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ABSTRACT

Pulsar-timing analyses are sensitive to errors in the solar-system ephemerides (SSEs)
that timing models utilise to estimate the location of the solar-system barycentre, the
quasi-inertial reference frame to which all recorded pulse times-of-arrival are referred.
Any error in the SSE will affect all pulsars, therefore pulsar timing arrays (PTAs)
are a suitable tool to search for such errors and impose independent constraints on
relevant physical parameters. We employ the first data release of the International
Pulsar Timing Array to constrain the masses of the planet-moons systems and to
search for possible unmodelled objects (UMOs) in the solar system. We employ ten
SSEs from two independent research groups, derive and compare mass constraints of
planetary systems, and derive the first PTA mass constraints on asteroid-belt objects.
Constraints on planetary-system masses have been improved by factors of up to 20
from the previous relevant study using the same assumptions, with the mass of the
Jovian system measured at 9.5479189(3)×10−4 M⊙ . The mass of the dwarf planet Ceres
is measured at 4.7(4)×10−10 M⊙ . We also present the first sensitivity curves using real
data that place generic limits on the masses of UMOs, which can also be used as
upper limits on the mass of putative exotic objects. For example, upper limits on dark-
matter clumps are comparable to published limits using independent methods. While
the constraints on planetary masses derived with all employed SSEs are consistent, we
note and discuss differences in the associated timing residuals and UMO sensitivity
curves.

Key words: pulsars: general – methods: data analysis, statistical – ephemerides
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1 INTRODUCTION

Millisecond pulsars (MSPs) are the most stable rotators
known to date in the observable Universe. Pulsar timing
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(see e.g. Lorimer & Kramer 2005) is a powerful technique
through which we record the times-of-arrival (TOAs) of the
pulses and use a sophisticated model to convert the topocen-
tric TOA, or site arrival time, to the pulse time-of-emission
in the pulsar’s co-moving reference frame. The success of
the model’s fit is assessed from the timing residuals—the
difference between the observed and the model-predicted
TOAs—which capture all the information unaccounted for
in the timing model. Timing residuals from contemporary
high-precision timing of the brightest and most stable MSPs
observed are at levels of a few hundreds of nanoseconds (see
e.g. Verbiest et al. 2016).

The high precision with which MSPs can be timed has
made them the primary targets for studies of gravity in
the (quasi-stationary) strong field regime, primarily through
the studies of their orbital behaviour and especially when
in tight orbits with other neutron stars (see e.g. Damour
2009, for a review). Additionally, MSPs can be used as refer-
ence clocks to study interesting phenomena that affect their
TOAs but are extrinsic to their rotational and orbital be-
haviour. It is self-evident that it is to our advantage to use
multiple MSPs to observe such extrinsic phenomena when
possible, especially when trying to measure an effect which
is expected to affect TOAs from all MSPs and depends on
the pulsar’s sky position. We refer to such an ensemble of
regularly observed MSPs as a pulsar timing array (PTA;
Foster & Backer 1990). The primary scientific goal of PTA
researchers is the direct detection of low-frequency gravita-
tional waves (GWs), at nHz frequencies, including stochastic
GW backgrounds (GWBs). Three collaborations are cur-
rently leading these efforts, namely the European Pulsar
Timing Array (EPTA; Desvignes et al. 2016), the North-
American Nanohertz Observatory for Gravitational Waves
(NANOGrav; Arzoumanian et al. 2015), and the Parkes
Pulsar Timing Array (PPTA; Reardon et al. 2016). These
collaborations work together under the International Pulsar
Timing Array consortium (IPTA; Verbiest et al. 2016) in an
effort to combine data, resources and expertise to maximise
their scientific output.

While the timing model includes the pulsar’s rota-
tional, astrometric, and orbital parameters, and accounts
for the time-delay effects of the interstellar medium on the
pulsed-signal propagation, it is in fact the transformation
of the observation site arrival time to the arrival time at
the solar-system barycentre (SSB) that may introduce cor-
related signals in the TOAs most likely to interfere with the
GWB searches. Such correlated signals may arise from er-
rors in the terrestrial time standards and the solar-system
ephemeris (SSE) used to predict the position of the SSB at
any given time of interest. The correlated signals from these
two types of errors result in monopolar and dipolar spatial
correlations, respectively (see Tiburzi et al. 2016), leading
to cross-correlations in the timing residuals of pulsar pairs
that may resemble those from a GWB, which have their
basis on the quadrupole angular correlation pattern caused
by GWs (Hellings & Downs 1983). The presence of signals
from clock and SSE errors increases the false-alarm proba-
bility of GW detection with PTAs (Tiburzi et al. 2016). In
principle, these signals are distinguishable from each other
if the data is sufficiently informative, and to manage this, it
is especially important to increase the number of MSPs con-
tributing to the analysis and to the sampling of the cross-

correlation curve (Siemens et al. 2013; Taylor et al. 2016).
While we examine methods to minimise these errors and
mitigate their effects when searching for GWs in the PTA
data, one can also use the data to extract scientific informa-
tion on topics other than GWs. In particular, PTA data have
been employed to develop an independent pulsar-based time
standard (Hobbs et al. 2012) and to constrain the masses of
the solar-system planetary systems (SSPS) (Champion et al.
2010, henceforth CHM10).

The SSEs that we use for pulsar timing are constructed
via numerical integrations of the equations of motion for the
known solar-system bodies. These integrations are subject
to a wealth of observational data from telescopes, radio and
laser ranging and spacecrafts orbiting the planets and their
moons, when available. Such input data also include esti-
mates of the masses of the planets and other important solar-
system bodies. Observationally, it is not the mass, M, but
the gravitational parameter of the bodies that is determined,
i.e. GM where G is the universal constant of gravitation.
This parameter can be determined with much higher preci-
sion than the gravitational constant (see e.g. Petit & Luzum
2010), a fact that limits the precision of measurements of M

in SI units. For this reason, the masses solar-system bod-
ies such as the planets are expressed as the ratios of their
gravitational parameters to the solar gravitational parame-
ter (heliocentric gravitational constant), GM⊙ .

New data are added over time, so that newer SSEs are
subject to data of better accuracy and observational sam-
pling. Many of the involved parameters are fitted and ad-
justed while creating the final SSE. As noted in CHM10,
while this process gives accurate predictions for the posi-
tions of the planetary-systems with respect to the Earth-
Moon system, they do not manage to constrain the masses
much better than the measurements used as initial values.
This is reflected by the fact that typically the ratios of the
gravitational parameters of the planetary systems with re-
spect to the solar parameter are held fixed during numerical
integrations. What changes between SSE versions with re-
spect to the reference planetary masses is either the initial
mass values of the planetary systems, for example after new
mass estimates by spacecraft fly-bys, and/or the estimate of
the solar gravitational parameter, which can be a fitted pa-
rameter in the SSE. Therefore, the input planetary masses
in principle differ between the various SSE versions. With
this in mind, CHM10 search for errors in the masses of the
planetary systems, as the most possible errors that pulsar-
timing data could identify.

In this paper we focus on extending the work of CHM10
using the first IPTA data release (IPTA DR 1; Verbiest et al.
2016). In addition to improving the constraints on the
SSPS masses, we provide the first PTA constraints on the
most massive asteroid-belt objects (ABO) and employ a
recently-published algorithm (Guo, Lee & Caballero 2018,
henceforth GLC18) to search for possible unmodelled ob-
jects (UMOs) in Keplerian orbits in the solar system. We
also make a quantitative comparison of SSEs provided by
two independent groups, namely the Institut de Mécanique
Céleste et de Calcul des Éphémérides (IMCCE) and the Jet
Propulsion Laboratory (JPL).

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly overview the IPTA DR 1 and list the MSPs
used in the present study and their basic observational prop-
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erties. In Section 3 we describe the analysis methods, which
includes the details of single-pulsar noise analysis and analy-
ses for constraining the mass of the eight planetary systems
and ABOs, as well as the masses of UMOs. The results of
the analyses are presented in Section 4. We finally discuss
scientific implications of our results and our conclusions in
Section 5.

2 DATA SET: THE IPTA DR 1

IPTA DR 1 is described in Verbiest et al. (2016), and we
only give a brief overview in this section. The full data
set consists of TOAs from 49 MSPs. Data were collected
by the three regional PTAs over a total time-span of up
to 27.1 yr using seven telescopes across the world, namely
the Effelsberg Radio Telescope, the Lovell Telescope, the
Nançay Radio Telescope, and the Westerbork Synthesis
Radio Telescope by the EPTA, the Arecibo Observatory
and the Green Bank Telescope by NANOGrav, and the
Parkes Radio Telescope by the PPTA. The IPTA DR 1
data set was constructed by combining data that were
published in Kaspi, Taylor & Ryba (1994), Demorest et al.
(2013), Manchester et al. (2013), Zhu et al. (2015), and
Desvignes et al. (2016).

It is important to note that the TOAs from the dif-
ferent telescopes and different studies were calculated with
various methods. Although all TOA calculations were based
on template-matching methods (Taylor 1992), where each
observed profile is cross correlated with a profile template
of arbitrary phase, there are technical differences regarding
issues such as the methods to create the pulse-profile tem-
plates, and algorithms for optimal template matching. There
are also different approaches with regards to the way that
the recorded information is used. For example, in some cases
the total intensity profiles were used, which are created by
summing the flux of all polarization modes, frequency bands
and sub-integrations, while in others cases, one TOA was
calculated per frequency band. These choices reflect differ-
ences in the sensitivity of instruments over time and analysis
methods which have developed to address them. For exam-
ple, data from a receiver with limited total bandwidth would
use total intensity profiles to achieve useful signal-to-noise
ratio, while a more modern broadband receiver can achieve
sufficient signal-to-noise ratio with sub-bands of the total
bandwidth. In this case, one may opt to produce TOAs per
sub-band as a way to mitigate, for example, effects of possi-
ble evolution of the pulse profile over the observing frequency
(see e.g. Xilouris et al. 1996; Kramer et al. 1999), or possi-
ble noise that is limited in certain sub-bands (Lentati et al.,
2016; Cordes, Shannon & Stinebring 2016). One may also
opt to not integrate profiles over time for short-period pul-
sars in order to better sample the orbit (e.g. Desvignes et al.
2016).

For MSPs for which data from more than one PTA
were available, the IPTA data combination increased the
time-span of the MSP data, as well as their cadence and
observing-frequency coverage. Increased time-span and ca-
dence allows improved sampling of orbits at longer and
shorter periods, respectively. They also lead to better char-
acterisation of low- and high-frequency noise properties.
Noise mitigation is further aided by improved observing-

Table 1. General characteristics of the IPTA DR 1.0 data
(Verbiest et al. 2016) for the MSPs used in this study (note that
PSR J0437−4715 was not used to derive mass limits of solar-
system bodies; see Section 4.1). For each pulsar we note the to-
tal time-span, T , the average cadence, the number of telescopes
contributing data, and the weighted root-mean-square (RMS) of
the timing residuals (after subtracting the waveform of the DM
variations) The residual RMS was derived using the planetary
ephemeris DE421.

PSR T Average Number of Residual
Name cadence telescopes weighted RMS
(J2000) (yr) (d) (µs)

J0437−4715 14.9 5.1 1 0.3
J0613−0200 13.7 4.3 6 1.2
J1012+5307 14.4 6.3 5 1.7
J1713+0747 17.7 5.1 7 0.3
J1744−1134 17.0 8.4 6 1.1
J1909−3744 10.8 4.4 3 0.2

frequency coverage which is particularly crucial in measuring
chromatic noise processes related with the turbulent ionised
interstellar medium. The combination of data from multiple
telescopes, when available, also offers the chance to use in-
dividual data sets in the same observing-frequency bands to
search for noise due to systematics (Lentati et al. 2016).

The IPTA DR 1 served as a first testing ground for the
use of pulsar-timing noise models that were more complex
compared to previous studies such as Arzoumanian et al.
(2015), Caballero et al. (2016), or Reardon et al. (2016),
which only used data from individual PTAs. It was exactly
the aforementioned properties of the IPTA DR 1 that mo-
tivated the inclusion of additional noise components in the
noise analysis presented in Lentati et al. (2016). The analy-
sis was made in particular to attempt to distinguish between
noise specific to each pulsar and noise due to systematics in
the data of a given observing system, or noise that is associ-
ated with a specific observing frequency band. The intent of
introducing the latter noise term is to probe chromatic noise
that does not follow the dispersive law of cold homogeneous
plasma, associated with temporal dispersion measure (DM)
variations (see e.g. Keith et al. 2013; Lee et al. 2014).

In the present paper we study the timing data from six
MSPs in total and employed data from five of these to con-
strain the masses of solar-system bodies. The MSPs were
selected based on the contribution of each MSP to the over-
all results as discussed in Section 4.1. The key observational
properties of the data for each of these pulsars are presented
in Table 1. By comparison to the IPTA DR 1 data, the
one change we have made is related to PSR J1713+0747.
The large number of TOAs (19972) would make the current
analysis significantly computationally expensive. This large
number of TOAs primarily stems from NANOGrav data,
which are not averaged over the observing frequency band,
resulting in one TOA per frequency channel. To reduce the
computational cost for PSR J1713+0747 we employed the
tempo2 routine AverageData and produced an average
TOA for each epoch per observing frequency band by sum-
ming up all channels across the frequency band.

MNRAS 000, 1–?? (2018)
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3 ANALYSIS METHODS

We have implemented two methods to study the solar system
with the IPTA DR 1. Both methods rely on searching for
residuals induced by the periodic oscillation of the SSB due
to the presence of a mass in orbit that is not accounted
for by the pulsar timing models. This mass can either be a
difference from the real mass of a solar-system body to that
assumed by the SSE, for which we employed the method
discussed in Section 3.2, or the mass of a UMO not included
in the SSE, for which we employed the method discussed in
Section 3.3.

We clarify here, that in this study we are only mod-
elling possible errors in the SSE reference masses. We do not
examine the effects of positional errors. Under this model,
possible small errors in orbital elements could be absorbed
in the mass-error parameter. As we noted on Section 1, we
expect that mass errors are more likely to be detected first
with pulsar timing analysis, however, sensitivity to errors in
orbital elements are not excluded. The GLC18 method can
also be focused on applying upper limits on orbital param-
eter of UMOs, but this is beyond of the scope of this study.
We discuss further work in pulsar-timing research that at-
tempts to extend PTA studies to orbital elements of planets
in Section 5.

Prior to discussing the SSE analysis, we first give an
overview of the single-pulsar timing and noise analysis.

3.1 Single-pulsar timing and noise analysis

As with other applications of PTAs, constraining the masses
of known or unknown bodies in orbit around the SSB re-
quires good characterisation of the noise in individual pul-
sar data (see Cordes 2013; Verbiest & Shaifullah 2018, for
reviews on sources of noise in pulsar timing), as noise com-
ponents may have significant power at frequencies related
to a planetary orbit. Insufficient accounting of the noise can
lead to significant bias on the measured values of the tim-
ing parameters and their uncertainties (Coles et al. 2011;
van Haasteren & Levin 2013). CHM10 pointed out these ef-
fects in the context of constraining planets’ masses and
specifically did not include one of the four pulsars they used,
PSR J0437−4715, when estimating the mass error of Mars.
Specifically, CHM10 argued that its noise model was not
sufficient to account for spectral features close to the orbital
frequency of Mars, and including this pulsar would thus bias
the solution for the specific planet.

For the work presented in this paper, for each pulsar we
created different timing and noise models for each SSE. The
initial phase-coherent timing models were obtained using the
timing software tempo2 (Hobbs, Edwards & Manchester
2006). tempo2 uses a previously derived timing model
(which could be as simple as the pulsar discovery position
and rotational frequency) and iteratively performs a least-
squares fit of the model to the TOAs until the reduced
chi-squared of the residuals is minimized. tempo2 applies
a linearised approximation to calculate the small, linear off-
sets of model parameters from the pre-fit value (see also
Edwards, Hobbs & Manchester 2006). The least-squares fit
can be unweighted or weighted according to the TOA un-
certainties. Throughout this work, our timing solutions use
weighted fits. These initial individual pulsar-timing mod-

els do not include parameters related to errors in the SSE
or any noise components. We then employed temponest

(Lentati et al. 2014) to perform a Bayesian (simultaneous)
timing and noise analysis, with the same noise modelling
used, for example, in Caballero et al. (2016). temponest

samples the joint parameter space of the timing and noise
parameters using Multinest (Feroz et al. 2009), a Bayesian
inference algorithm based on nested sampling (see Skilling
2004), while evaluating the timing model at each point of
the parameter space using the tempo2 algorithms.

Before proceeding to the correlated-signal analysis, we
produced the final noise models employing the analysis pack-
age that we use to make the search for errors in the SSE
in order to have a consistent mathematical noise-model
parametrization. During this last stage, we performed a
Bayesian noise analysis while analytically marginalising over
the timing parameters, also using Multinest as the sam-
pler. In brief, the noise model consists of the following com-
ponents:

• Uncorrelated noise terms, modelled with a pair of cor-
rections to the TOA uncertainties per observing system
(white noise). The temponest analysis includes an EFAC
(for Error FACtor, a multiplicative factor) and an EQUAD
(for Error in QUADrature, a factor added in quadrature).
The application of these terms attempts to create a timing
solution where appropriate relative weights between the dif-
ferent observing systems are given, since TOA uncertainties
calculated via template-matching methods, do not always
fully account for the TOA scatter. EFACs are used to correct
underestimation of the uncertainty, for example due to low
signal-to-noise ratio of the observed pulse profile, differences
in the pulse profile and the template or presence of noise
other than white radiometer noise in the profile, at signifi-
cant levels. EQUADs are primarily used to account for addi-
tional scatter in the TOAs due to physical processes such as
pulse phase jitter (e.g. Liu et al. 2012; Shannon et al. 2014).
The corrected TOA uncertainty, σ̂, and initial uncertainty,
σ, are then related as

σ̂2
= (σ · EFAC)2 + EQUAD2 (1)

During the final noise analysis, we applied a ‘global’ EFAC
per pulsar, to regularize the white-noise level against the
other noise components.

• An achromatic (observing-frequency independent) low-
frequency stochastic component (red noise) per pulsar, mod-
elled as a wide-sense stationary stochastic process with a
one-sided power-law spectrum of the form

S( f ) =
A2

f

(
f

fc

)2α̃

, (2)

where f is the Fourier frequency, fc = 1 yr−1 is a ref-
erence frequency, A is the amplitude in units of time,
and α̃ is the spectral index. This noise component is
added to model primarily physical noise from irregulari-
ties in the rotation of the pulsar, often referred to as ‘spin
noise’ (e.g. Shannon & Cordes 2010; Kramer et al. 2006).
In the absence of other dedicated model components (see
Lentati et al. 2016), this component will also include noise
due to possible systematics in the data.

• A chromatic (observing-frequency dependent) low-
frequency stochastic component (DM noise). It has the same
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spectral properties as the red-noise component, but with
the restriction that the induced residuals reflect TOA delays
that follow the dispersive law of cold homogeneous plasma
(e.g. Landau & Lifshitz 1960), i.e. the time delay of a signal
at two observing frequencies, ν1 and ν2, along a line-of-sight
with DM value, Dl, is

∆TDl
= κ

Dl

pc cm−3

[( ν1
GHz

)−2
−
( ν2
GHz

)−2
]
, (3)

where κ = 4.15 × 10−3 s.

The power-law power spectra used to describe the
stochastic noise components have sharp cut-offs at f = 1/T ,
with T the data span. This cut-off reflects the fact that power
at frequencies below 1/T is fitted out by the timing model,
as discussed in previous works (van Haasteren et al. 2009;
Lee et al. 2014). In particular, we fit for the rotational period
and period derivative to remove the low-frequency power of
the red noise, and the DM first and second derivatives to
remove the low-frequency power of the DM-variations noise.
As such, a linear and a quadratic term for DM-variations
are always implemented in the (deterministic) timing mod-
els used in this work.

Finally, we note that the timing model also needs to take
into account the dispersive delays from the plasma of the so-
lar wind (You et al. 2007). Our timing models implement the
standard tempo2 solar-wind model (Edwards et al. 2006),
that assumes a spherical distribution of free electrons with
a nominal density of 4 cm−3 at 1AU. Deviations of the elec-
tron density distribution from this value (e.g. due to so-
lar activity or deviations from the assumed electron density
distribution and/or density at 1AU) will induce additional
delay signals that become significant when the line-of-sight
to the pulsar is close the to the solar disc. The result is
then induced residuals with annual signatures, which peak
at epochs where the pulsar is at its smallest elongation. Pul-
sars with low ecliptic latitudes are more susceptible to such
effects (only PSR J1744−1134 falls into that category from
the pulsars used in this study). Unmitigated solar-wind sig-
nals have complex power spectra and show spatial corre-
lations similar to that caused by SSE errors (Tiburzi et al.
2016) so that they could interfere with the sensitivity of PTA
data at high frequencies. More careful modelling of the solar
wind is planned for future work. Data from new observing
campaigns at lower frequencies (see e.g. Tiburzi & Verbiest
2018) can provide valuable input for better modelling and
mitigation of dispersive delays from the solar wind.

3.2 Analysis method for known solar-system

bodies

We first discuss our approach in searching for coherent wave-
forms in the MSPs from possible errors in the SSPS masses
assumed in the SSE. We employ a frequentist analysis using
a code that implements the method described in CHM10.

The method considers small errors, δm, in SSPS masses,
m, so that δm ≪ m. Such errors will induce residuals due to
periodic linear shifts in the SSB position with the period
of the planetary orbit. In such a small mass-error case, we
can neglect higher-order effects on the residuals due to the
SSB motion. CHM10 examined the extent of secondary ef-
fects using a modified version of the DE421 SSE where the

mass of Jupiter deviated the real value by 7×10−11M⊙ (an
amount compatible to the precision that current PTAs can
probe the Jovian system mass, as one can see from the re-
sults in the next Section) and concluded that such effects
were negligible in the case of Jupiter after fitting for the tim-
ing model. We further investigated these secondary effects
with methods similar to the work in CHM10 and reached
similar conclusions. The cases of the inner planets, Mercury
and Venus, show additional complexity because of the ef-
fects on the orbit of the Earth-Moon system that errors in
these planetary masses would cause. The induced residuals
from such effects, however, fall into different frequencies to
the orbital frequencies of the inner planets. Consequently,
although a fully dynamical model could make use of such
signals as additional information in constraining the plane-
tary masses, we have verified that these signals, if present in
the data, do not affect the results and conclusions from the
narrow-frequency signal search employed in this work.

In the first-order CHM10 approximation, the induced
residuals from the erroneous mass are then only associated
with the (solar-system related) Rømer delay, the geometric
vacuum delay of the TOA at the observatory and at the SSB.
The induced residuals will reflect the shift in the position of
the SSB along the barycentric position vector of the SSPS,
b, associated with an error in the pulse time-of-emission. For
the multi-pulsar and multi-SSPS case, this error is calculated
for each time epoch as

τ
n,k
b

≈
1

cMT

n,k∑
i, j

δmi(bi · R̂j) , (4)

where indices i and j refer to the i-th (out of n) SSPS and
the j-th (out of k) pulsar, respectively, b is the barycentric
position vector of the SSPS, R̂j is the unit barycentric po-
sition vector of the pulsar (or pulsar binary) barycentre, c

is the speed of light and MT is the total mass of the solar
system, which was approximated by MT ≈ M⊙ .

Since Eq. (4) is linear, τb can be directly added to the
linear timing model of tempo2. Although a single pulsar
can provide measurements of the δm parameters, Eq. (4)
shows how the measurement precision is dependent on the
pulsar’s sky position and, therefore, better and less biased
measurements can be made by fitting for these parameters
simultaneously with many pulsars. In CHM10, this was per-
formed using tempo2, which was appropriately modified to
allow the δm parameters to be fitted in a ‘global’ timing
analysis. Such an analysis is a simultaneous fit of the timing
models of various pulsars, where a subset of the parameters,
which we call global, are common for all pulsars. In this
example, the δm parameters are the global parameters.

The covariance matrix for each pulsar, C, is constructed
using the maximum-likelihood values of the posterior distri-
bution of the Bayesian noise analysis. It is defined as

C = Cw + Cr + Cd , (5)

where the constituent matrices are the white-, red- and DM-
noise covariance matrices. Cw is a diagonal matrix with the
main diagonal populated with the variances of the TOAs
(after application of EFACs and EQUADs). The red- and
DM-noise covariance matrices are populated by elements de-
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fined, respectively, as (Lee et al. 2014)

Cr,ij =

∫ ∞

1/T
Sr( f ) cos(2π f tij )d f , and (6)

Cdm,ij =

κ2
∫ ∞

1/T
Sd( f ) cos(2π f tij )d f

ν2
i
ν2
j

. (7)

In the above equations, the i and j indices refer to observing
epochs, and ν denotes the observing frequency.

We can now proceed to search for coherent waveforms
as predicted by Eq. (4) via a global timing analysis. Dur-
ing our analysis, apart from the global parameters, for each
pulsar we only fitted for a limited number of timing param-
eters to ensure that the condition numbers of the design
matrices (discussed below) were small and matrix inversions
are computationally stable. The timing parameters fitted for
are the rotational frequency and its derivative, the DM and
derivatives (first and second included in timing models), the
pulsar position and parallax. The rotational frequency, DM,
and their derivatives correlate with low-frequency noise pa-
rameters and δm parameters related to the planets with the
longest periods. Pulsar position and parallax are also signif-
icantly affected by changes to the SSEs (see also Fig. 1 in
Caballero 2018). We have done so after confirming that the
timing models were not influenced by this practice.

Using standard linear-algebra methods we fitted the
timing parameters denoted with the column matrix, ǫ , as

ǫ = (AT
r Ar)

−1AT
r AT

qC
− 1

2 t , (8)

and the corresponding variances are given by

σ2
ǫ = diag(J−1) , J = D

T
C
−1
D (9)

In these equations, t is the column matrix of the timing
residuals, D is the design matrix (calculated with tempo2

during the individual pulsar timing analysis), C is the covari-
ance matrix and J is the Fisher-information matrix. Aq and

Ar the Q and R decompositions of matrix A = C
− 1

2 D, respec-

tively. The T,−1 and − 1
2 superscripts denote the transpose,

inverse and inverse of the square root of a given matrix, re-
spectively. All matrices are the total matrices, for all pulsars;
t is formed by appending all pulsar timing residuals, C is
the block-diagonal matrix of all pulsar covariance matrices,
and D is formed by appending the SSPS-waveform column
matrices to the block-diagonal matrix of all pulsar design
matrices. In this way, the SSPS-waveforms act as global pa-
rameters to the fit.

The columns with the global SSPS δm waveforms are
calculated using Eq. (4). The position of the pulsar is known
from the timing model. The position vector of the SSPS for a
given observing epoch is calculated based on the information
for the SSPS orbits provided by the used SSE. IMCCE and
JPL provide libraries that contain modules and functions
that read in the data from the ephemerides and calculate the
positions and velocities of the SSPSs for given times. IMCCE
and JPL provide the calceph1 (Gastineau et al. 2015) and

1 http://www.imcce.fr/fr/presentation/equipes/ASD/inpop/calceph/

spice2 libraries respectively. Having confirmed that both li-
braries give completely consistent results, we used the cal-

ceph in all related work, except the calculations regarding
mass errors of ABOs, as discussed in Section 4.2.1.

3.3 Analysis method for unknown solar-system

bodies

The approximation used in CHM10 can also be employed
in the case where instead of errors in the SSE’s reference
mass of the SSPS, we consider the mass of UMOs, for which
we then also need to model the dynamics of their motion.
Such an analysis is beneficial for different reasons. Firstly,
it gives the potential to PTAs to probe the masses and
dynamics of any object in orbit around the SSB and to
impose constraints on physical parameters of proposed or
hypothetical objects (see Section 4.3), such as Planet Nine
(Brown & Batygin 2016) or dark matter in the solar system
with specified mass distributions (Loeb & Zaldarriaga 2005;
Pitjev & Pitjeva 2013; Pitjeva & Pitjev 2013). In this study
we focus on a simple model which assumes small bodies in
Keplerian orbits around the SSB in order to probe to first
order the sensitivity of the real PTA data set to orbiting
masses in the solar system. While not specifically applied
in order to constraint the parameter space of specific pro-
posed objects, the analysis assumes orbits that approximate
those of most solar-system bodies (excluding perturbations)
and the results can serve as a confirmation of our mass con-
straints on known bodies and as a means to compare the
different SSEs at first order.

For this analysis, we implement the algorithm presented
in GLC18, which searches for coherent waveforms from bod-
ies in Keplerian orbits around the SSB, in the TOAs of all
pulsars. The details of the approach to search for UMOs,
including the mathematical framework, the choice of prior
distributions and the analysis algorithm, can be found in
GLC18. The algorithm solves the dynamical problem of bod-
ies in Keplerian orbits. By neglecting higher-order effects due
to the SSB motion as in CHM10 and any perturbations on
the UMO from any object except the Sun, the algorithm is
currently restricted to searches of small objects and that are
not in orbit around a major planet. The dynamical model
contains seven unknown parameters, i.e. the mass of the
UMO, m, and the six Keplerian orbital parameters, i.e. the
semi-major axis, a, the eccentricity, e, the longitude of the
ascending node, Ω, the inclination of the orbit, i, the argu-
ment of perihelion, ω, and the reference phase, φ0. For a
set of values for these parameters, the model determines the
barycentric position vector of the UMO, b, and uses Eq. (4)
to calculate the induced signal in the TOAs S(ξ), where we
use ξ to denote the seven unknown parameters.

The UMO-induced waveform is now an unknown wave-
form in the data, and no longer part of the timing pa-
rameters. The analysis now uses the reduced likelihood
(van Haasteren et al. 2009), which is used when solving the
problem while analytically marginalising over the parame-
ters that are not of interest (often referred to as nuisance
parameters). In this case, these are all the timing param-
eters, ǫ . For the multi-pulsar case, where we search for a

2 https://naif.jpl.nasa.gov/naif/toolkit.html
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coherent waveform S in all pulsars, the reduced likelihood
function can be written as

Λ ∝
1√

|CC′ |
×

exp
©­«
−

1

2

∑
i, j,I,J

(t I,i − S(ξ)I,i)
TC′

I,J,i, j (tJ, j − S(ξ)J, j
ª®
¬
,

(10)

where the I, J indices denote pairs of pulsars, the i, j

indices denote pairs of time epochs, and C′
= C

−1 −

C
−1
D(DT

C
−1
D)−1D

T
C
−1. We note that one can use the

alternative formulation of the likelihood introduced in
Lentati et al. (2013). By applying Bayes’s theorem, one can
proceed to perform Bayesian parameter estimation as

P(ζ |X) ∝ P(ζ )Λ . (11)

In this compact notation, X is the data and ζ are all the
model parameter we want to sample, that is, the Keplerian
orbital parameters of the UMO and the pulsar-noise param-
eters we opt to fit simultaneously. Therefore, P(ζ |X) is the
posterior probability distribution of the parameter(s) of in-
terest, and P(ζ ) is the prior probability distribution of the
parameter(s). The parameter space is explored using Multi-

nest.
The analysis algorithm for UMOs offers flexibility in the

analysis, allowing analytical marginalization over the timing
parameters and limiting the prior range of orbital parame-
ters or fixing them to a given value. For the work presented
in this paper, we analytically marginalize over the timing pa-
rameters and simultaneously search over the UMO orbital
parameters and pulsar-noise parameters.

Following the same procedure as in GLC18, we first
ran an analysis using the least informative priors for the
parameters in order to get the posterior distributions from
which we can determine whether we have a possible detec-
tion of a UMO. These priors are uniform in the log-space for
the parameters with dimension and uniform for dimension-
less parameters. In the non-detection case, as is the case in
all our IPTA DR 1 analyses, we proceeded to a follow-up,
upper-limit analysis to determine the data’s sensitivity to
any given UMO mass at any semi-major axis value. For the
upper-limit analysis, we changed the mass priors to uniform
in linear space and performed Bayesian inference for a grid
of fixed semi-major axis values. We will refer to these upper
limits of the mass as a function of the semi-major axis as
the mass sensitivity curves.

4 ANALYSES AND RESULTS

The analysis with our implementation of the CHM10
method used ten different SSEs, five from IMCCE (desig-
nation “INPOP”) and five from JPL (designation “DE”). An
overview of the SSEs we employed can be found in Table 2.
Before proceeding to searches for correlated SSE-error sig-
nals across pulsars, we performed some preliminary searches
for errors in masses of SSPSs using single-pulsar data to
check the effects of the noise model we select and to com-
pare the performance of our implementations of the CHM10
method with that of tempo2. We also made a first-order

Table 2. List of SSEs used in the analyses.

IMCCE Ephemerides Reference

INPOP06C Fienga et al. (2008)
INPOP08 Fienga et al. (2009)
INPOP10E Fienga et al. (2013)
INPOP13C Fienga et al. (2014)
INPOP17A Viswanathan et al. (2017)

JPL Ephemerides Reference

DE405 Standish (1998)
DE418 Folkner et al. (2007)
DE421 Folkner et al. (2009)
DE430 Folkner et al. (2014)
DE435 Folkner et al. (2016)

comparison of the effects on pulsar timing from choosing a
different SSE during the analysis.

We tested whether using the noise model described
in Section 3.1 produced significantly different results
than when using the more complex models published in
Lentati et al. (2016). In that work, the SSE DE421 was used,
so we used this SSE for a proper comparison. We used single-
pulsar constraints on δm of the SSPSs using tempo2, which
can use both types of noise models for single-pulsar cases
to constrain the mass error. This test was useful for investi-
gating whether any of the pulsars had such noise properties
that using a simpler noise model would create a significant
bias in the multi-pulsar, correlated search for errors in the
SSE input masses of solar-system bodies. We did not find
any statistically significant differences between the δm mea-
surements using the different noise models. We then pro-
ceeded to compare the single-pulsar results using tempo2

and the algorithm described here, implementing the noise
model used in this work. We found the δm measurements to
be consistent using the two different codes.

We carried out a first-order examination of the effects
of our choice of SSE during the timing analysis. As the tim-
ing residuals are the primary metric of the completeness
of the timing model, we compared the residuals’ weighted
root-mean-square (RMS) for each pulsar when using differ-
ent SSEs. The results for six MSPs (see next section for
the selection of pulsars) are summarized in Fig. 1. If we
assume that the residual RMS will be minimal for the best-
performing SSE, the SSE ranking varies for different pulsars,
suggesting that the SSE performance is dependent on the
sky position. It is known that the differences between the
pairs of SSEs have various sky patterns, an effect that can
be illustrated using simulated data (see Caballero 2018).

It is important to keep in mind that SSE re-
lated residuals can be fitted out by a number of tim-
ing parameters if they have power at those frequencies
(Blandford, Narayan & Romani 1984). We are aware that
this happens with parameters such as the annual term of
the position of the pulsar and other astrometric parameters
(see e.g. Madison, Chatterjee & Cordes 2013; Wang et al.,
2017). Residual signals due to possible SSE imperfections
may also be covariant with pulsar noise parameters. As a
result, in the absence of independent constraints on pulsar
timing parameters, the SSE ranking based on the timing
residuals RMS does not necessarily mean overall better ac-
curacy on the data used to construct the SSE. Madison et al.
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Table 3. Average sensitivity to mass of UMOs in Keplerian orbits
in four ranges of the semi-major axis, a, for single-pulsar cases.
The table reports the sensitivity as the logarithms of the average
of the 1σ upper limits on the mass of UMOs within each semi-
major axis range. The MSPs are listed in order of sensitivity (best
to worse) in the interval a ∈[5,17]. Given the data set’s cadence
and time-span, this is the interval where the analysis performance
is expected to impact mostly on our results. MSPs in boldface
were selected to derive the mass constraints of SSPS, ABOs and
UMOs (see discussion in main text).

PSR log(M/M⊙)
Name
(J2000) a(AU) a(AU) a(AU) a(AU)

∈[0.4,1.4] ∈[1.4,5] ∈[5,17] ∈[17,60]

J1713+0747 −9.921 −9.933 −8.514 −5.824
J1909−3744 −10.040 −10.436 −8.317 −6.077
J1744−1134 −9.337 −9.520 −8.200 −5.720
J0437−4715 −9.737 −9.244 −8.091 −5.861
J1012+5307 −9.113 −9.372 −7.764 −5.323
J0613−0200 −9.323 −9.600 −7.645 −5.135

(2013) also demonstrated that the ability of the noise models
included in the timing analysis to prevent leakage of residu-
als in astrometric parameters depends on the total timespan
of the pulsar data set. Therefore, a given SSE may perform
differently in terms of the residual RMS for pulsars with dif-
ferent time-spans, even when their true noise properties are
similar, since de-correlating pulsar noise, SSE residuals and
astrometric parameters requires sufficient data length. Ad-
ditionally, a given SSE may be over- or under-performing by
comparison to another SSE for different solar-system bodies
when used in pulsar timing, so the data-span can further
influence the overall performance of an SSE.

While at present the differences in the RMS values
of the residuals using different SSEs are within the noise-
fluctuation levels, it is clear that without a full account of
such effects in the timing model, cross-checking our results
using various SSEs makes studies such as the one presented
in this paper more meticulous and robust. A direct conse-
quence of the issues discussed above is that a result regarding
the constraints on planetary masses becomes more reliable
when using pulsars at as many sky positions as possible and
with comparable timing precision and overall data quality,
when possible.

4.1 Selection of pulsars for analysis

The last point to consider before proceeding to the anal-
ysis is which pulsars to use. Searching correlated signals
with many pulsars is a computationally intensive task. It
has thus been common practice to attempt a ranking of the
pulsars available, in order to choose those expected to con-
tribute the most to the analysis. The type of signal sought,
the noise characteristics of each pulsar as well as the details
of each pulsar’s data quality (cadence, time-span, observing
frequencies, etc) play crucial roles in the ranking.

We made a single ranking of the pulsars that we used for
both analysis methods described in Section 3 so that we are
able to directly compare the results of the analysis for mod-
elled and unmodelled solar-system objects. Our approach
was to use the GLC18 Bayesian code described in Section 3.3

to determine the sensitivity curves of the single-pulsar data
to UMO masses. For this, we used the SSE DE421. Table 3
shows a breakdown of the average sensitivity in four inter-
vals of semi-major axis, chosen to be equal in logarithmic
space. One can see that the relative sensitivity between pul-
sars can change over the semi-major axis or equivalently over
the period of the Keplerian orbit. Given that the time-spans
of our pulsar data sets are between the orbital periods of
Jupiter and Saturn while the cadence for all pulsars is much
shorter than the period of Mercury, we anticipate that the
sensitivity of the pulsars in the third semi-major axis in-
terval (5< a/AU<17) is the most impactful to our results.
We therefore made a priority list according to the average
sensitivity in that interval. Beyond the top six pulsars, the
average sensitivity drops significantly and we therefore de-
cided not to use more MSPs for this work.

The set we used to derive mass limits eventually con-
sisted of five pulsars (highlighted in Table 3). Despite the
fact that PSR J0437−4715 is fourth in the ranking, we de-
cided to not include it in this analysis. This is because ex-
amination of the posterior distribution of the orbital pa-
rameters from the single-pulsar Bayesian analysis for UMOs
using PSR J0437−4715 revealed possible systematics in the
high-frequency regime (i.e. for small values of the semi-major
axis) which resulted in the calculated sensitivity curve vi-
olating the analytic sensitivity curve (see GLC18 for de-
tails on the analytic sensitivity curve). Our analysis revealed
systematics in the range of 1< a/AU<5 which complicated
the upper limit analysis, and worsen the UMO mass up-
per limits when including this pulsar in the multi-pulsar
analysis, in contrast to the expectation from the pulsar’s
noise properties and analytical sensitivity curve. To avoid
the potential effects and complications due to these sys-
tematics, which we reproduced using multiple SSEs, we
did not include PSR J0437−4715 in constraining masses of
solar-system bodies. This pulsar is very bright and as such
has very small TOA uncertainties, but it is known to suf-
fer from multiple sources of time-correlated noise (see e.g.
Lentati et al. 2016), which gave significant effects on our
analysis exactly because of the low TOA uncertainties. We
remind the reader that, as discussed in Section 3.1, CHM10
assumed their noise model for PSR J0437−4715 was not pre-
cise enough around the orbit of Mars (∼ 1.5 AU). We will
focus on the results without PSR J0437−4715, to directly
compare the results of the analysis for modelled and un-
modelled solar-system objects. Examining the exact origins
of the systematics is beyond the scope of this paper and is
left for future work.

4.2 Constraints on masses of known solar-system

bodies

We used our implementation of the CHM10 method, as de-
scribed in Section 3.2 on the five-pulsar subset of IPTA DR
1, using the ten SSEs noted in Table 2. As explained in
Section 3.2, our analysis seeks possible errors in the input
masses, assuming that the mass error is small such that only
geometric delays of the pulse propagation due to errors in
the estimated position of the SSB are significantly affecting
the timing residuals. The SSE input values were taken di-
rectly from the header information of the SSEs using the
calceph inspector tool of the calceph library.
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Figure 1. The RMS of the timing residuals of the six MSPs listed in Table 1, using the ten SSEs listed in Table 2. The dashed red,
dotted green and dashed-dotted blue lines represent RMS values which are 10, 20, and 30 ns larger than the smallest RMS achieved
for the MSP in question. Note that PSR J0437−4715 was not included when calculating mass constraints for solar-system bodies (see
Section 4.1).

Fig. 2 shows the results of the analysis for all ten SSEs.
The analysis included all planetary systems (excluding the
Earth-Moon system). For planets with moons we refer to the
position and mass of the system’s barycentre. The results
from the various SSEs are statistically consistent. We also
observe that despite the fact that most δm measurements are
consistent with zero near the 1σ level, for each planet the
central values from the various SSEs are not randomly dis-
tributed around zero but have consistent, systematic biases,
i.e. are either positive or negative. The only exceptions are
INPOP17A for Jupiter, and INPOP08 and DE405 for Mars,
although this can be compensated by the very small values
with respect to the uncertainties. The most likely reason for
these systematic bisases is that at this given level of timing
precision the results are almost completely constrained by
the data, rather that from differences between SSEs within
the limits of the random noise from the measurements they
use as input data.

Fig. 3 shows the distribution of the significance (cen-
tral value divided over the 1σ uncertainty) of the measure-
ments. We see that 38.57 per cent of the cases (27 out of
70) show a measurement with a significance above 1σ. This
distribution of errors is very close to a Gaussian distribu-
tion(where the corresponding percentage would be at most
31.73). The small difference from the expected error distribu-
tion can be due to correlations of long-orbital δm signals and
low-frequency noise, together with the fact that the analysis
assumes symmetric uncertainties. That is because when a

δm signal correlates with noise parameters, its probability
distribution may in fact be asymmetric and the uncertainty
would be larger on one side of the median value than the
other. Full Monte-Carlo sampling of the SSE and noise pa-
rameters could be implemented in future work to have a
better understanding of these correlations.

Results on Saturn and the ice giants are largely incon-
clusive. The orbital periods of Uranus and Neptune (84 and
165 years, respectively) are more than six times longer than
the data time-span, while their masses are more than five
time smaller than the mass of Saturn. It is therefore ex-
pected, a priori, that our data set will be completely in-
sensitive to any possible small errors in their masses. We
include them nevertheless in our analysis, since the uncer-
tainties of δm for these planets are a good indication of the
goodness of the uncertainties calculated in the presence of
time-correlated noise in the pulsar data and the sufficiency
of the pulsar noise models we use. In the presence of low-
frequency noise, if the models underestimate the noise levels,
one would expect to see significant detections of δm for plan-
ets with periods longer than the data set’s time-span. The
results are as expected, with the uncertainties on δm of the
ice giants being orders of magnitude larger than the rest of
the planets.

Using the results of the analysis, we derived the mass
constraints of the planetary systems in the solar system
using the IPTA DR 1 and the ten SSEs employed in this
study. The results are summarized in Table 4. Since the so-
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Figure 2. The derived central values and 1σ uncertainties for errors on the masses of the planetary systems with respect to each SSE’s

input values, for analyses using the ten SSEs listed in Table 2. The figure on the left-hand-side includes the ice giants to emphasize
the much larger uncertainties on their derived masses. The figure on the right-hand-side excludes the ice giants for clarity. The SSE

superscript is used to denote that each result is tied to the values of the Sun’s gravitational mass of the given SSE (see main text,
Section 4.2 for details).
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Figure 3. The normalised histogram of the distribution of the
significance (central value divided over the 1σ uncertainty) of the
SSPS mass measurements. 38.57 per cent of the cases show a sig-
nificance over unity, compared to the 31.73 per cent expected for
a Gaussian distribution. The vertical, black, dashed line indicates
the significance of 1. The red, solid line shows the corresponding
cumulative distribution.

lar gravitational parameter is a fitted quantity in the SSEs,
and is therefore different in each case, we express all re-
sults as ratios of the planetary gravitational parameters
as derived using a specific SSE (superscript SSE) with re-

spect to the nominal solar gravitational parameter, GMN
⊙ =

1.3271244 × 1020m3s−2, in compliance with the guidelines
from the 2015 IAU Resolution B33 (Mamajek et al. 2015).
We follow this approach in all mass constraints results we
present. While at the precision of the current data set this
does not cause any differences in the results within the un-
certainties, we nevertheless adopt this approach to allow cor-
rect comparisons with future results. A first observation is
the consistency in the uncertainties, despite fluctuations in
the central values of δm. The IPTA DR 1 data set is sensitive
to mass differences of a few times 10−11M⊙ for systems up
to the Jovian, which constitutes a significant improvement
from the approximately 10−10M⊙ reported in CHM10. We
note that for the Saturnian system, this sensitivity is approx-
imately 3×10−10M⊙ while for the ice giants, the sensitivity
drops significantly to approximately 10−8M⊙ .

To evaluate our results, we compare them with the re-
sults from CHM10 and with the current best estimates4

(CBEs) adopted by the International Astronomical Union
(IAU) for the planet-moons systems. The CBEs, denoted
with the CBE superscript, are selected from the literature
and are derived directly from spacecraft data. For the com-
parison, we also expressed the CBE results with respect to
the nominal solar gravitational parameter. We note again,

3 Available at:
https://www.iau.org/static/resolutions/IAU2015 English.pdf
4 Up-to-date information at:
http://maia.usno.navy.mil/NSFA/NSFA cbe.html
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that such an approach does not change our results within
the uncertainties due to the current data precision, but we
follow this practice to allow better comparisons with future
results and follow the recommended best practices by the
IAU. Compared to CHM10, the mass constraints have im-
proved by factors of 5.7, 8.5, 20, 6.7 and 4 for the planetary
systems of Mercury, Venus, Mars, Jupiter and Saturn, re-
spectively. In Table 5, we also compare our results with the
IAU CBEs. The precision of the mass constraints derived
in this study for planetary systems is lower by factors that
range from of ∼ 3 for the case of Jupiter, up to ∼ 103 for
Mercury. In the case of Mercury, the large difference reflects
the very significant improvement in the planet’s gravity field
measurements by the MESSENGER spacecraft. The CBEs
for Mercury’s gravitational mass (Mazarico et al. 2014) are
about a factor 103 more precise than the previous CBEs
(Anderson et al. 1987).

4.2.1 Asteroid-belt objects

The main asteroid belt hosts small bodies with masses that
reach up to order 10−10 M⊙ . With the IPTA DR 1 having
sensitivity to mass errors of the order 10−11 M⊙ − 10−10 M⊙

between the orbits of Mars and Jupiter (see also next sec-
tion), it is logical to attempt constraining the masses of the
largest bodies of the main belt. This is the first time that
PTA data are used to derive mass constraints on ABOs. As
our data are only beginning to be sensitive to ABO masses,
in this work we perform a pilot study and use only one SSE.
Future work with more sensitive data can focus more on
comparisons between the pulsar-timing constraints on ABO
mass using different SSEs. We employed the SSE DE435 to-
gether with additional, high-precision positional data for the
ABOs from the New Horizons SPICE Data Archive5, which
were used for the New Horizons spacecraft mission. These
auxiliary data are provided by JPL in the spice kernel for-
mat and for this reason, for this application we use the spice
library and tools.

The δm measurements are shown in Fig. 4 and Table 6
presents the mass constraints derived. We produced IPTA
mass constraints on the three ABOs included in the IAU
body constants, namely the dwarf planet Ceres and the as-
teroids Pallas and Vesta and additionally for another two
large asteroids, Juno and Hygiea. For both Ceres and Pal-
las, the IPTA mass constraint is only slightly over an or-
der of magnitude larger than the IAU CBEs. On the other
hand, the IPTA precision on the mass of Vesta is five orders
of magnitude worse. This is because of a very precise new
determination of the asteroid’s mass, orbital and orienta-
tion parameters by Konopliv et al. (2014), which increased
the precision of the mass measurement by a factor 105 from
the previous best estimate. This was achieved by measure-
ments made with radiometric tracking and optical data from
the Dawn spacecraft (Russell & Raymond 2011). The Dawn
space mission was specifically designed to send the space-
craft in orbit around Ceres and Vesta for detailed studies.
We note that although not yet adopted by the IAU, a pub-
lication has recently appeared presenting results for Ceres
by the Dawn mission, which has also improved the precision

5 https://ssd.jpl.nasa.gov/x/spk.html
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Figure 4. The derived central values and 1σ uncertainties for
errors on the masses of five massive asteroid-belt objects with
respect to the SSE’s input values, for an analysis using the
DE435 SSE and updated high-precision positional data from the
New Horizons SPICE Data Archive. The SSE superscript is used
to denote that each result is tied to the values of the Sun’s grav-
itational mass of the given SSE (see main text, Section 4.2 for
details).

of its mass measurement by a factor of 100 (Konopliv et al.
2018). For the asteroids Juno and Hygiea the uncertainty is
equal or higher than the mass constraint and therefore we
can only assume upper limits of 9×10−11 M⊙ and 6×10−11 M⊙

on their masses, respectively, at the 68 per cent confidence
level.

4.3 Constraints on masses of UMOs

We used the same five-pulsar list as in the analysis for the
SSPSs and ABOs in the previous section and employed the
method outlined in Section 3.3 to conduct the Bayesian anal-
ysis to search for UMOs. This is the first time that such an
analysis has been conducted using real PTA data. Given the
very high consistency in the results produced using the ten
SSEs in the previous section, we opted to focus on three
SSEs, namely DE421, DE435 and INPOP17A. The first was
chosen for comparison reasons, since it is the SSE used in
CHM10 and the IPTA DR 1 data release and noise-analysis
papers (Verbiest et al. 2016; Lentati et al. 2016), while the
other two were chosen because they are the latest from each
SSE family among those used in this study. Table 7 gives an
overview of the types of prior probability distributions used
for the sampled parameters, as well as the ranges of their
values.

We performed a blind orbital analysis, i.e. we fully
searched over the UMO mass and orbital parameters. Our
analysis was restricted to circular and eccentric orbits. For
all three SSE cases we derived a non-detection result, and
produced the mass sensitivity curves, which we present in
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Table 4. The mass constraints on the planetary systems derived with the IPTA DR 1, using ten different SSEs, expressed as ratios of
their gravitational masses to that of the nominal solar gravitational mass. (see main text, Section 4.2 for details). Numbers in brackets
indicate the uncertainty in the last digit quoted. All results are consistent at the 1σ level.

Solar-system (GM)SSE
IPTA1

/(GM)N⊙
Ephemeris

Mercury Venus Mars Jupiter Saturn Uranus Neptune

DE405 1.6600(3)×10−7 2.44782(2)×10−6 3.2271(1)×10−7 9.5479196(4)×10−4 2.858863(3)×10−4 4.368(1)×10−5 5.144(6)×10−5

DE418 1.6599(3)×10−7 2.44783(2)×10−6 3.2273(1)×10−7 9.5479195(3)×10−4 2.858859(2)×10−4 4.368(1)×10−5 5.143(6)×10−5

DE421 1.6599(3)×10−7 2.44782(2)×10−6 3.2273(1)×10−7 9.5479195(3)×10−4 2.858860(2)×10−4 4.368(1)×10−5 5.144(6)×10−5

DE430 1.6599(3)×10−7 2.44782(2)×10−6 3.2272(1)×10−7 9.5479193(4)×10−4 2.858861(3)×10−4 4.367(1)×10−5 5.145(6)×10−5

DE435 1.6598(3)×10−7 2.44782(2)×10−6 3.2272(1)×10−7 9.5479193(3)×10−4 2.858860(2)×10−4 4.367(1)×10−5 5.147(6)×10−5

INPOP06C 1.6599(3)×10−7 2.44782(2)×10−6 3.2273(1)×10−7 9.5479194(4)×10−4 2.858863(3)×10−4 4.367(1)×10−5 5.145(7)×10−5

INPOP08 1.6600(3)×10−7 2.44782(2)×10−6 3.2271(1)×10−7 9.5479193(5)×10−4 2.858863(3)×10−4 4.368(1)×10−5 5.144(7)×10−5

INPOP10E 1.6599(3)×10−7 2.44782(2)×10−6 3.2272(1)×10−7 9.5479193(4)×10−4 2.858860(3)×10−4 4.367(1)×10−5 5.146(6)×10−5

INPOP13C 1.6597(3)×10−7 2.44782(2)×10−6 3.2273(1)×10−7 9.5479193(5)×10−4 2.858861(3)×10−4 4.367(1)×10−5 5.149(7)×10−5

INPOP17A 1.6599(3)×10−7 2.44783(2)×10−6 3.2273(1)×10−7 9.5479189(5)×10−4 2.858862(3)×10−4 4.367(1)×10−5 5.149(7)×10−5

Table 5. Comparison between the mass constraints on the plan-
etary systems from this work (IPTA1), the CHM10 results and
the CBEs adopted by the IAU. Numbers in brackets indicate the
uncertainty in the last digit quoted. the different results are ex-
pressed in terms of the nominal solar gravitational mass (see main
text, Section 4.2 for details). The sensitivity of the methods can
be compared via the ratio of their uncertainties (σ). For IPTA
values, we used the case with the highest uncertainty for each
planetary system. Where multiple SSE cases gave the same uncer-
tainty, we note the mass constraint derived with the most recent
SSE. The IPTA and IAU have the most comparable mass uncer-
tainties in the case of the Jovian system. The largest difference
in the case of Mercury.

Planetary (GM)SSE
IPTA1/(GM)N⊙ σCHM10/σIPTA1 (GM)CBE

IAU /(GM)N⊙ σIPTA1/σIAU

System

Mercury 1.6599(3)×10−7 5.5 1.66012099(6)×10−7 5.3×103

Venus 2.44783(2)×10−6 8.5 2.44783824(4)×10−6 50.0
Mars 3.2273(1)×10−7 20 3.2271560(2)×10−7 500.0
Jupiter 9.5479189(5)×10−4 6.7 9.54791898(16)×10−4 3.13
Saturn 2.858863(3)×10−4 4.0 2.85885670(8)×10−4 37.5
Uranus 4.367(1)×10−5 n.a. 4.366249(3)×10−5 333.3
Neptune 5.149(7)×10−5 n.a. 5.151383(8)×10−5 875.0

Table 6. Comparisons of the mass constraints for the five most
massive ABOs derived in this work with the IAU CBEs. When
IAU CBEs are unavailable (noted with ⋆ superscript), we use the
values from Carry (2012). The IPTA masses were derived using
the SSE DE435 and updated high-precision positional data from
the New Horizons SPICE Data Archive. For the comparison, the
different results are expressed in terms of the nominal solar grav-
itational mass (see main text, Section 4.2 for details). Numbers
in brackets indicate the uncertainty in the last digit quoted.

Name Minor Planet (GM)SSE
IPTA1/(GM)N⊙ (GM)CBE

IAU /(GM)N⊙ σIPTA1/σIAU

Category

1 Ceres Dwarf Planet 4.8(4)×10−10 4.72(3)×10−10 13.3
2 Pallas Asteroid 1.4(4)×10−10 1.03(3)×10−10 13.3
3 Juno⋆ Asteroid 4(5)×10−11 1.37(1)×10−11 500
4 Vesta Asteroid 1.1(1)×10−10 1.3026846(9)×10−10 1.1×105

10 Hygiea⋆ Asteroid 3(3)×10−11 4.3(3)×10−11 100

Fig. 5. In Fig. 6 we overplot the results from the three cases
for direct visual comparison. The results show how the rela-
tive sensitivity of the data at various distances from the SSB
changes when using different SSEs. While for semi-major
axis values up to the orbit of Mars the three SSEs are in
very close agreement, for wider orbits the results are less
consistent, with DE421 showing overall higher sensitivity,

Table 7. Prior types and ranges for the Bayesian analysis to
constrain the masses of UMOs. Two sets of priors are shown, one
for the blind search of UMOs and one for the mass upper limit
analysis (See discussion on priors in Section 3.3).

Parameter Prior range
Blind Upper-limit
search analysis

m (M⊙) log-uniform in [10−25, 10−5] uniform in [0, 10−5]

a (AU) log-uniform in [0.1, 10] fixed in [0.4, 60]

e uniform in [0, 0.99] uniform in [0, 0.99]

Ω uniform in [0,2π] uniform in [0,2π]
i uniform in [0,π] uniform in [0,π]
ω uniform in [0,2π] uniform in [0,2π]
φ0 uniform in [0,2π] uniform in [0,2π]

i.e. giving the lowest upper limits. DE435 and INPOP17A
show their biggest differences in the semi-major axis range
4 – 8AU, i.e. in the asteroid belt, and around the orbit of
Jupiter, and become fully consistent for distances beyond
20AU. Table 8 presents the upper limits on the mass of
UMOs at selected values of the semi-major axis, for the three
SSEs used.

Direct comparison to the results for known SSPSs at the
same semi-major axis values is only approximate, since this
analysis assumes unperturbed Keplerian orbits, in contrast
to the analysis in the previous section which follows the ex-
act orbits based on observations. It is nevertheless useful to
make the comparison as a cross-check, since the much larger
degrees of freedom in the search for UMOs should always
result in worse sensitivity by comparison to that of known
bodies for the same same-major axis values. This is indeed
the case in our analysis, with the upper limits from the blind
search being ∼2 to 14 times higher. One could also extend
the upper-limit analysis to wider orbits in order to retrieve,
for example, an upper limit on the mass of Planet Nine. In
GLC18, the results using simulated data show that the pre-
cision of the IPTA DR 1 is not sufficient to give informative
constraints on the mass of Planet Nine. We therefore did not
attempt this, but reserve such effort for future work.

As discussed in GLC18, the results from this type of
analysis directly provide upper limits on the presence of any
type of massive objects in orbit around the SSB. As such,
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Figure 5. Sensitivity curves for unmodelled masses in Keplerian
orbits for the IPTA DR 1, using three different SSEs. From top
to bottom, the figures show the 1σ (solid, black), 2σ (dashed,
blue) and 3σ (dotted, red) upper limits (corresponding to the 68,
95 and 99.7 per cent credible intervals of the posterior distribu-
tion) for the mass for the DE421, DE435 and INPOP17A SSEs,
respectively. The dot-dashed lines show the expected amplitude
of the residuals induced by a given mass in Keplerian orbit at
any given semi-major axis value. The grey shaded region shows
the position of the asteroid belt. The cyan stars indicate the of-
ficial IAU masses for the planetary systems. The corresponding
IAU uncertainties and uncertainties from our analysis of known
SSPSs on the planetary masses are plotted as yellow triangles and
green circles, respectively, for comparison.
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Figure 6. A comparison of the 1σ upper limits for the three used
SSEs presented in Fig. 5.

Table 8. Derived upper limits for the mass of UMOs in Keplerian
orbits around the SSB. The upper limits quoted correspond to the
95 per cent credible intervals of the posterior distributions.

Semi-major (Gm)SSE
IPTA1

/(GM)N⊙
Axis
(AU) INPOP17A DE435 DE421

0.5 1.14815362×10−10 1.00000000×10−10 1.07151931×10−10

1.4 7.24435960×10−11 5.88843655×10−11 6.02559586×10−11

5.0 2.23872114×10−10 1.28824955×10−10 1.20226443×10−10

10 2.95120923×10−09 2.39883292×10−09 1.86208714×10−09

17 9.12010839×10−08 5.62341325×10−08 3.31131121×10−08

60 2.57039578×10−06 2.81838293×10−06 1.86208714×10−06

our results are also applicable to more exotic objects such
as dark matter clumps (Loeb & Zaldarriaga 2005) or cos-
mic strings (Blanco-Pillado et al. 2014). For distances above
2AU from the SSB (where the sensitivity is maximum) we
can exclude (with a 68 per cent confidence level) the presence
of dark matter clumps (in eccentric, Keplerian orbits) with
masses up to 1.2×10−11 M⊙ . For distances up to Saturn’s or-
bit (≈ 9.6AU), the upper limits range between 4×10−10 −

2×10−9 M⊙ (depending on the used SSE). For comparison,
we note that Pitjev & Pitjeva (2013) and Pitjeva & Pitjev
(2013) present upper limit of 1.7×10−10 M⊙ for the dark mat-
ter mass in the sphere within Saturn’s orbit, using inde-
pendent data and methodology. Their approach searches for
perturbations on the orbital motion of planets due to the ac-
celeration by an assumed dark matter distribution in the in-
terplanetary space. This comparison is only indicative, since
that work assumes that dark matter has a continuous dis-
tribution that is spherically symmetric relative to the Sun,
with a fixed central density and exponential drop with in-
creased distance Pitjev & Pitjeva (2013); Pitjeva & Pitjev
(2013). Other density distributions are also discussed, but
none of those models assumes clumps as we did in this study.
We note that Pitjev & Pitjeva (2013) employ an SSE inde-
pendent of the ones used in this study. Specifically, they use
the EPM2011 (Pitjeva 2013) which is published by the In-
stitute of Applied Astronomy of the Russian Academy of
Sciences.
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5 DISCUSSION AND CONCLUSIONS

In the work described in this paper we have employed pre-
viously published methods on a subset of the first IPTA
data release in order to constrain the masses of solar-system
bodies using ten different SSEs, five from IMCCE and five
from JPL. Using a new computational implementation of the
method first described in CHM10, we have derived new mass
constraints for the SSPSs, which were found to be statisti-
cally consistent using all ten SSEs. While the biases from the
SSE reference values appear consistent for each SSPS, the
results appear to be dominated by data noise. Within the un-
certainties, our results are in agreement with the CBEs from
the IAU which overall have significantly lower uncertainties.
For the first time, PTA data were also used to significantly
constrain the masses of the most massive ABOs. A Bayesian
method from GLC18 was also employed for the first time on
real data to provide generic sensitivity limits on the mass of
UMOs in the solar system using pulsar timing.

The new mass constraints on all planetary systems show
improvements of factors 4 to 20 from the last work that
used the same method, namely CHM10, emphasizing the
fact that increasing the precision, cadence, frequency cover-
age and time-span of the pulsar-timing data allows for con-
stant improvements of PTA sensitivity to potential errors in
SSEs. As such, the IPTA greatly serves this research since
the combination of independent data sets improves the data
overall in all these aspects. As noted in Caballero (2018),
the use of the IPTA combined data improved the sensitivity
to planetary masses by factors up to ∼ 4 by comparison
to only using EPTA data, when using the same pulsars in
both cases. Additionally, the IPTA combined data set also
allowed more options with regards to choosing MSPs for the
analyses and this study has benefited from using a larger and
different sample of pulsars than CHM10. We note that con-
straining planetary masses with pulsar-timing data helps us
cross-check the data quality and pulsar noise models using
information on physical properties that are measured com-
pletely independently. Large deviations from the SSE’s ref-
erence masses or unexplained signals present only in one pul-
sar’s data, which are not detected with multi-pulsar searches
for correlated signals, can indicate insufficiencies of the noise
models or possible systematics in the data of a given pulsar.

In this paper we have additionally demonstrated with
real data the ability of algorithms that search for UMOs of
any type in the solar system, to provide generic mass sen-
sitivity curves using pulsar timing. While with certain lim-
itations, the GLC18 code applied in this paper highlights
differences between SSEs. As we saw in Section 4.3, the
main differences in UMO-mass sensitivity curves between
DE421, DE435 and INPOP17A appear in the asteroid belt
and around Jupiter. While the details of the differences be-
tween SSEs are beyond the scope of this study, we note
that these results may be due to changes in the way that
ABO masses and their perturbations on each other and on
Mars are estimated, as well as recent updates in the posi-
tional data of Mars, Jupiter and Saturn that IMCCE and
JPL have been implementing (e.g. Viswanathan et al. 2017;
Folkner et al. 2014). For example, when estimating pertur-
bations of the ABOs on the orbit of Mars, both DE421 and
DE435 used data for the 343 ABOs identified to be dom-
inant. However, while in DE421 only eleven ABO masses

were individually calculated (for the rest either the initial
values were kept fixed or values were fixed to approximate
values derived densities assumed per taxonomic class), for
DE435 (also the case for DE430) the individual masses were
calculated for all 343 ABOs. Future work with more precise
data sets could focus more on the effects of such difference
on pulsar timing and applications.

As noted in CHM10, since PTAs are sensitive to the
total mass of the SSPSs, if PTAs in the future measure dif-
ferences in the masses with statistical significance, those dif-
ferences may reflect differences in the masses or total number
of moons taken into account when estimating the position
of the planet-moons barycentre and total mass estimations.
Although the GLC18 algorithm is not directly applicable
to bodies in orbit around major planets, the differences in
the sensitivity curves around semi-major axis values close
to planetary orbits may still be associated with such errors.
The mass of UMOs at these semi-major axis values, may also
reflect differences in the SSEs regarding the positional data
of the planets and moons, since with the applied methodol-
ogy such effects could potentially be absorbed by the UMO
mass parameter. These results underline the potential of pul-
sar timing and PTA research to also provide feedback and
independent checks to groups developing SSEs, and add in-
formation in the future for SSE development.

While at the precision that the IPTA DR 1 can probe
the masses of SSPSs we have confirmed that the SSEs give
consistent results, we found that for any given MSP the tim-
ing residuals resulting from using different SSEs can vary at
different levels. For individual pulsars we have noted that the
differences between the RMS deviations of residuals formed
using various SSEs (see Fig. 1) were up to ≈ 65 ns (which
corresponds to relative differences of up to 22 per cent). The
consistency in the SSPS masses from the various SSEs in the
presence of the timing-residual differences means that, to a
large extent, the levels of noise are such that the δm un-
certainties compensate for these residual differences. These
results, however, motivate further research into the role of
SSEs in pulsar timing models, beyond the effects on the mass
constraints of solar-system bodies.

It is worth noting that SSEs are regularly being updated
with new data (DE436 is also available and the reader can
see it applied to PTA data in Arzoumanian et al. (2018))
and the IAU regularly evaluates new data and updated the
published CBEs. As we have seen in Section 4.2.1 for the
cases of Mercury and Vesta, new data from space missions
can indeed give at times dramatic improvements in the mea-
surements of masses and other physical properties of solar-
system bodies. As such we will regularly have to check the
impact of SSE updates on pulsar-timing and PTA applica-
tions and compare our results to updated CBEs. Pulsar-
timing results, on the other hand, are also able to show
strong improvements over time. As was noted already in
CHM10, pulsar timing has the benefit of being able to im-
prove on mass constraints with more accumulation of data,
even if the data quality remains constant. The example of
Saturn is important to highlight, since within the next ten
years our data sets will be long enough to fully sample its or-
bit, which has a period of 29.5 yr. This will allow us to fully
de-correlate signals from Saturn from those of timing and
noise parameters and the uncertainties of the Saturnian δm
will be very significantly reduced. General predictions on ex-
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pected improvements in probing parameters of solar-system
bodies with future instruments can be made using generic
sensitivity curves for UMOs. In GLC18, it was shown that
regular observations of 20-40 MSPs with future radio tele-
scopes, which may achieve timing residuals of average RMS
levels of order ∼ 100 ns for 20 yr, can potentially improve
our mass constraints on the Jovian system by another two
orders of magnitude, at levels below the current constraints
by space missions. Therefore, despite the anticipated im-
provements in the CBE mass values of the Jovian system
as a result of the analysis of data by the JUNO and JUICE
space missions, our predictions are indicative of the poten-
tial for interesting results that can be produced in the future
with respect to solar-system studies using PTA data.

Finally, we comment on the relation between research
into SSEs, solar-system studies and GW searches with
PTAs. Results of studies such as the present can give hints on
which GW frequencies one can expect most of the differences
in the limits by PTAs when using different SSEs. For exam-
ple, the results shown in Fig. 6 suggests that searches for
GWs using DE421 and DE435 would be mostly affected by
SSE choice around GW frequencies ∼ 2−8nHz. The sensitiv-
ity of PTAs to the dimensionless strain of stochastic GWBs
is currently of the order of 10−15 at reference frequency 1 yr−1

(e.g. Verbiest et al. 2016). As an example, let us consider
the case of a GWB formed by the superposition of GWs
for a large number of GW-driven supermassive black-hole
binaries, which have a dimensionless strain that scales with

the GWB frequency as f
−2/3
gwb

, (e.g. Sesana 2013). The RMS
of such a GWB signal would then be at levels . 200ns. De-
pending on the pulsar position, differences between SSEs are
shown to vary between ∼ 15 – 450 ns (Caballero 2018). It
is therefore rational to anticipate that once other sources of
noise, such as IISM related chromatic noise, are mitigated,
the GWB searches and limits will begin to depend more
clearly on the choice of SSE. This is indeed the case and al-
ready GWB upper limits and detection statistics are being
affected by the choice of SSEs, which leads to the need of
introducing SSE-related parameters in the model in order to
mitigate such effects (Arzoumanian et al. 2018). Vice versa,
one expects the presence of a GWB to influence our results
when trying to constrain planetary masses with PTA data.
As discussed in Section 1, with more MSPs of high data pre-
cision, a GWB and a δm signal should be distinguishable on
the basis of their different angular correlation. Further work
is underway to understand the impact of SSE selection to
the timing and noise models and to bridge the systematics
of each SSE to a given analysis.

Early attempts to do this included non-physical, generic
error vectors of the position of the SSB (Deng et al. 2013;
Tiburzi et al. 2016), which was implemented with real
EPTA data in Lentati et al. (2015). The latter study only
used one SSE, since there was no evidence of the GWB-
strain upper limits being influenced by adding this SSE com-
ponent in the model. In this case, the effects of the ephemeris
error added in the Bayesian model and the relevant pa-
rameters were simultaneously sampled with GWB param-
eters. Further work in this direction was demonstrated in
Taylor et al. (2017). Using simulated data, they recovered
the signal induced by an error in the SSE’s input Jupiter
mass, correctly estimated the value of the error in the mass,
and were able to distinguish the mass-error signal from a

GWB signal. More recently, Arzoumanian et al. (2018) im-
plemented a physical SSE-perturbation model that allows a
combination of coordinate-frame drifts, gas-giant mass per-
turbations (as in this paper), and Jupiter orbital-element
perturbations. Their findings indicated that upper limits and
signal-vs-noise odds ratios for a GWB can vary significantly
depending on the choice of SSE. The new model led to iden-
tical SSE-marginalized GWB statistics, regardless of the ini-
tial SSE model (both JPL and IMCEE models were used).
Both this work and Arzoumanian et al. (2018) the models
were limited in the use of parameters describing linear mass-
perturbation effects on the TOAs, but further components
will be employed in the future using the upcoming new IPTA
data releases.
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