
Failure Localization in Power Systems via Tree Partitions
Extended Abstract

Linqi Guo, Chen Liang, Alessandro Zocca, Steven H. Low, and Adam Wierman∗
California Institute of Technology

Pasadena, CA, USA

ABSTRACT
Cascading failures in power systems propagate non-locally, making
the control and mitigation of outages extremely hard. In this work,
we use the emerging concept of the tree partition of transmission
networks to provide an analytical characterization of line failure
localizability in transmission systems. Our results rigorously for-
malize the well-known intuition that failures cannot cross bridges,
and reveal a �ner-grained concept that encodes more precise infor-
mation on failure propagation within tree-partition regions. Specif-
ically, when a non-bridge line is tripped, the impact of this failure
only propagates within components of the tree partition de�ned by
the bridges. In contrast, when a bridge line is tripped, the impact
of this failure propagates globally across the network, a�ecting the
power �ow on all remaining lines. This characterization suggests
that it is possible to improve the system robustness by temporar-
ily switching o� certain transmission lines, so as to create more,
smaller components in the tree partition; thus spatially localizing
line failures and making the grid less vulnerable to large outages.
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1 INTRODUCTION
Power system reliability is a crucial component in the development
of sustainable modern power infrastructure. Recent blackouts, es-
pecially the 2003 and 2012 blackouts in Northwestern U.S. [1] and
India [2], demonstrated the devastating economic impact a grid
failure can cause.

Because of the intricate interactions among power system com-
ponents, outages may cascade and propagate in a very complicated,
non-local manner [7, 11], exhibiting very di�erent patterns for dif-
ferent networks [14]. Such complexity originates from the interplay
between network topology and power �ow physics, and is aggra-
vated by possible hidden failures [5] and human errors [4]. This
complexity is the key challenge for research into the modeling,
control, and mitigation of cascading failures in power systems.

There are mainly three traditional approaches for characteriz-
ing the behavior of cascades in the literature: (a) using simulation
models that rely on Monte-Carlo approaches to account for the
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steady state power �ow redistribution on DC [4] or AC [13, 15]
models; (b) studying purely topological models that impose certain
assumptions on the cascading dynamics (e.g., failures propagate to
adjacent lines with high probability) and infer component failure
propagation patterns from graph-theoretic properties [3, 12]; (c)
investigating simpli�ed or statistical cascading failure dynamics
[6, 11]. In each of these approaches, it is typically challenging to
make general inferences across di�erent scenarios due to the lack of
structural understanding of power redistribution after line failures.

A new approach has emerged in recent years, which seeks to
use spectral properties of the network graph in order to derive
precise structural properties of the power system dynamics, e.g.,
[8, 10]. The spectral view is powerful as it often reveals surprisingly
simple characterizations of the complicated system behaviors. In
the cascading failure context, a key result from this approach is
about the line outage distribution factor [14]. Speci�cally, it is shown
in [8] that the line outage distribution factor is closely related to
transmission graph spanning forests. While this literature has yet
to yield a precise characterization of cascades, it has suggested a
new structural representation of the transmission network called
the tree partition.

The main contributions of the present work are: (i) proving
that the tree partition proposed in [8] can be used to provide an
analytical characterization of line failure localizability, under a DC
power �owmodel, and (ii) showing how to use this characterization
to mitigate failure cascades by temporarily switching o� a small
number of transmission lines with minimal consequences on lines
congestion.

2 MODEL DESCRIPTION
The power transmission network is described bymeans of the graph
G = (N, E), where the vertices N = {1, . . . ,n} represent buses
and the edges in E ⇢ N ⇥N model transmission lines. We denote
bym = |E | the total number of lines. The susceptance matrix is
de�ned to be the diagonal matrix B = diag(Be : e 2 E), where Be
denotes the susceptance of line e . We denote the branch �ow on e
as Pe and the power injection and phase angle at bus i as pi and �i ,
respectively.

The DC power �ow model is captured by the �ow conservation
constraint p = CP and by Kirchho�’s law P = BCT � , whereC is the
n⇥m vertex-edge incidence matrix of G. The slack bus phase angle
in � is typically set to 0 as a reference to other buses. With this
convention, there is a unique solution � and P for each injection
vector p such that

Õ
j 2N pj = 0. According to this model, when a

line e is tripped, the power �ow redistributes on the newly formed
graph G0 = (N, E\ {e}). If G0 is still connected, then the branch
�ow change on a line ê is given as �Pê = Pe ⇥ Keê , where Keê is
the line outage distribution factor [14] from e to ê .
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If the new graph G0 is disconnected, then it is possible that
the original injection p is no longer balanced in the connected
components of G0. Thus, to compute the new power �ows, a certain
power balance rule B needs to be applied. Several such rules have
been proposed and evaluated in literature based on load shedding
or generator response [14]. In this work, we do not specialize to
any such rule and instead opt to identify the key properties of these
rules that allow our results to hold. For further details see [9].

Given a vertex partition P = {N1,N2, · · · ,Nk } of G = (N, E),
we can de�ne a reduced multi-graph GP from G as follows. First,
we reduce each subsetNi to a super node. The collection of all super
nodes forms the node set forGP . Second, we add an undirected edge
connecting the super nodes Ni and Nj for each pair of ni ,nj 2 N
with the property thatni 2 Ni ,nj 2 Nj andni andnj are connected
inG. The partitionP is said to be a tree partition if the reduced graph
GP forms a tree. Given a tree partition P = {N1,N2, · · · ,Nk }, the
sets Ni are called the regions of P. An edge e with both endpoints
insideNi is said to be withinNi . If e is not withinNi for any i , then
we say e forms a bridge. In [9], we showed that each graph G has a
unique irreducible tree partition and this particular partition can be
computed in linear time. We will henceforth refer to the irreducible
tree partition of G simply as tree partition of G.

3 KEY RESULT AND DISCUSSION
Our main result applies in contexts where the power network is
operating under normal conditions, which are mild conditions on
the power injections and the power balance rules that are typically
satis�ed in practical settings. Furthermore, to avoid pathological
cases, we assume that the line susceptances are perturbed according
to a probabilitymeasure µ that is absolutely continuous with respect
to the Lebesgue measure on Rm . The interested readers can �nd
all the details about these assumptions as well as the proof of our
main result in our online report [9].

T������ 1. For a power network operating under normal condi-
tions, Keê , 0 almost surely w.r.t. µ if and only if:

(1) e, ê are within the same tree partition region and belong to the
same cell; or

(2) e is a bridge.

Theorem 1 states that, for a practical system, the tree partition
encodes precise information on how the failure of a line propagates
through the network. Indeed, this result shows that the impact
of tripping a non-bridge line only propagates within well-de�ned
components, which we refer to as cells (cf. [9]), inside the tree
partition regions. In contrast, the failure of a bridge line, in normal
operating conditions, propagates globally across the network and
impacts the power �ow on all transmission lines.

Theorem 1 yields many interesting insights for the planning and
management of power systems and, further, suggests a new ap-
proach for mitigating the impact of cascading failures. To illustrate
this, consider Figure 1, which shows how the tree partition is linked
to the sparsity of the Keê matrix through our result. Compared to
a full mesh transmission network consisting of single region/cell,
it can be bene�cial to temporarily switch o� certain lines so that
more regions/cells are created and the impact of a line failure is
localized within the cell in which the failure occurs, thus making
the grid less vulnerable against line outages.

Figure 1: Non-zero entries of the Keê matrix (as repre-
sented by the dark blocks) for a graph with tree partition
{N1,N2, · · · ,Nk } and bridge set Eb . The small blocks repre-
sent cells inside the regions.

However, it is reasonable to expect that such an action may
increase the stress on the remaining lines and, in this way, worsen
the network congestion. In fact, one may expect that improved
system robustness obtained by switching o� lines always comes
at the price of increased congestion levels. In [9] we consider the
realistic IEEE 118-bus test system as preliminary example and show
that switching o� only a negligible portion of transmission lines
can lead to signi�cantly better control of cascading failures without
signi�cant increases in line congestion across the network.

We believe that in general that if the lines to switch o� are
selected properly, it is possible to improve the system robustness
and reduce the congestion simultaneously. Our future work focuses
precisely on how to select these target lines optimally, as well as on
understanding how to incorporate line capacities in our framework.
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