these will be useful references for our

analysis of the SU(3) theory with the same matter content). For M(1,0,−1), we have

Z
(1,0,−1)→(0,0,0)
mono, IOT =

(
− iβ

2

)Nf−4 3∑
i=1

(iσi − 1/2)Nf∏
j 6=i iσij(iσij − 1)

+O(βNf−3). (D.80)

For M(2,−1,−1), we have

Z
(2,−1,−1)→(1,0,−1)
mono, IOT =

βNf−2

22Nf−5

1

i+2σ12

(
2Nf−1(i+σ1)Nf

3i+2σ12
+

(i+2σ2)Nf

−3i+2σ12

)
+O(βNf−1), (D.81)

Z
(2,−1,−1)→(0,0,0)
mono, IOT =

β2Nf−6

24Nf−7

∑
{i,j,k}

(i+2σi)
Nf (i+2σj)

Nf

σij(i+σij)σik(i+σik)σjk(i+σjk)
+O(β2Nf−5), (D.82)

where {i, j, k} runs over permutations of {1, 2, 3} and in the first line, the correspond-

ing expressions for other Weyl orderings of the charges (1, 0,−1) are obtained by taking

permutations. For M(1,1,−2), we have

Z
(1,1,−2)→(1,0,−1)
mono, IOT = Z

(2,−1,−1)→(1,0,−1)
mono, IOT |σ1→σ3 , (D.83)

Z
(1,1,−2)→(0,0,0)
mono, IOT = Z

(2,−1,−1)→(0,0,0)
mono, IOT . (D.84)

Polynomiality shows that in addition to using (D.6) to reproduce the expected bubbling

coefficients Zb→vmono, we must set c2,2 = 2 in (D.8) for bubbling to depth 2. Moreover, one

can show that the shift operators for M(1,0,−1) and M(2,0,−2) must be defined by setting

ε1,1 = 1 and ε2,1 = ε2,2 = 1 in (D.7) and (D.8), respectively, whereas the shift operators for

M(2,−1,−1) and M(1,1,−2) must be defined by setting ε2,1 = ε2,2 = −1 in (D.8) (note that

the monopole of charge (2, 0,−2) bubbles not only into (1, 0,−1) and (0, 0, 0), but also into

the higher-dimension monopoles (2,−1,−1) and (1, 1,−2)). These examples illustrate that

the signs in (D.7)–(D.9) are not only theory-dependent, but also monopole-dependent.

E More (quantized) chiral rings

In this section, we use our formalism to compute the quantized chiral rings of some simple

theories.

Existing approaches to deriving the Coulomb branch chiral rings of 3D N = 4 quiver

gauge theories or their quantizations include the Hilbert series [82, 88], abelianization [59,

70], combinations of the aforementioned techniques [89], and incorporating half-BPS local

operators into the type IIB brane/S-duality realization [90] of 3D mirror symmetry [91]. In

particular, the Hilbert series can be used to infer the quantum numbers of the generators

and their relations (such as for U , USp, and SO gauge theories, for which the Coulomb

branch is a complete intersection [82]), but it does not specify numerical coefficients.
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When the moduli space is a hyperkähler cone, these known techniques for extracting

generators and ring relations work well. In other situations, such as in bad theories [46–49],

the chiral ring has not been as thoroughly studied. In particular, the Coulomb branch of

SU(Nc) gauge theory with Nf fundamental flavors has no global symmetry, and the case

Nc > 2 is not yet well-understood; we make some comments on the case Nc = 3 below. We

expect such theories to present good opportunities for applications of our formalism.

All of the non-abelian examples in this section take the form of U(Nc) or SU(Nc)

gauge theories with fundamental and adjoint matter (Nf and Na). In these theories, the

dimension of a monopole with GNO charge (b1, . . . , bNc), computed in the UV, is

∆ =
1

2
Nf (|b1|+ · · ·+ |bNc |) + (Na − 1)

∑
i<j

|bi − bj |, (E.1)

where we have used the same conventions for roots and weights of SU(Nc) as for U(Nc) (see

section 5.3.2), with the understanding that b1 + · · ·+bNc = 0 in the former case. According

to the Gaiotto-Witten classification, such a theory is good, bad, or ugly if its minimum ∆

is ≥ 1, ≤ 0, or = 1/2, respectively (in bad theories, unitarity-violating monopole operators

are realized by free scalar fields in an IR dual description [46, 47]). For SU(Nc), the

monopole of smallest dimension has charge (1,−1,~0) and ∆ = Nf + 2(Nc − 1)(Na − 1), so

the theory is good when

Nf + 2(Nc − 1)Na ≥ 2Nc − 1. (E.2)

It is never ugly because ∆ is an integer. On the other hand, for U(Nc), the monopoles of

smallest dimension have charge (±1,~0) and ∆ = Nf/2 + (Na − 1)(Nc − 1). We see that

when Na = 1 and Nf > 0, both the SU and U theories are never bad.

E.1 SQEDN versus U(1) with one hyper of charge N

Before presenting the non-abelian examples, we start by providing another example of two

theories that have the same Coulomb branch but different quantizations. These theories

are SQEDN and U(1) gauge theory with a single hyper of charge N (the ZN gauge theory

of a free hypermultiplet), which we denote by U(1) + N . The CBOs M±1,Φ in either

theory are represented by the shift operators

M1
N =


(−1)N

rN/2

(
1−B

2
+ iσ

)N
e−

i
2
∂σ−∂B in SQEDN ,

(−1)N

rN/2

(
1−NB

2
+ iNσ

)
N

e−
i
2
∂σ−∂B in U(1) +N,

(E.3)

as well as by

M−1
N =

e
i
2
∂σ+∂B

rN/2
, ΦN =

1

r

(
σ +

i

2
B

)
×

{
1 in SQEDN ,

N in U(1) +N.
(E.4)

In both theories, let

X =
1

(4π)N/2
M−1, Y =

1

(4π)N/2
M1, Z = − i

4π
Φ. (E.5)
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Then we compute that

X ? Y =



(
Z +

1

8πr

)N
in SQEDN ,

N−1∏
k=0

(
Z +

2k + 1

8πr

)
in U(1) +N ,

(E.6)

where multiplication on the r.h.s. is understood to be ?. The two theories have identical

Coulomb branches (C2/ZN ) and chiral ring relations, as can be seen in the r → ∞ limit

of (E.6), but different star products.

E.2 Theories on D2-branes

The first few non-abelian examples that we study can be realized as worldvolume theories

on Nc D2-branes [82]. These theories, which all have at least one adjoint hypermultiplet,

are particularly straightforward to analyze because the matter contribution cancels the

denominator in the abelianized chiral ring relations (2.30). We will see explicitly how to

reproduce the formalism of [59] for such theories, working our way up in complexity.

E.2.1 U(2) with Na = Nf = 1

The Coulomb branch of this theory is known to be Sym2(C2), which has complex dimension

four. To exhibit the Coulomb branch chiral ring, let us denote the generators of each C2

by xi, yi for i = 1, 2. The coordinate ring of the symmetric product is generated by the

five symmetric polynomials

x1 + x2, y1 + y2, x1x2, y1y2, (x1 − x2)(y1 − y2) (E.7)

(the S2 = Z2 by which we quotient acts as 1↔ 2), subject to the single relation

[(x1 + x2)2 − 4x1x2][(y1 + y2)2 − 4y1y2] = [(x1 − x2)(y1 − y2)]2. (E.8)

This relation is precisely that of C2/Z2, whence Sym2(C2) ∼= C2 × (C2/Z2).

We would like to identify the combinations (E.7) with Coulomb branch operators.

Recall from section 5.3.3 that the candidate such operators are

tr Φ, M(±1,0), M±(1,1), M(1,−1), M(±2,0). (E.9)

While the monopolesM(±1,0) andM±(1,1) do not bubble and are therefore represented by

the näıve (unbubbled) shift operators (5.42), the monopolesM(1,−1) andM(±2,0) do bubble

and are most conveniently constructed as star products of M(±1,0): see (D.12) and (D.13).

Thinking of xi, yi as having topological charge ∓1, respectively (these conventions are

natural from the point of view of correlation functions, as in [38] and appendix F), we

would expect to identify x1 + x2 and y1 + y2 with M∓(1,0), x1x2 and y1y2 with M∓(1,1),

and (x1−x2)(y1− y2) with a linear combination ofM(1,−1) and tr Φ. Thus from (E.8), we

would expect a chiral ring relation of the form

(M(−2,0) − 4M(−1,−1))(M(2,0) − 4M(1,1)) = (M(1,−1) + c tr Φ)2 (E.10)
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for some constant c, where the products are commutative (not ?). Since the star prod-

uct gives a quantization of the chiral ring product, we would expect (E.10) to hold with

respect to the star product after appropriate ordering, and up to subleading O(1/r)

terms.33 Indeed, letting ()? denote symmetrization with respect to the star product (e.g.,

(O1O2)? = 1
2(O1 ?O2 +O2 ?O1)), we find that with c = 2i,

(l.h.s. of (E.10)− r.h.s. of (E.10))? = −2

r
M(1,−1) − 4i

r
tr Φ +

5

r2

r→∞−−−→ 0, (E.11)

which is equivalent to (E.10) in the chiral ring (r →∞). To summarize, we identify

x1 + x2 ↔M(−1,0), y1 + y2 ↔M(1,0), x1x2 ↔M(−1,−1), y1y2 ↔M(1,1),

(x1 − x2)(y1 − y2)↔ −M(1,−1) − 2i tr Φ (E.12)

in the chiral ring, as claimed in (5.50). Given what we have said so far, the last identification

would be consistent with either sign in ±(M(1,−1) + 2i tr Φ): we explain the above choice

of sign in our discussion of the case Nf > 1 below.

E.2.2 U(2) with Na = 1 and Nf ≥ 1

The Coulomb branch of this theory is known to be Sym2(C2/ZNf ). We denote the gener-

ators of each copy of C2/ZNf by xi, yi, zi, which satisfy the relations

xiyi = z
Nf
i (E.13)

for i = 1, 2. As in our discussion of the case Nf = 1, the coordinate ring is generated by

the nine symmetric polynomials

x1 + x2, y1 + y2, z1 + z2, x1x2, y1y2, z1z2,

(x1 − x2)(y1 − y2), (x1 − x2)(z1 − z2), (y1 − y2)(z1 − z2), (E.14)

which satisfy the five relations

(x1x2)(y1y2) = (z1z2)Nf , (E.15)

1

2
[(x1 + x2)(y1 + y2) + (x1 − x2)(y1 − y2)] = z

Nf
1 + z

Nf
2 , (E.16)

[(x1 + x2)2 − 4x1x2][(y1 + y2)2 − 4y1y2] = [(x1 − x2)(y1 − y2)]2, (E.17)

[(x1 + x2)2 − 4x1x2][(z1 + z2)2 − 4z1z2] = [(x1 − x2)(z1 − z2)]2, (E.18)

[(y1 + y2)2 − 4y1y2][(z1 + z2)2 − 4z1z2] = [(y1 − y2)(z1 − z2)]2. (E.19)

The r.h.s. of (E.16) can be written in terms of the generators z1 + z2 and z1z2 using

Newton’s identities.

33There are many different ways of writing the star products that reduce to the same chiral ring relations.

We find the “democratic” symmetrization convenient.
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To physically interpret the Coulomb branch chiral ring, note that the lowest-dimension

(∆ = Nf/2) monopoles are M(±1,0). The relation (D.12) holds equally well when Nf ≥ 1

as when Nf = 1, while the relation (D.13) generalizes to

M(±1,0) ?M(∓1,0) −M (1,−1)

=
(−1)Nf

2Nf+2rNf

[
(2irΦ1 ± 1)Nf (2irΦ12 ± 1)2

irΦ12(irΦ12 ± 1)
+

(2irΦ2 ± 1)Nf (2irΦ12 ∓ 1)2

irΦ12(irΦ12 ∓ 1)

]
. (E.20)

One can check that the expressionsM(−1,0) ?M(1,0) andM(1,0) ?M(−1,0) differ by a Weyl-

invariant polynomial in tr Φ = Φ1 + Φ2 that vanishes in the chiral ring limit (r →∞). We

work in a basis where M(−1,0) ?M(1,0) =M(1,−1).34 The coordinates xi, yi correspond to

topological charge ∓1 and ∆ = Nf/2, while the zi correspond to zero topological charge

and ∆ = 1. Hence we still expect to have

x1 + x2 ↔M(−1,0), y1 + y2 ↔M(1,0) (E.22)

with ∆ = Nf/2, and from the relation

M±(1,1) ?M∓(1,1) =

[(
∓ 1

2r
− iΦ1

)(
∓ 1

2r
− iΦ2

)]Nf
(E.23)

(which is derived in our discussion of arbitrary Nc below), we also expect to have

x1x2 ↔M(−1,−1), y1y2 ↔M(1,1), z1z2 ↔ −Φ1Φ2 =
1

2
[tr Φ2 − (tr Φ)2] (E.24)

in the chiral ring, where the first two generators have ∆ = Nf and the last has ∆ = 2. The

remaining generators can be deduced from charge and dimensional considerations, as well

as the relations (E.15)–(E.19). However, we will take a simpler approach. Rather than

directly identifying which Coulomb branch operators are chiral ring generators, we pos-

tulate the following more elementary correspondences between coordinate ring generators

of (C2/ZNf )2 (before the quotient by S2 = Z2) and non-Weyl-averaged Coulomb branch

operators:

x1, x2 ↔M (−1,0),M (0,−1), y1, y2 ↔M (1,0),M (0,1), z1, z2 ↔ −iΦ1,−iΦ2. (E.25)

The basic identifications (E.25) are consistent with all of those stated earlier, and allow us

to determine the missing ones. For instance, we have

1

2
(M (±1,0)M (0,±1) +M (0,±1)M (±1,0)) = C(Φ1,Φ2)M±(1,1) (E.26)

where

C(Φ1,Φ2) ≡ 3 + 4r2Φ2
12

4 + 4r2Φ2
12

r→∞−−−→ 1, (E.27)

34This happens to coincide with the “IOT basis,” in which

M(−1,0) ?M(1,0) =M(1,−1) = M (1,−1) + Z(1,−1)→(0,0)
mono (Φ1,Φ2), (E.21)

generalizing (D.29) for Nf = 1. However, we do not need any of the explicit results of the IOT algorithm

in this section (or, indeed, in this paper).
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which is consistent with x1x2 ↔M(−1,−1) and y1y2 ↔M(1,1) in the chiral ring (since the

M are not gauge-invariant chiral ring operators, the above product is not a star product

and does not obey polynomiality). We now easily deduce (x1 − x2)(y1 − y2) by computing

1

2
((M (−1,0) −M (0,−1))(M (1,0) −M (0,1)) + ((−1, 0)↔ (1, 0))) = −M(1,−1) +R(Φ1,Φ2)

(E.28)

where

R(Φ1,Φ2) ≡ −i(p−(Φ1)− p−(Φ2)) + rΦ12(3 + 4r2Φ2
12)(p+(Φ1) + p+(Φ2))

2Nf+3rNf+1(1 + r2Φ2
12)Φ12

, (E.29)

p±(x) ≡ (−1− 2irx)Nf ± 3(1− 2irx)Nf . (E.30)

We then have that

R(Φ1,Φ2)
r→∞−−−→ 2

[
(−iΦ1)Nf + (−iΦ2)Nf

]
=⇒ (x1 − x2)(y1 − y2)↔ −M(1,−1) + 2

[
(−iΦ1)Nf + (−iΦ2)Nf

]
, (E.31)

which is consistent with (E.16) and reduces to precisely the expected result for Nf = 1.

We further compute that

− i

2

(
(M (−1,0) −M (0,−1))Φ12 + Φ12(M (−1,0) −M (0,−1))

)
=

(
1

2r
− iΦ12

)
M (−1,0) +

(
1

2r
+ iΦ12

)
M (0,−1); (E.32)

in the limit r → ∞, this becomes the dressed monopole −iΦ12M(−1,0), which we identify

with (x1 − x2)(z1 − z2) in the chiral ring. Similarly, we compute that

− i

2

(
(M (1,0) −M (0,1))Φ12 + Φ12(M (1,0) −M (0,1))

)
= −

(
1

2r
+ iΦ12

)
M (1,0) −

(
1

2r
− iΦ12

)
M (0,1); (E.33)

in the limit r → ∞, this becomes the dressed monopole −iΦ12M(1,0), which we identify

with (y1−y2)(z1−z2) in the chiral ring. We have now used (E.25) to identify all of the gen-

erators (E.14) with physical Coulomb branch operators; by construction, the appropriately

symmetrized star products of the latter reproduce the chiral ring relations (E.15)–(E.19).

E.2.3 U(Nc) with Na = 1 and Nf ≥ 1

Our approach to the Coulomb branch chiral ring of U(2) with Na = 1 and Nf ≥ 1 gen-

eralizes straightforwardly to higher rank. To see that the Coulomb branch in this case is

SymNc(C2/ZNf ), we first identify certain elementary non-Weyl-invariant operators with the

coordinates xi, yi, zi of (C2/ZNf )Nc (i = 1, . . . , Nc), along the lines of (E.25). The SymNc

operation corresponds to Weyl averaging. One then easily checks that these operators sat-

isfy the “abelianized” relations xiyi = z
Nf
i , upon which it automatically follows that the
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full (Weyl-invariant) chiral ring generators satisfy the relations of SymNc(C2/ZNf ). This

is essentially the approach advocated in [59].35

Of particular interest are the non-bubbling monopoles M±~k with charges

~k ≡ (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0), k = 1, . . . , Nc, (E.34)

which are natural candidates for chiral ring generators (k = 1 corresponds to the free sector

for Nf = 1). The case k = Nc is special because the sum over Weyl reflections is trivial,

so in this case, the star products M±~k ?M∓~k contain no monopoles and are expressible

purely in terms of Φ. Namely, in this theory, we have

M(−1,...,−1)
N =

e
∑
I( i

2
∂σI+∂BI )

rNcNf/2
, (E.35)

M(1,...,1)
N =

(−1)NcNf

rNcNf/2

[∏
I

(
1−BI

2
+ iσI

)]Nf
e
∑
I(− i

2
∂σI−∂BI ), (E.36)

from which we compute that

M±(1,...,1) ?M∓(1,...,1) =

[∏
I

(
∓ 1

2r
− iΦI

)]Nf
r→∞−−−→

[∏
I

(−iΦI)

]Nf
, (E.37)

generalizing (D.15). One can write the symmetric polynomial in ΦI on the r.h.s. in terms

of traces of powers of Φ using Newton’s identities.

E.3 Theories with no adjoints

We now turn to theories with no adjoints, for which the chiral ring relations do not simplify

so easily. We restrict our attention to theories with SU gauge group (which lack minuscule

monopoles) and fundamental matter.

As mentioned in sections 4.3 and 5.1.1, we can obtain SU(Nc) gauge theory by gauging

the topological U(1) symmetry of a U(Nc) theory with the same matter content. At the

level of local operators in the U(Nc) theory, this is equivalent to restricting to the sector

of zero topological charge and setting tr Φ = 0,36 and indeed, the Coulomb branch of

SU(Nc) gauge theory can be obtained as a hyperkähler quotient of the U(Nc) case by

U(1)top [47, 49].

35The same reasoning implies that the Coulomb branch chiral ring of U(Nc) with Na ≥ 1 and arbitrary

Nf is simply SymNc(C2/ZNf+2(Na−1)). One can also use our polynomiality results for bubbling coefficients

in low-rank theories where the IOT prescription is unavailable to construct the quantized Coulomb branch

chiral rings for other theories on N D2-branes [82]. These include USp(2N) with one antisymmetric and Nf
fundamentals (whose Coulomb branch is SymN (C2/DNf )), and SO(2N + 1) with one symmetric and Nf
fundamentals (whose Coulomb branch is the same as that of USp(2N) with one antisymmetric and Nf + 3

fundamentals).
36This prescription for gauging the U(1)top of U(N) results in SU(N) gauge theory as opposed to any

of the other global forms of su(N), and hence can be performed regardless of matter content. This is

simply because the gauging restricts the lattice of GNO charges of monopoles in the resulting theory, as

a sublattice of the coweight lattice of su(N), to be the coroot lattice. Hence the magnetic gauge group is

PSU(N), which has trivial center.
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Correspondingly, our strategy to obtain the dressed monopoles with the proper abelian-

ized bubbling coefficients in SU(Nc) gauge theory is to start with a U(Nc) gauge theory,

where the minuscule monopoles and their dressed versions do not bubble, and then take

star products of these minuscule monopoles and descend to SU(Nc). For example, in U(Nc)

with Nf fundamentals, the basic monopole shift operators are given by

M(−1,~0) =
1

rNf/2−Nc+1

Nc∑
i=1

1∏
j 6=i irΦij

e
i
2
∂σi+∂Bi , (E.38)

M(1,~0) =
(−1)Nf−Nc−1

rNf/2−Nc+1

Nc∑
i=1

(1/2 + irΦi)
Nf∏

j 6=i irΦij
e−

i
2
∂σi−∂Bi . (E.39)

Their star products (generalizing (D.60) and (D.61)) are

M(±1,~0) ?M(∓1,~0) = M (1,−1,~0) +
(−1)Nf+Nc−1

rNf−2Nc+2

Nc∑
i=1

(irΦi ± 1/2)Nf∏
j 6=i irΦij(irΦij ± 1)

, (E.40)

and we work in a basis whereM(1,−1,~0) =M(−1,~0) ?M(1,~0). In the SU(Nc) theory with Nf

fundamentals, the operator M(1,−1,~0) is then given by the r.h.s. of (E.40) with the bottom

sign, after imposing
∑Nc

i=1 Φi = 0.37

E.3.1 SU(2) with Nf ≥ 0 revisited

We first revisit SU(2) with Nf fundamental flavors to demonstrate how to reproduce the

results of section 5 for the chiral ring and its quantization using the trick of gauging U(1)top

(compare to the analysis in appendix A of [49]). The chiral ring relation can be written as

x2 + zy2 + zNf−1 = 0 (Nf > 0),

x2 + zy2 + y = 0 (Nf = 0). (E.42)

Accounting for monopole bubbling is crucial to obtaining the modified relation for Nf = 0.

In general, we must also account for operator mixing relative to the näıve identifications

x ∼ ΦM(1,−1), y ∼M(1,−1), z ∼ tr Φ2 (E.43)

of the generators with the dressed monopole, bare monopole, and Casimir invariant.

37When possible, we construct the generators for the SU(Nc) chiral ring as products of dressed U(Nc)

minuscule monopoles in such a way as to agree with the bubbling coefficients produced by the IOT algorithm

described in appendix D. This choice of operator basis simply facilitates comparison with the results of [54];

it is no more privileged than those used in the main text.

For SU theories of low rank, the bubbling coefficients constructed in this way are all consistent with

those derived in the main text using polynomiality. For example, setting Nc = 2 and Φ1 = −Φ2 = Φ gives

M(1,−1) = M (1,−1) +
1

2Nf rNf−2

[
(1− 2irΦ)Nf−1 − (1 + 2irΦ)Nf−1

2irΦ

]
. (E.41)

The bubbling coefficient in square brackets is a polynomial in Φ when Nf ≥ 1, as it must be according to

section 4.3.
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We start with the operator tr Φ2 and the minuscule monopoles M(1,0) and M(0,−1) in

U(2) with Nf flavors. From them, we construct

M(1,−1) =M(0,−1) ?M(1,0), Φ1M(1,−1) = Φ1M(0,−1) ?M(1,0), (E.44)

where ∆(1,−1) = Nf − 2. We reduce to SU(2) by setting Φ1 = −Φ2 = Φ. We then compute

using the corresponding shift operators that for all Nf ,

(ΦM(1,−1))2− 1

2
M(1,−1)?trΦ2?M(1,−1)− i

r
M(1,−1)?ΦM(1,−1) =P (Φ)M(1,−1) (E.45)

where P (Φ)M(1,−1) = P (Φ1)M(0,−1)?M(1,0)|Φ1=Φ and P (Φ) is a polynomial of degree Nf :

P (Φ) =

(
−1

2

)Nf+1 (1−(−1)Nf )(2irΦ+1)Nf−1+(2irΦ+1)Nf +(2irΦ−1)Nf

rNf
. (E.46)

To deduce the quantized chiral ring relation from (E.45), we must write P (Φ)M(1,−1) in

terms of generators. Let us see how to do so explicitly for Nf = 0, 1, 2, 3 (all values for

which the theory is bad and the minimum for which it is good):

• When Nf = 0, we find that

P (Φ)M(1,−1) = −M(1,−1). (E.47)

In the chiral ring, we have x2 + zy2 + y = 0 with

x = ΦM(1,−1), y =M(1,−1), z = −1

2
(tr Φ2). (E.48)

• When Nf = 1, we find that

P (Φ)M(1,−1) = iΦM(1,−1) +
1

2r
M(1,−1). (E.49)

In the chiral ring, we have x2 + zy2 + 1 = 0 with

x = 2ΦM(1,−1) − i, y =M(1,−1), z = −2 tr Φ2. (E.50)

• When Nf = 2, we find that

P (Φ)M(1,−1) =
1

2
tr Φ2 ?M(1,−1) − 1

4r2
M(1,−1). (E.51)

In the chiral ring, we have x2 + zy2 + z = 0 with

x = ΦM(1,−1), y = i(2M(1,−1) + 1), z =
1

8
tr Φ2. (E.52)

• When Nf = 3, we find that

P (Φ)M(1,−1) +
i

2
tr Φ2 ? ΦM(1,−1)

+
1

4r
tr Φ2 ?M(1,−1) − 5i

4r2
ΦM(1,−1) − 1

8r3
M(1,−1) = 0. (E.53)

In the chiral ring, we have x2 + zy2 + z2 = 0 with

x = ΦM(1,−1) +
i

4
tr Φ2, y =

√
2iM(1,−1), z =

1

4
tr Φ2. (E.54)
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E.3.2 SU(3) with Nf ≥ 0

Let us describe how to determine the chiral ring of the SU(3) gauge theory with Nf ≥
0 fundamental flavors. From (E.2), we see that this theory is good for Nf ≥ 5. For

comparison, the U(3) theory with the same matter content is ugly for Nf = 5 and good

for Nf > 5.

A set of generators for the Coulomb branch chiral ring of the SU(3) theory has been

identified in [88]. Choosing convenient Weyl orderings of the GNO charges, it consists of

the (dressed) monopoles

∆ =Nf−4 : M(1,0,−1) =M(0,0,−1)?M(1,0,0), (E.55)

∆ = 2Nf−6 : M(2,−1,−1) =M(0,−1,−1)?(M(1,0,0))2, (E.56)

∆ = 2Nf−6 : M(1,1,−2) = (M(0,0,−1))2?M(1,1,0), (E.57)

∆ =Nf−1 : (Φ3
1+Φ3

2)M(1,0,−1) = (Φ3
1+Φ3

2)M(0,0,−1)?M(1,0,0), (E.58)

∆ = 2Nf−5 : (Φ1+Φ2)M(−1,−1,2) = (Φ1+Φ2)M(−1,−1,0)?(M(1,0,0))2, (E.59)

∆ = 2Nf−4 : (Φ2
1+Φ2

2)M(−1,−1,2) = (Φ2
1+Φ2

2)M(−1,−1,0)?(M(1,0,0))2, (E.60)

∆ = 2Nf−5 : (Φ1+Φ2)M(1,1,−2) = (Φ1+Φ2)M(0,0,−1)?M(0,0,−1)?M(1,1,0), (E.61)

∆ = 2Nf−4 : (Φ2
1+Φ2

2)M(1,1,−2) = (Φ2
1+Φ2

2)M(0,0,−1)?M(0,0,−1)?M(1,1,0), (E.62)

which are straightforward to write in terms of non-bubbling monopoles of U(3) (as we have

done above), the dressed monopoles

Φ1M(1,0,−1), Φ2M(1,0,−1), Φ2
1M(1,0,−1), Φ2

2M(1,0,−1), (E.63)

which are less straightforward to construct from elementary dressed monopoles, and the

scalars tr Φ2 and tr Φ3, where we write Φ = diag(Φ1,Φ2,−(Φ1 + Φ2)) in the reduction to

SU(3).38 Constructing the explicit dressings in (E.63) is a delicate procedure, so we elect

to use the generators

∆ =Nf−3 : g
(1,0,−1)
1 ≡M(0,0,−1)?Φ1M(1,0,0) = Φ1M(1,0,−1)+PNf−3(Φ1,Φ2), (E.64)

∆ =Nf−2 : g
(1,0,−1)
2 ≡M(0,0,−1)?Φ2

1M(1,0,0) = Φ2
1M(1,0,−1)+PNf−2(Φ1,Φ2), (E.65)

∆ =Nf−3 : (Φ1+Φ2)M(1,0,−1) = (Φ1+Φ2)M(0,0,−1)?M(1,0,0), (E.66)

∆ =Nf−2 : (Φ2
1+Φ2

2)M(1,0,−1) = (Φ2
1+Φ2

2)M(0,0,−1)?M(1,0,0) (E.67)

in their stead: along with the Casimir invariants, they clearly generate (E.63). The de-

grees d of the unspecified polynomials Pd in (E.64)–(E.67) follow from the dimension for-

mula (E.1). This basis differs slightly from that of [88] and has the benefit that the

corresponding shift operators are easier to construct.

38To obtain this generating set, we consider the NR = 0 case of the results in [88]: (8.17) yields the three

bare monopole operators, while (8.25), (8.26), (8.27), (8.28), (8.29) yield their dressed versions; tr Φ2 and

tr Φ3 are the relevant Casimir invariants after passing from U(3) to SU(3) (8.20). See section 8.4.2 for the

Hilbert series.
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To make sense of the formulas above, first recall that in defining dressed monopoles,

the Weyl group actions on the GNO charges of the abelian summands and on the dressing

factors are opposite to each other. For example, writing

M̃ (1,0,−1) = M (1,0,−1) + Zab
(1,0,−1)→(0,0,0)(Φ1,Φ2,Φ3), (E.68)

we have

P (Φ1,Φ2,Φ3)M(1,0,−1) = P (Φ1,Φ2,Φ3)M̃ (1,0,−1) + P (Φ1,Φ3,Φ2)M̃ (1,−1,0)

+ P (Φ2,Φ3,Φ1)M̃ (−1,1,0) + P (Φ2,Φ1,Φ3)M̃ (0,1,−1)

+ P (Φ3,Φ1,Φ2)M̃ (0,−1,1) + P (Φ3,Φ2,Φ1)M̃ (−1,0,1), (E.69)

where W = S3 in our case. A given dressed monopole can also be written in a number of

different ways, depending on how the components of the GNO charges are Weyl-ordered:

for example, P (Φ1)M(1,0,0), P (Φ2)M(0,1,0), and P (Φ3)M(0,0,1) are all equivalent. Starting

with (E.55), we can construct M(1,0,−1) dressed by any polynomial that is symmetric in

the first two arguments by writing

P (Φ1,Φ2,Φ3)M(0,0,−1) ?M(1,0,0) =
P (Φ1,Φ2,Φ3) + P (Φ2,Φ1,Φ3)

2
M(1,0,−1). (E.70)

Similarly, for P symmetric in the last two arguments, the dressing of M(1,0,−1) by P is

given by the leading term of

M(0,0,−1) ? P (Φ1,Φ2,Φ3)M(1,0,0) (E.71)

(as P is now acted on by the shift operators inM(0,0,−1)). Starting with (E.56), we find that

P (Φ1,Φ2,Φ3)M(0,−1,−1)?(M(1,0,0))2 =
P (Φ1,Φ2,Φ3)+P (Φ1,Φ3,Φ2)

2
M(2,−1,−1). (E.72)

Unlike in the case of M(1,0,−1), this procedure for constructing dressings of M(2,−1,−1) is

completely general because M(2,−1,−1), like M(0,−1,−1), is sensitive only to the part of the

dressing polynomial that is Weyl-symmetric in the last two arguments. Similar statements

hold for M(1,1,−2). Note that in this theory, all non-bubbling monopoles have nontrivial

stabilizers under the Weyl group. In particular, dressing the minuscule monopoles in (E.55)

individually is not enough to extract the abelianized bubbling coefficient Zab
(1,0,−1)→(0,0,0)

in (E.68). However, by dressing both M(0,0,−1) and M(1,0,0) at the same time, one can in

principle extract Zab
(1,0,−1)→(0,0,0) itself (we will not need to do so).

Moving on to the chiral ring, we have listed 14 generators ((E.55)–(E.62), (E.64)–

(E.67), and the Casimir invariants), while the Coulomb branch has complex dimension 4.

Hence we must find at least 10 relations. If the moduli space is not a complete intersection

(meaning that the relations could be redundant at generic points but may all be needed

to describe the whole variety), then we will find strictly more than 10 relations. In this

case, we cannot read off the degrees of the relations and generators from the Hilbert
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series.39 By contrast, the moduli space of U with fundamental hypers is known to be a

complete intersection [82]. To proceed, one can write all possible relations according to

dimension and solve for the coefficients. Rather than presenting an exhaustive analysis,

let us simply determine the lowest-dimension relation that relates operators of different

GNO charges. Clearly, this relation has ∆ = 2Nf − 6. As a further simplification, we work

with the commutative limit of the shift operators (in which the order of the multiplications

in (E.55)–(E.62) and (E.64)–(E.67) is immaterial), as our interest is in the chiral ring and

not its quantization. Then we find that

0 =M(2,−1,−1) +M(1,1,−2)

+ (g
(1,0,−1)
1 )2 − g(1,0,−1)

1 [(Φ1 + Φ2)M(1,0,−1)] + [(Φ1 + Φ2)M(1,0,−1)]2 (E.73)

− 1

2
tr Φ2(M(1,0,−1))2 + P (Φ1,Φ2)M(1,0,−1)

in the chiral ring, where P is a polynomial of degree Nf − 2, expressible in terms of the

Casimirs, which we do not write explicitly (note that P necessarily vanishes for Nf = 0, 1).

F Correlation functions

F.1 Mirror symmetry check for an N = 8 SCFT

In this section, we give more details on the derivation of the mirror maps (5.51)–(5.56) in

the main text.

When discussing an N = 8 SCFT in N = 4 language, it is useful to embed the N = 4

superconformal algebra osp(4|4) into the N = 8 superconformal algebra osp(8|4). To this

end, we have40

so(8)R ⊃ su(2)L ⊕ su(2)R ⊕ su(2)1 ⊕ su(2)2, (F.1)

where su(2)L ⊕ su(2)R is the N = 4 R-symmetry algebra and su(2)1 ⊕ su(2)2 is a flavor

symmetry from the N = 4 point of view [35]. For 3D N = 8 theories, the 1D topological

theory has a global su(2)F symmetry [35], which can be identified with su(2)1 for the Higgs

branch TQFT and su(2)2 for the Coulomb branch TQFT. To write correlation functions

concisely, it is convenient to organize operators in the 1D theory into representations of this

su(2)F symmetry and to contract their su(2)F indices with commuting su(2)F polarization

vectors zi (i = 1, 2) transforming under su(2)F as a doublet. For an operator Oi1···i2j (ϕ)

in the spin-j representation of su(2)F , we define

O(ϕ, z) ≡ Oi1···i2j (ϕ)zi1 · · · zi2j . (F.2)

We thus label operators in the 1D theory by O(∆,j)(ϕ, z) and subscripts H,C depending

on whether they belong to the Higgs or Coulomb branch TQFT, respectively. The label ∆

39Indeed, from (8.38) of [88], although we see that the difference between the degrees of the denominator

and the numerator of the Hilbert series equals the dimension of the moduli space in this case, the degrees

appearing in the denominator only include the dimensions of tr Φ2, tr Φ3, and the bare monopoles (1, 0,−1),

(1, 1,−2), (2,−1,−1); the dimensions of the dressed monopoles are missing.
40The subscripts on the right are also called H,C, F, F ′, respectively, in [92].
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corresponds to the scaling dimension of the 3D operator from which O(∆,j) originates, and

j is the su(2)F spin. We further normalize the two-point functions as

〈O(∆,j)(ϕ1, z1)O(∆,j)(ϕ2, z2)〉 = 〈z1, z2〉2j(signϕ12)2∆ , (F.3)

with all other two-point functions vanishing, where we have defined the su(2)F invariant

〈zA, zB〉 ≡ εijziAz
j
B , ε12 = −ε12 = 1, (F.4)

denoting the su(2)F singlet that can be formed from two polarizations zA and zB. With

the normalization (F.3), three-point functions are fixed by the su(2)F symmetry as follows:

for spins j1, j2, j3 satisfying the triangle inequality,

〈O(∆1,j1)(ϕ1, z1)O(∆2,j2)(ϕ2, z2)O(∆3,j3)(ϕ3, z3)〉 = λ(∆1,j1),(∆2,j2),(∆3,j3)

× 〈z1, z2〉j123〈z2, z3〉j231〈z3, z1〉j312(signϕ12)∆123(signϕ23)∆231(signϕ31)∆312 , (F.5)

where jabc ≡ ja + jb − jc (the correlator vanishes otherwise). The sign factors are fixed

by conformal symmetry, while su(2)F symmetry requires that the polarizations appear as

they do by power counting.

In the following, we specialize to the IR limit of U(Nc) SQCD with Na = Nf = 1.

F.1.1 U(2) with Na = Nf = 1

The 1D Higgs branch theory in the case Nc = 2 was partially analyzed in [37]; our discussion

here is self-contained. On the Higgs branch side, there is a single j = 1/2 operator

Õ(1/2,1/2)
H (ϕ, z) = z1 trQ(ϕ) + z2 tr Q̃(ϕ) (F.6)

and two distinct operators with j = 1:41

Õ(1,1)
H,1 (ϕ, z) = (z1)2(trQ)2(ϕ) + (z2)2(tr Q̃)2(ϕ) + 2z1z2 trQ tr Q̃(ϕ),

Õ(1,1)
H,2 (ϕ, z) = (z1)2 trQ2(ϕ) + (z2)2 tr Q̃2(ϕ) + 2z1z2 trQQ̃(ϕ). (F.7)

The tildes indicate that these operators are unnormalized and do not necessarily obey (F.3).

To find which linear combinations obey (F.3), we compute their two-point functions us-

ing (5.49). Performing Wick contractions in the theory at fixed σ using (5.48), we obtain

〈trQ(ϕ1)trQ̃(ϕ2)〉σ =−signϕ12

4πr
,

〈(trQ)2(ϕ1)(trQ̃)2(ϕ2)〉σ =−2〈trQtrQ̃(ϕ1)trQtrQ̃(ϕ2)〉σ =
1

8π2r2
,

〈trQ2(ϕ1)trQ̃2(ϕ2)〉σ =−2〈trQQ̃(ϕ1)trQQ̃(ϕ2)〉σ =
1

16π2r2

[
1+

1

cosh2(πσ12)

]
, (F.8)

〈(trQ)2(ϕ1)trQ̃2(ϕ2)〉σ = 〈trQ2(ϕ1)(trQ̃)2(ϕ2)〉σ =−2〈trQtrQ̃(ϕ1)trQQ̃(ϕ2)〉σ

=
1

16π2r2
.

41Since the natural index structure is Qi
j and Q̃ij , when we write trQQ̃, we really mean trQQ̃T .
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Substituting these expressions into (5.49),42 we obtain that the orthonormalized operators

O(1/2,1/2)
H (ϕ, z) =

√
4πrÕ(1,1)

H,1 (ϕ, z),

O(1,1)
H,free(ϕ, z) =

√
8π2r2Õ(1,1)

H,1 (ϕ, z), (F.12)

O(1,1)
H,int(ϕ, z) =

√
24π2r2

[
Õ(1,1)
H,2 (ϕ, z)− 1

2
Õ(1,1)
H,1 (ϕ, z)

]
obey (F.3). The subscripts “free” and “int” indicate that this theory flows to the product

of a free sector and an interacting sector. Similarly, the nontrivial three-point functions

with (j1, j2, j3) = (1/2, 1/2, 1) follow from

〈trQ(ϕ1) trQ(ϕ2)(tr Q̃)2(ϕ3)〉σ = 〈tr Q̃(ϕ1) tr Q̃(ϕ2)(trQ)2(ϕ3)〉σ
= −2〈trQ(ϕ1) tr Q̃(ϕ2) trQ tr Q̃(ϕ3)〉σ

=
sign(ϕ13ϕ23)

8π2r2
, (F.13)

〈trQ(ϕ1) trQ(ϕ2) tr Q̃2(ϕ3)〉σ = 〈tr Q̃(ϕ1) tr Q̃(ϕ2) trQ2(ϕ3)〉σ
= −2〈trQ(ϕ1) tr Q̃(ϕ2) trQQ̃(ϕ3)〉σ

=
sign(ϕ13ϕ23)

16π2r2
, (F.14)

while those with (j1, j2, j3) = (1, 1, 1) each involve six distinct contractions: for example,

〈trQ2(ϕ1) tr Q̃2(ϕ2) trQQ̃(ϕ3)〉σ = −sign(ϕ12ϕ23ϕ31)

64π3r3

[
1 +

1

cosh2(πσ12)

]
. (F.15)

In the end, these results can be packaged together in an su(2)F -symmetric way as

〈O(1/2,1/2)
H (ϕ1, z1)O(1/2,1/2)

H (ϕ2, z2)O(1,1)
H,free(ϕ3, z3)〉

= λfree
(1/2,1/2),(1/2,1/2),(1,1)〈z2, z3〉〈z3, z1〉 sign(ϕ23ϕ31),

〈O(1,1)
H,free(ϕ1, z1)O(1,1)

H,free(ϕ2, z2)O(1,1)
H,free(ϕ3, z3)〉

= λfree
(1,1),(1,1),(1,1)〈z1, z2〉〈z2, z3〉〈z3, z1〉 sign(ϕ12ϕ23ϕ31),

〈O(1,1)
H,int(ϕ1, z1)O(1,1)

H,int(ϕ2, z2)O(1,1)
H,int(ϕ3, z3)〉

= λint
(1,1),(1,1),(1,1)〈z1, z2〉〈z2, z3〉〈z3, z1〉 sign(ϕ12ϕ23ϕ31), (F.16)

42Some useful integrals are as follows. The partition function is

ZS3 =
1

32

∫
dσ1 dσ2

sinh2(πσ12)

cosh2(πσ12) cosh(πσ1) cosh(πσ2)
=

1

16π
. (F.9)

Denoting ZS3 with an extra insertion of f(σ1, σ2) in the integrand by ZS3 [f(σ1, σ2)], we have

ZS3 [σ1σ2] = − 1

384π
, ZS3 [σ2

1 + σ2
2 ] =

1

24π
, ZS3

[
1

cosh2(πσ12)

]
=

1

96π
. (F.10)

In particular, if 〈〉σ is a constant, then 〈〉 = 〈〉σ, while

〈trQ2(ϕ1) tr Q̃2(ϕ2)〉 = −2〈trQQ̃(ϕ1) trQQ̃(ϕ2)〉 =
7

96π2r2
. (F.11)
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where we have defined the structure constants

λfree
(1/2,1/2),(1/2,1/2),(1,1) =

√
2, λfree

(1,1),(1,1),(1,1) = (
√

2)3, λint
(1,1),(1,1),(1,1) =

√
6, (F.17)

while

〈O(1/2,1/2)
H (ϕ1, z1)O(1/2,1/2)

H (ϕ2, z2)O(1,1)
H,int(ϕ3, z3)〉

= 〈O(1,1)
H,free(ϕ1, z1)O(1,1)

H,free(ϕ2, z2)O(1,1)
H,int(ϕ3, z3)〉

= 〈O(1,1)
H,free(ϕ1, z1)O(1,1)

H,int(ϕ2, z2)O(1,1)
H,int(ϕ3, z3)〉 = 0 (F.18)

because the free and interacting sectors are decoupled.

On the Coulomb branch side, the monopoles M(±1,0) and M±(1,1) do not bubble, so

their shift operators M take the form of M in (5.42) averaged over the Z2 Weyl group.

The shift operators for bubbling monopoles can be constructed from these by taking star

products (i.e., by composition), as described in appendix E.2.1: see in particular (D.12)

and (D.13). We then find using (5.43) that, for instance,43

1

4π
〈M(−1,0)(ϕ1)M(1,0)(ϕ2)〉=− signϕ12

4πr
, (F.20)

1

4π2 〈M
(−1,−1)(ϕ1)M(1,1)(ϕ2)〉=−2

(
− i

4π

)2
〈trΦ(ϕ1)trΦ(ϕ2)〉= 7

96π2r2 , (F.21)(
1

4π

)2
〈M(−2,0)(ϕ1)M(2,0)(ϕ2)〉=−2

(
1

4π

)2〈(
M(1,−1)− 1

r

)
(ϕ1)

(
M(1,−1)− 1

r

)
(ϕ2)

〉
=

1

8π2r2 , (F.22)(
1

4π

)(
1

2π

)
〈M(−2,0)(ϕ1)M(1,1)(ϕ2)〉=

(
1

2π

)(
1

4π

)
〈M(−1,−1)(ϕ1)M(2,0)(ϕ2)〉

=−2
(

1

4π

)(
− i

4π

)〈(
M(1,−1)− 1

r

)
(ϕ1)trΦ(ϕ2)

〉
=

1

16π2r2 . (F.23)

It is straightforward to check that these correlation functions, as well as the various

three-point functions, agree precisely with those of the 1D Higgs branch operators given

in (5.51)–(5.55), as extracted from the two-point functions of (F.12) and the three-point

functions (F.16). This provides a derivation of (5.51)–(5.55).

Here is an alternative method of deriving the mirror map. Given the relations (D.12)–

(D.22), we may view the “basic” operators on the Coulomb branch side as M(±1,0) and

M±(1,1), for which we have already justified the mirror map in (5.51) and (5.53). The

mirror map (5.52) for M(±2,0) then follows from trQ ? trQ = (trQ)2 and (D.12). Next,

using Wick contractions to define composite operators, we compute on the Higgs branch

side that

trQ ? tr Q̃+
Nc

8πr
= tr Q̃ ? trQ− Nc

8πr
= trQ tr Q̃ (F.24)

43The symmetry of the integral (F.9) under σ1,2 ↔ −σ1,2 sometimes allows us to write these correlators

in terms of ZS3 with simple insertions, such as

〈M(−1,0)(ϕ1)M(1,0)(ϕ2)〉 =
ZS3 [− signϕ12]

rZS3
, 〈M(−1,−1)(ϕ1)M(1,1)(ϕ2)〉 =

ZS3 [1− 4σ1σ2]

4r2ZS3
, (F.19)

which can be evaluated using (F.10).
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for arbitrary Nc, which, in light of (D.13), is consistent with the identification (5.54) for

M(1,−1) when Nc = 2. Finally, on the Higgs branch side, we find that

trQ2 ? tr Q̃2 +
1

2πr
trQQ̃ = tr Q̃2 ? trQ2 − 1

2πr
trQQ̃ = trQ2 tr Q̃2 +

1

8π2r2
. (F.25)

Using (D.15) and (5.53), we deduce the mirror map (5.55) for tr Φ as well as

1

8π2

[
tr Φ2 − (tr Φ)2 − 1

2r2

]
↔ trQ2 tr Q̃2. (F.26)

Using (F.26) and the mirror map (5.55), we can further identify what tr Φ2 corresponds

to: on the Higgs branch side, we compute that

trQQ̃ ? trQQ̃ = (trQQ̃)2 − 1

16π2r2
, (F.27)

so in light of tr Φ ? tr Φ = (tr Φ)2 and (F.26), we get that

1

8π2

(
tr Φ2 − 3

2r2

)
↔ trQ2 tr Q̃2 − 2(trQQ̃)2. (F.28)

One can make further consistency checks of the identifications that we have derived

by matching one-point functions of these composite operators. As a consistency check

of (5.54), we see from (F.24) that 〈trQ tr Q̃〉 = 0 for any Nc, so we expect that

〈M(1,−1)〉 = 1
r , which is indeed the case. As a consistency check of (5.55), we have that

〈trQQ̃〉 = 0, which is consistent with

〈trΦ〉= 0, 〈trΦ2〉= ZS3 [σ2
1 +σ2

2]

r2ZS3

=
2

3r2
, 〈(trΦ)2〉= ZS3 [(σ1+σ2)2]

r2ZS3

=
7

12r2
(F.29)

(as follows from (F.10)), where the notation ZS3 [f(σ1, σ2)] is the same as in Footnote 42.

As a consistency check of (F.28), we may use (F.25) and (F.27) to rewrite (F.28) in terms

of star products of elementary operators:

1

8π2

(
tr Φ2 +

1

2r2

)
= trQ2 ? tr Q̃2 − 2 trQQ̃ ? trQQ̃+

1

2πr
trQQ̃. (F.30)

Taking the expectation value of both sides of (F.30) and using (F.11) and 〈trQQ̃〉 = 0

results in 〈tr Φ2〉 = 2/3r2, precisely as expected from (F.29).

F.1.2 U(Nc) with Na = Nf = 1

While we do not study the case Nc > 2 in detail, it is straightforward to match correlation

functions in the free sector on the Higgs and Coulomb branch sides. The free sector of

U(Nc) with Na = Nf = 1 can be analyzed in the same way for all Nc (compare to the

analysis of U(3) with Na = Nf = 1 in [92]). First consider the Higgs branch side. Letting

tildes denote unnormalized operators, we set

Õ(1/2,1/2)
H,free (ϕ, z) = z1 trQ(ϕ) + z2 tr Q̃(ϕ), (F.31)
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so that all operators in the free sector of the 1D theory are simply powers of this operator:

Õ(j,j)
H,free(ϕ, z) = [Õ(1/2,1/2)

H,free (ϕ, z)]2j . (F.32)

The basic result is

〈(trQ)m(ϕ1)(tr Q̃)m(ϕ2)〉 = 〈(trQ)m(ϕ1)(tr Q̃)m(ϕ2)〉σ = m!

(
−Nc signϕ12

8πr

)
, (F.33)

by counting m! equivalent contractions. We compute the two-point functions

〈Õ(j,j)
H,free(ϕ1, z1)Õ(j,j)

H,free(ϕ2, z2)〉 = (2j)!

(
Nc

8πr

)2j

〈z1, z2〉2j(signϕ12)2j .

In terms of the normalized operators

O(j,j)
H,free(ϕ, z) =

1√
(2j)!

(
8πr

Nc

)j
Õ(j,j)
H,free(ϕ, z), (F.34)

we then compute the three-point functions

〈O(j1,j1)
H,free (ϕ1, z1)O(j2,j2)

H,free (ϕ2, z2)O(j3,j3)
H,free (ϕ3, z3)〉 (F.35)

= λfree
(j1,j1),(j2,j2),(j3,j3)〈z1, z2〉j123〈z2, z3〉j231〈z3, z1〉j312(signϕ12)j123(signϕ23)j231(signϕ31)j312

for j1, j2, j3 satisfying the triangle inequality, where

λfree
(j1,j1),(j2,j2),(j3,j3) =

j123!j231!j312!√
(2j1)!(2j2)!(2j3)!

(
2j1
j123

)(
2j2
j231

)(
2j3
j312

)
(F.36)

(compare to (F.17) for Nc = 2). We claim that the corresponding operators on the Coulomb

branch side are given by

O(1/2,1/2)
C,free (ϕ, z) =

√
2r

Nc
(z1M(−1,~0)(ϕ) + z2M(1,~0)(ϕ)). (F.37)

To see this, one can match two-point functions. The shift operators are

M(−1,~0)
N =

1

r1/2

Nc∑
I=1

∏
J 6=I(

1+BIJ
2 − iσIJ)∏

J 6=I(−iσIJ + BIJ
2 )

e
i
2
∂σI+∂BI , (F.38)

M(1,~0)
N = − 1

r1/2

Nc∑
I=1

(1−BI
2 + iσI)

∏
J 6=I(

1−BIJ
2 + iσIJ)∏

J 6=I(iσIJ −
BIJ

2 )
e−

i
2
∂σI−∂BI , (F.39)

from which we obtain

〈M(∓1,~0)(ϕ1)M(±1,~0)(ϕ2)〉|ϕ1<ϕ2 =
ZS3 [I±]

ZS3

, I± ≡ ±
1

r

Nc∑
I=1

(1
2 + iσI)

∏
J 6=I(

1
2 + iσIJ)2∏

J 6=I(iσIJ)(1 + iσIJ)
.

Since the integrand of ZS3 without insertions is invariant under σI ↔ −σI , inserting I± is

equivalent to inserting

I±(σ1, . . . , σNc) + I±(−σ1, . . . ,−σNc)
2

= ±Nc

2r
. (F.40)

It follows that

〈M(−1,~0)(ϕ1)M(1,~0)(ϕ2)〉 = −Nc signϕ12

2r
, (F.41)

thus substantiating the stated map.
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F.2 An abelian/non-abelian mirror symmetry example

Let us end with a simpler example where we can derive the correspondence between chiral

ring generators in mirror dual pairs. It is known that SU(2) SQCD with three fundamental

hypers is dual to U(1) SQED with four charged hypers, because both theories are mirror

dual to the U(1)4 necklace quiver gauge theory [78]. Their Coulomb branch is given by

C2/Z4: it has three holomorphic generators X , Y, and Z subject to the chiral ring relation

XY = Z4, whose quantization is X ?Y = (Z4)?+O(1/r). The generators have dimensions

∆Z = 1 and ∆X = ∆Y = 2. Let us identify X , Y, and Z in the SQCD theory.

To compute correlation functions, we use that the vacuum wavefunction (5.40) is

Ψ0(σ,B) = δB,0
[ 1
2πΓ(1

2 − iσ)Γ(1
2 + iσ)]3

1
2πΓ(1− 2iσ)Γ(1 + 2iσ)

= δB,0
sinh(πσ)

4σ cosh2(πσ)
(F.42)

and the gluing measure is

µ(σ,B) = (−1)3|B|(4σ2 +B2). (F.43)

Using |W| = 2, this gives the S3 partition function

Z =
1

2

∫
dσ µ(σ, 0)Ψ0(σ, 0)2 =

1

12π
, (F.44)

in agreement with the S3 partition function of the four-node quiver theory and SQED with

four flavors (see, e.g., [38]).

The Coulomb branch chiral ring operators are gauge-invariant products of Φ and GNO

monopole operators with b ∈ Z. The smallest-dimension such operator is the GNO mon-

opole M(1,−1). This operator has ∆ = 1, so it should correspond to Z in the four-node

quiver theory. Matching the normalization of the two-point function gives

Z =
1

4π
M(1,−1). (F.45)

There are three operators with ∆ = 2: M(1,−1) ?M(1,−1), tr Φ2, and the dressed monopole

ΦM(1,−1). Clearly, M(1,−1) ?M(1,−1) = (4π)2Z ? Z, so we expect to obtain X and Y as

linear combinations of tr Φ2 and ΦM(1,−1). We find that

X =
1

64π2

(
trΦ2−4M(1,−1)?M(1,−1)− 1

2r2
+4i

(
ΦM(1,−1)− i

2r
M(1,−1)

))
, (F.46)

Y =
1

64π2

(
trΦ2−4M(1,−1)?M(1,−1)− 1

2r2
−4i

(
ΦM(1,−1)− i

2r
M(1,−1)

))
(F.47)

obey the following relations:

[X ,Z]? =
1

4πr
X , [Y,Z]? = − 1

4πr
Y, X ? Y =

(
Z +

1

8πr

)4

?

. (F.48)

These are precisely the relations obeyed in the four-node quiver theory. In addition, one

can check that 〈X 〉 = 〈Y〉 = 〈Z〉 = 0, just as in the four-node quiver theory. The last

relation in (F.48) shows that the Coulomb branch is indeed C2/Z4.
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