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Abstract

Missing value imputation is a fundamental prob-
lem in modeling spatiotemporal sequences, from
motion tracking to the dynamics of physical sys-
tems. In this paper, we take a non-autoregressive
approach and propose a novel deep genera-
tive model: Non-AutOregressive Multiresolution
Imputation (NAOMT) for imputing long-range spa-
tiotemporal sequences given arbitrary missing
patterns. In particular, NAOMI exploits the mul-
tiresolution structure of spatiotemporal data to in-
terpolate recursively from coarse to fine-grained
resolutions. We further enhance our model with
adversarial training using an imitation learning
objective. When trained on billiards and basket-
ball trajectories, NAOMI demonstrates significant
improvement in imputation accuracy (reducing
average prediction error by 60% compared to au-
toregressive counterparts) and generalization ca-
pability for long range trajectories in systems of
both deterministic and stochastic dynamics.

1. Introduction

The problem of missing values often arises in real-life se-
quential data. For example, in motion tracking, trajectories
often contain missing data due to targets lying out of the
view, object occlusion, trajectories crossing, and the insta-
bility of camera motion (Urtasun et al., 2006). Hence, a
critical task is missing data imputation which involves fill-
ing in missing values with reasonable predictions. Missing
data imputation has been studied for decades. Most statisti-
cal imputation techniques such as averaging or regression
(Rubin, 2004) are either reliant on strong assumptions of
the data, or are limited to short-range sequences. In this
paper we study how to perform imputation on long-range
sequences with arbitrary patterns of missing data.

In recent years, deep generative models and RNNs have
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Figure 1. Imputation process of NAOMI in a basketball play given
two players (purple and blue) and 5 known observations (black
dots). Missing values are imputed recursively from coarse resolu-
tion to fine-grained resolution (left to right).

been combined for missing data imputation. A common
technique is to append a mask indicating whether or not data
is missing, and then train with the masked data (Che et al.,
2018). More recently, (Fedus et al., 2018; Yoon et al., 2018a;
Luo et al., 2018) propose combining sequence imputation
with generative adversarial networks (GAN) (Goodfellow
et al., 2014). However, all existing imputation models are
autoregressive and impute missing values conditioned on
previous data. We find in our experiments that these ap-
proaches struggle on long-range sequences with long-term
dynamics, as compounding error and covariate shift become
catastrophic for autoregressive models.

In this paper, we introduce a novel non-autoregressive se-
quence imputation method. Instead of conditioning only on
previous values, our model learns the distribution of miss-
ing data conditioned on both the history and the future. To
tackle the challenge of long-term dependencies, we exploit
the multiresolution nature of spatiotemporal data, and de-
composes the complex sequential dependency into simpler
ones at multiple temporal resolutions. Our model, Non-
autoregressive Multiresolution Imputation (NAOMTI) uses a
divide and conquer strategy to recursively fill in the missing
values from coarse to fine-grained resolutions. We formal-
ize the learning problem as an imitation learning task, and
train the entire model using a differentiable model-based
generative adversarial imitation learning algorithm.

In summary, our contributions are as follows:
e We tackle the challenging task of missing value im-

putation for large-scale spatiotemporal sequences of
long-range and long-term dependency.

e We propose NAOMI, a novel deep, non-autoregressive,
multiresolution sequence model that recursively im-



NAOMI: Non-Autoregressive Multiresolution Sequence Imputation

putes missing values from coarse to fine-grained reso-
lutions with minimal computational overhead.

e When evaluated on billiards and basketball trajectory
imputation, our approach outperforms autoregressive
counterparts by 60% in accuracy and generates realistic
sequences given arbitrary missing patterns.

e Besides imputation, our framework is also effective
in forward inference and outperforms state-of-the-art
methods without any additional modifications.

2. Related Work

Missing Value Imputation Existing missing value impu-
tation approaches roughly fall into two categories: statistical
methods and deep learning methods. Statistical methods
either use ad-hoc averaging with mean and/or median val-
ues (Acuna & Rodriguez, 2004) or regression models such
as ARIMA (Ansley & Kohn, 1984) and MICE (Buuren &
Groothuis-Oudshoorn, 2010). Other popular imputation
methods include the EM algorithm (Nelwamondo et al.,
2007), KNN and matrix completion (Friedman et al., 2001).
Despite its rich history, missing value imputation remains
elusive as traditional methods are not scalable, often re-
quires strong assumptions on the data, and cannot capture
long-term dependencies in sequential data.

Recently, imputation using deep generative models has at-
tracted considerable attention. A common practice is to
append a missing indicator mask to the input sequence. For
example, M-RNN (Yoon et al., 2018b) proposes a new RNN
architecture to account for multivariate dependencies. GRU-
D (Che et al., 2018) and BRITS (Cao et al., 2018) modify
the RNN cell to capture the decaying influence of missing
variables. GAIN (Yoon et al., 2018a) and GRUI (Luo et al.,
2018) also use GAN. But GAIN does not model the sequen-
tial nature of data, and GRUI does not explicitly take the
known observations into account during training. Perhaps
the work that most closely related to ours is MaskGAN (Fe-
dus et al., 2018), which makes use of adversarial training
and reinforcement learning objective to fill in the missing
texts for language modeling. However, all the imputation
models are autoregressive, which suffers from compounding
error and inconsistency between generated and actual values
at observed points.

Non-Autoregressive Modeling Non-autoregressive mod-
els have been studied in the context of natural language
processing where target words/sentences become indepen-
dent given the latent embedding and can be predicted non-
autoregressively. For instance, Oord et al. (2018) uses In-
verse Auto-regressive Flow (Kingma et al., 2016) to map
a sequence of independent variables to a target sequence.
Gu et al. (2018) introduce a latent fertility model and treats

the input word’s “fertility” as a latent variable. Other works
sharing the similar idea include Lee et al. (2018) and Li-
bovicky & Helcl (2018). All these works aim to parallelize
sequence generation, which can be used to speed up the in-
ference procedure in traditional autoregressive models. Our
work is an innovative demonstration of non-autoregressive
modeling for sequence imputation tasks. Our model utilizes
the chain rule to factorize the joint distribution of sequences
without imposing any additional independence assumption.

Behavioral Cloning To explicitly model the sequential
dependencies, we formulate our learning problem as an
imitation learning task in the nomenclature of reinforcement
learning (RL) (Syed & Schapire, 2008; Ziebart et al., 2008).
Using GAN in the sequential setting has been explored in
Ho & Ermon (2016); Yu et al. (2017). (Ho & Ermon, 2016)
propose Generative Adversarial Imitation Learning (GAIL)
by using an equivalence between maximum entropy inverse
reinforcement learning (IRL) and GANs. Yu et al. (2017)
further modify the reward structure and only allow a single
reward when the sequence is completed. However, these
models only use simple generators, which limit their ability
to model long-range sequences.

In order to generate long-range trajectories, Zheng et al.
(2016) propose using manually defined macro goals from
trajectories as weak labels to train a hierarchical RNN. Zhan
et al. (2019) further extends this idea to the multi-agent
setting with a hierarchical variational RNN. However, while
using macro goals can significantly reduce the search space,
reliably obtaining the macro goals from trajectories can be
very difficult. We exploit the multiresolution nature of the
spatiotemporal data, and aim to learn the hierarchical struc-
ture without supervision. Our method bears affinity with
other multiresolution generative models such as Progressive
GAN (Karras et al., 2018) and multiscale autoregressive
density estimation (Reed et al., 2017).

3. Multiresolution Imputation

Let X = (21,29, ...,x7) be a sequence of T observations,
where each time step 7; € RP. Some of the values in X
are missing and the goal is to replace the missing data with
reasonable values. We introduce an accurate and efficient
solution for missing value imputation.

3.1. Iterative Imputation

Our model, NAOMI, is a deep, non-autoregressive, mul-
tiresolution generative model. As depicted in Figure 2 and
Algorithm 1, NAOMT has three components: 1) an encoder
that learns the representation of the sequence with missing
values; 2) a decoder that generates values for missing ob-
servations given the hidden representations of the sequence;
and 3) a discriminator to distinguish whether the generated
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Figure 2. NAOMI architecture. Generator (encoder + decoder) works recursively. At each iteration, the incomplete sequence is first
encoded using forward and backward encoders. The multiresolution decoder then predicts one missing value chosen non-autoregressively.
This process repeats until all missing values are filled in, and then the imputed sequence is sent to discriminator for training.

sequence is real or fake. The decoder is multiresolutional
and operates at different time scales.

The encoder and decoder combined forms a generator G.
NAOMTI alternates between the encoder and the decoder to
impute missing values iteratively. With 7},, missing values,
we need 7, iterations to impute all missing values. Denote
the imputation order as O = {O1, Os, ..., O, }, by apply-
ing the chain rule to factorize the conditional likelihood
P(X|I) as a product of conditional probabilities:

T"L
P(X|I) = P20, w0 Top,, |1) = [ [ P(@o, I, 70,).

i=1

This factorization allows us to model the conditional like-
lihood in a tractable manner and without introducing inde-
pendence assumptions. We begin by describing the encoder
for sequences with incomplete data.

3.2. Incomplete Sequence Encoder

To indicate which values in X are missing, we intro-
duce a masking sequence M = (mq,mg,...,mr) where
m¢ = 1]z is missing] and 1 is the indicator function. The
concatenated input is then I = [X, M]. Our encoder maps
I into hidden states H = [H/, H’] consisting of forward
hidden states H/ = (hJ,... h%) and backward hidden
states H® = (h%, ..., hY.). The conditional distribution of
the encoder g(H |I) can be decomposed as:

q(H*1) = TT;—y a(h2|h%y, Ise)

where h{ represents the temporal dependence from the his-
tory and h? encodes the dependence on the future.

We can parameterize the above distributions with a forward
RNN f; and a backward RNN f,. At time step ¢, ff encodes
the history of observations and imputed values up to ¢, and
fv encodes the future and missing masks after ¢:

{Q(h’{”ﬂ;ta I<t) = ff(h{—la It) . (2)
q(h|h2 s, Is) = fo(hlyy, 1)

For ff and f;, we use GRU cells with ReLU activations.
Next we describe our multiresolution imputation decoder.

3.3. Multiresolution Imputation Decoder (MID)

Given the hidden representations H, the decoder learns the
distribution of the complete sequence p(X|H ). To handle
long-term dependencies and avoid error propagation, our
decoder uses a divide and conquer strategy and imputes
values recursively from coarse to fine-grained resolutions.
At each iteration, the decoder first identifies two time steps
with observed/imputed values as pivots, and imputes a miss-
ing value close to their midpoint. One of the pivots is then
replaced by the newly imputed point and the process repeats
at a higher resolution.

As shown in Figure 3, a multiresolution decoder with R
levels is equivalent to a collection of decoders, denoted by
g™, ..., g each of which predicts every n, = 28"
steps. At resolution r, let the sub-sequence be X () =

(21, %14n,, T142n,, - ). Then p(X|H) can be factorized:

R
p(X|H) = [[p(x"|H). (3)

r=1

The decoder finds two pivots ¢ and j and chooses a time
step t with a missing value that is close to the midpoint:
(j —4)/2. Let r be the smallest resolution that satisfies
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Algorithm 1 Non-AutOregressive Multiresolution Imputation

1: Initialize generator policy 7y and discriminator D,
2: repeat
3:  Sample from expert policy 7g ~ 7 and mask M
Compute incomplete sequences X = 75 © M
Initialize h{ R hfi using Eqn 2 for0 <¢ <T
while X contains missing values do
Find the smallest 4 and j s.t. m; = m; = 1 and 3¢
st.i<t<jandm; =0
Find the smallest r s.t. n, = 28" < (j —i)/2
9: Select the imputation point t* = i + n,
10: Decode z;+ using Eqn 4, update X, M
11: Update h{ and h? as follows

AN A S

Wi = fr(h]_y 1), vt > t*

hy = fo(hiy, Iy),Vt < t*

12:  end while

13:  Update generator policy 7y by backpropagation
14:  Train discriminator D,, with g and 7y

15: until Converge

n, < (j —1)/2. The decoder hidden states at time step ¢ are
formed by concatenating the forward states h{fnr and the
backward states h® +n,.- Decoder g™ then maps the hidden
states to a probability distribution over the outputs. The

masking m, is updated to 1 after the prediction:
pad|H) = g7 (hf_y 1)1, S

If the dynamics are deterministic, (") directly outputs im-
puted value. For stochastic environments, we reparameter-
ize the outputs using a Gaussian distribution with diagonal
covariance and predict the mean and standard deviation.

Multiresolution as a universal approximator. We pro-
vide the theoretical intuition for our multiresolution de-
coder. Consider an unknown function f(z1,z2, - ,z7)
to be approximated by its multiresolution components at
R levels, that is f(x) ~ fr(z) = Zle g (z). Mul-
tiresolution approximation is defined as a sequence of func-
tions gV, g ... g(") from a set of nested vector spaces
VicVa---,CV,, --- C Vg that satisty:

g(r):f('rhxnrnynTa”'% g(T)GVr

Based on the wavelet theory (Mallat, 1989), we can decom-
pose any function f(x) using a family of functions obtained
by dilating and translating a given scaling function ¢(x),
resulting in a discrete wavelet transformation:

1 z—0b
oy

f@)= Y > anbn(@), oénx)=

r=—00 b=—00

)
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Figure 3. Multiresolution Imputation Decoder in NAOMTI. Initially,
x1 and x5 are observed. We choose the smallest r = 2 so that
ny, =2 < 4/2. Using h{ and hb, decoder g(1> imputes x3. Then
9(2) is used to impute x2, and finally x4.

where the coefficients a,, = [*° f(2)¢ys(x)dz. Here r
denotes the dilation and b defines the translation.

In NAOMI, each decoder approximates the function
g (x) = >, apdro(x), and we have the recursive
formula for neural network approximation: fr41(z) =
fr(z) + > 52 arpéry(x). Hence, the approximation
error at resolution r is bounded by:

& =f@) = fr@I =11 > D anén@)]

r=R+1b=—00

and becomes progressively smaller as resolution increases.

3.4. Adversarial Imitation Learning

Given the sequential nature of our problem, we cast the im-
putation task as an imitation learning problem. Given a pol-
icy m : § — A from states to actions, where subsequences
{st = (1,22, ...,2¢)} form the state space, and {z;} are
the actions. We treat complete sequences as roll outs from
an expert policy 75 ~ g, where 75 = {x1,z2,..., 27}
The generator learns to reconstruct the original sequence
given the masked sequence, leading to a learner’s policy 7g.
Imitation learning aims to learn a policy 7y that mimic the
expert policy 7 using data.

To quantify the distribution mismatch between reconstructed
sequences and training data, we follow the GAIL(Ho & Er-
mon, 2016) framework. Formally, NAOMTI uses the afore-
mentioned generator G parameterized by 6, and a discrimi-
nator D parameterized by w. Our training objective function
is:

nbin mjxxO(D, G)=E;unp lzt: Dw(St,xt+1)‘|
®)
+ IE7"N7'l'9 [Z(l - Dw(sta CL‘t.A,-]_))]

t
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where the D outputs the probability that state-action pair
(st, ¢4+1) comes from data rather than the generator.

One way to optimize the objective in Eqn 5 is to use policy
gradients, but this procedure can be expensive and tends to
suffer from high variance and sample complexity (Kakade
et al., 2003). Instead, we take a model-based approach and
assume the environment dynamics are known and differ-
entiable. Hence, we can use the “reparameterization trick”
(Kingma & Welling, 2013) to differentiate the generator ob-
jective with respect to the policy parameters. Similar ideas
have been shown in (Baram et al., 2017; Rhinehart & Kiris,
2018) to be more stable and sample-efficient.

4. Experiments

We evaluate NAOMT on the task of missing value imputation
in two environments: a billiards physical simulator of a
single ball with deterministic dynamics, and a real-world
basketball dataset of five player trajectories with stochastic
dynamics. We present quantitative and qualitative com-
parisons with state-of-the-art methods. Lastly, we further
investigate our model on the task of forward inference.

Model details. The forward and backward encoders are
both 2-layer RNNs with GRU cells. The multiresolution de-
coder has multiple 2-layer fully-connected neural networks.
For the adversarial training, we use a 1-layer RNN with
GRU cells as the discriminator. We train on squared loss for
billiards and adversarial loss for basketball.

Baselines. We compare NAOMI with a set of baselines
that include traditional statistical imputation methods and
deep neural network based approaches.

e KNN: (Friedman et al., 2001) finds the k nearest se-
quences in the training set based on known observa-
tions. Missing values are imputed using the average of
these k-nearest neighbors.

e Linear: imputes the missing values using linear in-
terpolation between two known observations.

e MaskGAN: (Fedus et al., 2018) uses a single encoder
to encode the entire incomplete sequence, a decoder to
impute the sequence autoregressively, and a discrimi-
nator for adversarial training.

e GRUI: (Luoetal., 2018) uses GAN to model the uncon-
ditional distribution via a random vector z. Then it uses
L2 loss to find the best z based on observed steps. In
the original work, complete training sequences are not
available and time intervals are not fixed. Here we let
the discriminator see the complete training sequence,
and we just use the regular GRU cell considering only

fixed time intervals. Hence GRUI may not be perfectly
suited for our setting.

e SingleRes: has the same encoder structure as
NAOMI (a forward and backward encoder), but only
has a single resolution decoder to impute missing val-
ues. The model is similar to BRITS (Cao et al., 2018),
but trained adversarially with a discriminator.

Training. For deterministic settings (e.g. Billiards), we
optimize the L2 loss (teacher forcing is applied during pre-
training). For stochastic settings (e.g. Basketball), we first
pretrain the generator using cross-entropy loss for super-
vised, and then optimize the generator and discriminator
alternatively using the training objective in Eqn 5.

4.1. Imputing Billiards Trajectories

Dataset. We generate 4000 training and 1000 test se-
quences of Billiards ball trajectories in a rectangular world
using the simulator as in (Fragkiadaki et al., 2016). Each
ball is initialized with a random position and random ve-
locity and rolled-out for 200 timesteps. All balls have a
fixed size and uniform density, and there is no friction in
the environment. We generate a masking sequence for each
trajectory with 180 to 195 missing values.

Imputation accuracy. The three defining characteristics
of the dynamics in this environment are: (1) moving in
straight lines; (2) maintaining unchanging speed; and (3)
reflecting upon hitting a wall.

To quantify the imputation accuracy of each model, we
use four metrics: (1) L2 loss between imputed missing
values and their ground-truth; (2) Sinuosity to measure if the
generated trajectory is straight or not; (3) Average step size
change to measure if the speed of the ball is unchanging;
and (4) Distance between reflection point and the wall to
quantify if the model learns that a ball should bounce against
a wall when it collides with one.

Figure 4 compares the model performance using these met-
rics for imputation accuracy. The average value and 5,
95 percentile values are displayed for each metric. Statis-
tics closer to those from the ground-truth indicate better
model performance. NAOMI has the best overall perfor-
mance across all metrics, followed by our single-resolution
baseline model. Note that by design, linear interpolation
has an average step size change closest to the ground-truth.

Generated trajectories. We visualize the imputed trajec-
tories from NAOMI and SingleRes in Figure 5. There are
8 known timesteps (black dots), including the starting posi-
tion. NAOMI can successfully recover the original trajectory
whereas SingleRes deviates from the ground-truth. In
particular, SingleRes fails to use knowledge of fixed po-
sitions in the future to correctly predict the first steps of the
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Figure 4. Metrics for imputation accuracy. The average value and 5, 95 percentile values are displayed for each metric. Statistics closer to
those from the ground-truth indicate better model performance. NAOMT has the best overall performance across all metrics.

sayo|buig

INOVN

Joug

Figure 5. Comparison of imputed billiards trajectories. Blue and red trajectories/curves represent NAOMI and the single-resolution
baseline model respectively. White trajectories represent the ground-truth. There are 8 known observations in this example (black dots).
NAOMI almost perfectly recovers the ground-truth and achieves lower stepwise L2 loss of missing values than the baseline model (third
row). The trajectory from the baseline first incorrectly bounces off the upper wall, which results in curved paths that deviate from the

ground-truth as it tries to be consistent with the known observations.

sequence; SingleRes predicts the ball to reflect off the
upper wall first instead of the left wall in the ground-truth.
As such, SingleRes often has to correct its course to
match known observations in the future, leading to curved
and unrealistic trajectories. Another deviation from the
ground-truth can be seen near the bottom-left corner, where
NAOMI produces trajectory paths that are parallel after two
reflections, but SingleRes does not.

4.2. Imputing Basketball Plays

Dataset. The basketball dataset contains the trajectories of
professional basketball players on offense. Each trajectory
contains the (x, y)-coordinates of 5 players for 50 timesteps
at 6.25Hz and takes place in the left half-court. In total we
have 107,146 training sequences and 13,845 test sequences.
We generate a masking sequence for each trajectory with 40
to 49 missing values.

Imputation accuracy. Since the environment is stochas-
tic (basketball players on offense aim to be unpredictable),
measuring L2 loss between our model output and the ground-

truth is not necessarily a good indicator of realistic trajecto-
ries. Instead, we use the following 5 metrics to quantify how
realistic the trajectories are: (1) Average trajectory length
to measure the typical player movement in 8 seconds; (2)
Average out-of-bound rate to measure whether the model
recognizes court boundaries; (3) Average step size change
to quantify the relationship between consecutive actions;
(4) Max-Min path diff; and (5) Average player distance to
analyze the team coordination. These metrics will serve as
our proxy for evaluating imputation accuracy

Figure 6 compares model performance using these metrics
for imputation accuracy. The median value and 25, 75
percentile values are displayed for each metric. Statistics
closer to the expert data indicate better model performance.
NAOMT has the best overall performance across all metrics.

Generated trajectories. We visualize imputed trajecto-
ries from all models in Figure 7. NAOMI produces trajecto-
ries that are the most consistent with known observations
and have the most realistic player velocities and speeds.
On the contrary, other baseline models commonly fail in
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Figure 6. Metrics for imputation accuracy. The median value and 25, 75 percentile values are displayed for each metric. Statistics closer
to those from the expert data indicate better model performance. NAOMI has the best overall performance across all metrics.
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Figure 7. Comparison of imputed basketball trajectories. Black dots represent known observations (10 in first row, 5 in second). Overall,
NAOMI produces trajectories that are the most consistent with known observations and have the most realistic player velocities and speeds,

whereas other baselines most commonly fail in these regards.

these regards and exhibit problems similar to those observed
in our Billiards experiments: KNN generates trajectories
with unnatural jumps when there are too many known ob-
servations because finding neighbors becomes infeasible;
Linear fails to generate trajectories with natural curvature
when few observations are known; GRUT fails to generate
trajectories consistent with known observations due to mode
collapse in the generator when learning the unconditional
distribution; and Ma skGAN, which consists of a single for-
ward encoder, fails to use known observations in the future
and predicts straight lines.

Robustness to percentage of missing values. Figure 8
compares the performance of NAOMI and SingleRes as
we increase the number of missing values in the data. Gen-
erally speaking, the performance of both models degrade as
more missing values are introduced, which makes intuitive
sense since imputing more values is a harder task. However,
at a certain percentage of missing values, the performance
can improve for both models. There is an inherent trade-off
between two factors that affect model performance: Avail-
able Information and Amount of Constraints. Observed

information can help models recover the original pattern of
the trajectory, but it also serves as constraints that restrict
the model output. As we have discussed before, generative
models can easily generate trajectories that are consistent
with its own historical outputs, but it is harder to be con-
sistent with fixed observations that may deviate from its
training distribution. Especially when mode collapse occurs,
a single observation not captured by the model can lead to
unpredictable trajectory generations.

Learned conditional distribution. Our model learns the
conditional distribution p(X|I) of the complete sequence
given observations, which we visualize in Figure 9. For
a given set of known observations, we use NAOMI to im-
pute missing values with 50 different random seeds and
overlay the generated trajectories. We can see that as the
number of known observations increases, the uncertainty
of the conditional distribution decreases. However, we also
observe some mode collapse in our model: the trajectory of
the purple player in the right image is not captured in the
conditional distribution in the left image.
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Table 1. Billiard Forward Inference Metrics Comparison. Better models should have stats that are closer to the expert.

Models RNN SingleRes NAOMI Expert
Sinuosity 1.054(+5.4%) 1.038(+3.8%)  1.020(+2%) 1.00
Step Change (1073) | 11.6(+629%)  9.69(+510%)  10.8(+581%) 1.59
Reflection point dist | 0.074(+338%) 0.068(305%) 0.036(+114%) 0.018
L2 Loss (1079) 4.698 4.753 1.682 0.0

Table 2. Basketball Forward Inference Metrics Comparison. Better models should have stats that are closer to the expert.

Models RNN RNN + GAN HVRNN SingleRes NAOMI Expert
Path Length 1.36(+138%) 0.62(+9%) 0.67(+18%) 0.62(+9%) 0.55(-3%) 0.57
OOB Rate (1073) 29.2(+1395%) 4.33(+122%) 7.16(+266%)  3.62(+86%) 3.07(+57%) 1.95
Step size Change (1073) | 10.0(+403%)  2.20(+11%)  2.70(+36%)  2.35(+19%)  2.46(+23%) 1.99
Path Difference 1.07(+91%) 0.41(-27%) 0.59(+5%) 0.42(-25%)  0.45(-20%) 0.56
Player Distance 0.450(+7%) 0.402(-4%) 0.416(-2%) 0.412(-3%)  0.422(-0%) 0.424
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Figure 8. Model performance with increasing percentage of miss-
ing values. Statistics closer to the expert indicates better perfor-
mance. NAOMI performs better than SingleRes for all metrics.

4.3. Imputation as Forward Inference

Imputation reduces to forward inference when all obser-
vations, except for a leading sequence, are missing. We
show that NAOMI can also be trained to perform forward
inference without modifying the model structure. We take
a trained imputation model as initialization, and continue
training for forward inference by using the masking se-
quence m; = 0,Vi > 1 (first step is known). We evaluate
forward inference performance using the same metrics.

Table 2 shows the quantitative comparison of different mod-
els using our metrics. RNN statistics significantly deviate
from the ground-truth, but greatly improve with adversarial
training. HVRNN (Zhan et al., 2019) uses “macro goals”,
and performs reasonably w.r.t macro metrics including aver-
age path length and max-min path difference. However,
the big step size changes lead to unnatural trajectories.
SingleRes has similar performance as the the naive RNN

Known: [0, 48] Known: [0, 16, 32, 48]

Figure 9. The generated conditional distribution of basketball tra-

jectories given known observations (black dots). As the number of
known observations increases, model uncertainty decreases.

+ GAN model, which means our imputation model structure
can be used to do forward inference. Finally, the single
resolution model does better than NAOMT in terms of the av-
erage step size change, but NAOMT has the best performance
across all metrics.

Similarly, Table 1 compares forward inference performance
in Billiards. NAOMT generates straighter lines and learns the
reflection dynamics better than other baselines.

5. Conclusion

We propose a deep generative model NAOMI for imput-
ing missing data in long-range spatiotemporal sequences.
NAOMT recursively finds and predicts missing values from
coarse to fine-grained resolutions using a non-autoregressive
approach. Leveraging multiresolution modeling and adver-
sarial training, NAOMTI is able to learn the conditional dis-
tribution given very few known observations and achieves
superior performances in various experiments of both deter-
ministic and stochastic dynamics. Future work will investi-
gate how to infer the underlying distribution when complete
training data is unavailable. The trade-off between partial
observations and external constraints is another direction
for deep generative imputation models.
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