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Supplementary Figure 1

Examples of differential genes detected with logistic regression.

'Two example genes undergo correlated changes in transcript expression (a) and isoform switching (b), respectively.
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Supplementary Figure 2

Relationship between differential expression methods.

(a) Depiction of the difference in expression of a two-transcript gene in two cell types. The two black points correspond to gene expression
in each of the two cell types: the x-coordinate depicts the expression of its first transcript and the y-coordinate, the expression of its
second transcript. In differential transcript expression (DTE) tests, transcripts are independently assessed for differential expression,
corresponding to independent testing with projections of the points onto the x-axis and y-axis (pink segments). Differential gene
expression (DGE) tests are based on changes in overall gene expression; this change in overall gene abundance is proportional to the
difference in the projections of the points onto the line y=x (blue segment). Traditional differential transcript usage (DTU) methods test
for differential transcript allocation within a gene. Differences in transcript usage is proportional to differences of the projections onto the
line y=-x (green segment), which is orthogonal to the DGE direction. Gene differential expression (GDE) is a moniker for changes
between transcript abundances as reflected in the length of the line between them (red segment). Our proposed method uses logistic|
regression to find this line. (b) DGE methods have a “blind spot” for genes whose transcripts change only in relative abundance. Such




transcripts can be detected by DTU. However, DTU has a blind spot for genes changing in overall abundance (c). Logistic regression for|
GDE has no blind spots, as differential analysis is performed in the detected direction of change.
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Supplementary Figure 3

Performance of differential expression methods on simulations.

IA scRNA-seq dataset containing two cell types, each with 105 cells, was simulated. In (a, b-zoomed in), effect sizes were derived from
an experiment. In the independent effect size simulation (c, d), transcripts were independently chosen to be perturbed. In the correlated
effect size simulation (e, f), genes were chosen independently to be perturbed, and all transcripts corresponding to the same gene were|
perturbed in the same direction with the same effect sizes. Four differential expression methods and three variants of logistic regression
were tested on these simulations and their FDR-sensitivity plots are depicted. ‘log reg - transcripts’ is our GDE method, which performs
logistic regression on the transcript quantifications. In contrast, ‘log reg - gene counts’ performs logistic regression on the summarized
gene counts and is a DGE method.
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Supplementary Figure 4

Performance of logistic regression on the simulation based on experimental effect sizes.

The simulation depicted in Supplementary Figure 2a,b was used to benchmark different parameters. In (a), three different normalization|
methods: transcript counts, size factor normalization from DESEQ2, and transcript-per-million (TPM) normalization, were compared on




this simulation. In (b), we compared tximport's three methods of summing transcript quantifications to gene quantifications prior to
differential gene expression analysis with DESeg2 (b).
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Splatter Simulations

Splatter simulations of two groups of cells, each with 10% probability of producing differential transcripts, resulting in 19% differential
transcripts between the two groups. (a) sensitivity-FDR curve. (b,c) runtime benchmarks of the methods on the simulation, plotting the
CPU time and the real elapsed time of three trials.
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Supplementary Figure 6

)Analysis of embryonic dataset

IAn UpSet plot showing sizes of the set intersections of the 3000 most significant genes found by each of five methods applied to day 3
(n=81 cells) and day 4 (n=190 cells) post-fertilization preimplantation human embryonic cells. (a) Transcript dynamics of two of the 502
genes in the common intersection of all five methods. (b, c) two of the 464 genes in the set unique to logistic regression. (d, €) Transcript
expression in day 3 cells (n=81 cells) and day 4 cells (n=190) are visualized with boxplots, where the horizontal line denotes the median,
the hinges denote the interquartile range (upper and lower hinges denote the 25 and 75 percentile, respectively), the whiskers extend to
1.5 * the interquartile range, and points correspond to cells outside the 1.5 * interquartile range.
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Supplementary Figure 7

Performance of logistic regression using TCCs on simulations.

On the simulation of two cell types each with n=105 cells (same simulation as Supplementary Figure 2), we benchmarked logistic
regression using TCCs. In (a, b-zoomed in), effect sizes were derived from an experiment. In the independent effect size simulation (c,
d), transcripts were independently chosen to be perturbed. In the correlated effect size simulation (e, f), genes were chosen independently|
to be perturbed, and all transcripts corresponding to the same gene were perturbed in the same direction with the same effect sizes.
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Supplementary Figure 8

Power analysis of CD45.
Using the PBMC dataset, we performed differential analysis between memory and naive T-cells at three levels of subsampling cells: 1000

cells (a), 2000 cells (b) and 3000 cells (c). We compared multiple logistic regression on TCCs with logistic regression using gene counts
and performed Benjamini-Hochberg adjustment on p-values. At all three levels of subsampling, CD45 was found to be significant (FDR
< 0.01) with logistic regression using TCCs, but not with gene counts. Furthermore, while there is a high overlap in the significant genes|
(FDR < 0.01) between both methods, there are genes that each method finds differential (FDR < 0.01) that the other does not (d). (e)
shows the effect sizes on the overall gene counts discovered by each method uniquely compared to that in the intersection. Both methods
identify genes with large effect sizes. Multiple logistic regression misses genes with small effect sizes but identifies genes with large|

changes in differential transcript usage.
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Supplementary Figure 9

IGV visualization of pseudoalignments.

The kallisto v0.44.0 pseudobam option outputs a BAM file for each sample that can be visualized directly with IGV. Shown here are the
pseudoalignments of the three purified T-cell types from Zheng et al., 2017 (a, b). The TCCs (track ‘kallisto’) are shown alongside their]
transcripts of origin (shown in track ‘Ensembl Genes’). TCCs used in the differential expression analysis from Figure 2 are boxed in blug|
on the IGV track (a, b) and their corresponding transcripts are tabulated (c). (d) shows the distribution of read distance from the 3’ end
from Zheng et al., 2017 as found with pseudobam. The substantial number of reads far from annotated 3’-ends suggests a large number|
of unannotated 3’ UTRs whose reads are informative when transcript compatibility counts are utilized.
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Supplementary Figure 10

IGV visualization of TCC structure using a revised transcriptome with updated 3'UTRs.

IAfter identifying three unannotated 3’'UTRs from the Zheng et al., 2017, we modified the transcriptome to include these novel UTRs (see
Supplementary Methods). This figure depicts ECs in original transcriptome (track ‘kallisto_original’) side-by-side with the ECs of the
updated transcriptome (track ‘kallisto_refined’). Also included are coverage tracks for each of the three purified T-cell types from Zheng
et al., 2017. An analysis shows the three newly inserted UTRs break up the previous ECs into more refined ECs. (a) shows that EC
#199819 is refined into EC #615896 and #199837. In (b, c), EC #185825 is represented by 3 ECs in the refined version, EC
#185243, #599469, and #599470.
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Reanalysis of CD45 using updated transcriptome.

The human transcriptome was updated with de novo 3'UTRs. Using the updated transcriptome, we performed pairwise differential
expression tests on CD45 between the three purified T-cell types that were sequenced with the 10x technology. The p-value distributions
in (a, b, ¢) were generated by 200 subsamples, where we subsampled n=3000 cells per cell type from the full dataset of n = 9923 naive
helper T-cells, n=9994 memory helper T cells, and n=11914 naive cytotoxic T cells. On each subsample, we performed multiple logistic
regression on the TCCs (‘logistic regression’), logistic regression on gene counts (‘gene count test’) and independent logistic regression
for each EC (‘independent tests’). Corresponding p-values were obtained by using the likelihood ratio test (see Methods for the definitions
of null and alternate models and degree of freedom for the likelihood ratio test). Bar plots in (d, e, f) depict the mean expression across|
3000 cells corresponding to one of the 200 subsamples. The whiskers correspond to 95% confidence intervals of the mean expression
across 3000 cells. CD45 remained differential with logistic regression on TCCs but not with gene counts. ECs#185843 and #599469,
refined from EC #185825, remain differential between the memory T cell type and the naive T cell types (d, ). EC #615896, refined from
EC #199819, remains differential between naive and memory helper T cells (d, e).
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Supplementary Figure 12
Differential genes between naive and memory helper T-cells.
Naive helper T cells (n = 9923 cells) and memory helper T-cells (n = 9994 cells) were purified in Zheng et al., 2017 and then sequenced
with 10x technology. The bar plots depict the mean expression of the several genes across a random subsample of 3000 naive helper T
cells and 3000 memory helper T cells from the full dataset. The whiskers on the bar plot correspond to the 95% confidence interval of]
the mean expression. The genes depicted here were found to be significantly differentially expressed using logistic regression on TCCs
on this subsample of cells, but were not detected when applying logistic regression on gene counts (see Methods).
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Supplementary Figure 13

A de novo analysis of 68k PBMCs from Zheng et al. 2017.




We obtained TCCs with kallisto pseudoalignment, clustered the cells (n= 65444 PBMCs) using the Louvain method in scanpy (a) and
plotted the cells with known T-cell markers (b-g). Naive helper, memory helper and naive cytotoxic T-cells formed distinct clusters,
whereas Zheng et al. 2017 were unable to separate these cell types into distinct clusters.
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Supplementary Figure 14

De novo analysis of T-cell clusters in 10x data.
Cells that most likely correspond to populations of naive cytotoxic T-cells (Cluster A, CD8A+/CD4-/CCR7+, 5226 cells), naive helper T-
cells (Cluster B, CD4+/CCR7+, 12424 cells) and memory helper T-cells (Cluster C, CD4+/S100A4+/CCR10+, 4173 cells) were subsetted
from the 10X dataset of 68K PBMCs (see Methods) and shown in TSNE space (a). Expression profiles of the known T-cell markers used
to identify the three cell types are used to color the cells in TSNE space (b-f). We generated 200 subsamples of these cells, each with
2000 cells per cluster. For each subsample, we performed pairwise differential expression on CD45 across the three cell clusters using|
logistic regression on TCCs. The likelihood ratio test was used to obtain p-values from the logistic regression fit (see Methods for the|
definitions of of null and alternate models and degree of freedom used for the likelihood ratio test), and the average of the p-values across
the 200 subsamples (g, h, i). The mean expression of PTPRC gene counts and TCCs corresponding to one subsample are depicted via
bar plots (g, h, i), where the whiskers correspond to the 95% confidence interval of the mean expression.




Comparisons between experimental data and simulations
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Supplementary Figure 15

Comparisons between experiment and simulation.
The 105 simulated cells of the nonperturb group were compared to the 105 myoblast cells from Trapnell et al. on the basis of which they
were simulated. (a) To compare the mean-variance relationship of transcripts between experimental and simulated data, each transcript’s
\variance in TPM was plotted against its mean TPM expression. (b) To compare the extent of dropout, each transcript’'s proportion of|
zero expression across cells was plotted against its mean expression in TPM. We also compared the distribution in TCCs between the
experimental and simulated data. Panel (c) depicts a histogram of the number of expressed ECs (i.e. nonzero TCCs) per cell. Panel (d)
depicts a histogram of the mean expression across ECs.






