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Finding optimal correction of errors in generic stabilizer codes is a computationally hard problem, even
for simple noise models. While this task can be simplified for codes with some structure, such as topological
stabilizer codes, developing good and efficient decoders still remains a challenge. In our paper, we systematically
study a very versatile class of decoders based on feedforward neural networks. To demonstrate adaptability, we
apply neural decoders to the triangular color and toric codes under various noise models with realistic features,
such as spatially correlated errors. We report that neural decoders provide a significant improvement over leading
efficient decoders in terms of the error-correction threshold. In particular, the neural decoder threshold for the
two-dimensional color code is very close to the toric code threshold. Using neural networks simplifies the design
of decoders and does not require prior knowledge of the underlying noise.
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I. INTRODUCTION

Recent small-scale experiments [1–4] have shown an in-
creasing level of control over quantum systems, constituting
an important step towards the demonstration of quantum error
correction and fault tolerance [5,6]. In order to scale up
quantum devices and maintain their computational power, one
needs to protect logical information from unavoidable errors
by encoding it into quantum error-correcting codes [7]. One
of the most successful classes of quantum codes, stabilizer
codes [8], allows one to detect errors by measuring stabilizer
operators without altering the encoded information. Subse-
quently, errors can be corrected by implementing a recovery
operation. A classical algorithm, which allows one to find an
appropriate correction from the available classical data, i.e.,
the ±1 measurement outcomes of stabilizers for the given
code, is called a decoder.

Optimal decoding of generic stabilizer codes is a computa-
tionally hard problem, even for simple noise models [9,10]. If
codes have some structure, then the task of decoding becomes
more tractable and efficient decoders with good performance
may be available. For example, in the case of topological
stabilizer codes [11–15], the stabilizer generators of which
are geometrically local, any unsatisfied stabilizer returning
−1 measurement outcome indicates the presence of errors
on some qubits in its neighborhood. By exploiting this pat-
tern, many decoding schemes have been developed, some of
which are based on cellular automata [16–23], the Minimum-
Weight Perfect Matching algorithm [24–26], tensor networks
[27,28], renormalization group [29–33], or other approaches
[27,34–37].

Efficient decoders with good performance are often tailor-
made for specific codes and are not easily adaptable to other

settings. For instance, despite a local unitary equivalence of
two families of topological codes [38], the color and toric
codes, one cannot straightforwardly use toric code decoders in
the color code setting; rather, some careful modifications are
needed [22,25]. Moreover, decoding strategies are typically
designed and analyzed for simplistic noise models, which
may not truly reflect errors present in the experimental setup.
Importantly, the best approach to scalable quantum devices
is still under debate and dominant sources of noise are yet
to be thoroughly explored. Thus, it would be very desirable
to develop decoding methods without full characterization of
quantum hardware, which are adaptable to various quantum
codes and realistic noise models.

The main goal of our paper is to systematically explore
recently proposed decoding strategies based on artificial neu-
ral networks [41–45]. We consider a two-step decoding strat-
egy. In step 1, for any given configuration of unsatisfied
stabilizers we deterministically find a Pauli operator, which
returns corrupted encoded information into the code space.
After this step, all stabilizers are satisfied but a nontrivial
logical operator may have been implemented by the attempted
Pauli correction combined with the initial error. In step 2, we
use a feedforward neural network to determine what (if any)
nontrivial logical operator is likely to be introduced in step 1,
so that we can account for it in the recovery. We emphasize
that step 2 is a classification problem, particularly well suited
for machine learning.

In our paper, we convincingly demonstrate the versatility
of neural decoders by applying them to two families of codes,
the two-dimensional (2D) triangular color and toric codes,
under different noise models with realistic features, such as
spatially correlated errors. We observe that, irrespective of the
noise model, neural-network decoding outperforms standard
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TABLE I. The error-correction threshold for neural decoders
compared with standard decoding methods based on the Minimum-
Weight Perfect Matching algorithm and the projection decoder.
Neural decoders were applied to the 2D toric and color codes of
distance up to d = 11. Numerical simulations were performed for
various noise models, including the nearest-neighbor spatially corre-
lated depolarizing noise, assuming perfect syndrome measurements.
To fairly compare different noise models, threshold error rates are
expressed in terms of the effective error rate peff (see Sec. II D).
The quoted optimal threshold values were found for models without
boundaries.

Threshold of the triangular color code

Decoder

Noise Neural Projection Optimal

Bit- or phase-flip ∼19.0% ∼16.2% 20.6(4)% [39]
Depolarizing ∼17.4% ∼12.6% 18.9(3)% [40]
NN-depolarizing ∼15.0% ∼13.5% ?

Threshold of the triangular toric code with a twist

Decoder

Noise Neural MWPM Optimal

Bit- or phase-flip ∼19.6% ∼19.2% 20.68(4)% [24]
Depolarizing ∼18.0% ∼15.3% 18.9(3)% [40]
NN-depolarizing ∼16.7% ∼14.2% ?

strategies, including the Minimum-Weight Perfect Matching
algorithm [24] and the projection decoder [25] (see Table I).
In particular, the neural decoder threshold for the 2D color
code is higher than the threshold of any other efficient decoder
known up to date which, in turn, implies that the performance
of the color code can be close to the toric code. It is worth
emphasizing that only the training datasets, but not the explicit
knowledge of the noise or the geometric structure of the codes,
were needed to train neural decoders. We also analyze how
computational costs of training and neural-network parame-
ters scale with the growing code distance. Our paper indicates
that, due to its adaptability, neural-network decoding is a
promising error-correction method which can be used in a
wide range of future small-scale quantum devices, especially
if the dominant sources of errors are not well characterized.

Our paper differs from previous machine learning based
decoders [41–45] as it emphasizes first and foremost adapt-
ability. The distinguishing aspects of our paper are as follows.

(i) We specifically pick two code families with the same
2D qubit layout that differ in their choice of local stabilizer
generators.

(ii) We systematically study different noise models, includ-
ing spatially correlated noise.

(iii) We consider code distances larger than previously
studied, which allows us to reliably determine the perfor-
mance and error correction thresholds of neural decoders.

It should be noted that we optimize the size of the networks
for decoder performance rather than computational efficiency.
However, we believe that by using more sophisticated neural-
network models, such as convolutional neural networks, effi-
cient neural decoders could be achieved for larger codes [46].

The organization of the paper is as follows. We start by
discussing quantum error correction from the perspective of
topological codes, the triangular color code and the toric
code with a twist. In particular, in Sec. II C we explain how
to construct the excitation graph, which leads to a simple
algorithm for step 1 of the neural decoder. In Sec. II D we
introduce a notion of the effective error rate, which allows
us to easily compare threshold error rates for different noise
models. Then, we describe neural decoding and its perfor-
mance under different noise models, including the spatially
correlated depolarizing noise. In Sec. III B we explain how
the training of deep neural networks is accomplished by
successively increasing the error rate used to generate the
training dataset. This training method likely has significant
impact, since it may lead to faster convergence and better final
performance of neural networks for quantum error-correction
applications. We conclude the paper with the discussion of our
results and their implications for future neural decoders used
in practice.

II. ERROR CORRECTION WITH TOPOLOGICAL CODES

A. Topological stabilizer codes

Stabilizer codes [8] are an important class of quantum
error-correcting codes [7] specified by a stabilizer group S .
The stabilizer group S is an Abelian subgroup of the Pauli
group generated by n-qubit Pauli operators P1 ⊗ . . . ⊗ Pn,
where Pi ∈ {I, X,Y, Z} and −I �∈ S . The logical information
is encoded into the codespace, which is the (+1) eigenspace
of all the elements of S . Logical Pauli operators L ∈ L are
identified with elements of the normalizer S of the stabilizer
group S in the Pauli group. An operator L which implements
a nontrivial logical Pauli operator L �= I can be chosen to
be a product of Pauli operators, which commute with all
the elements in the stabilizer group but do not belong to S .
The weight of the minimal-support nontrivial logical Pauli
operator is the distance of the code.

Physical qubits of the stabilizer code can be affected by
noise, which can take encoded logical information outside
of the codespace. No information about the original encoded
state is revealed by measuring stabilizer generators. Rather,
one effectively projects errors present in the system onto
some Pauli operators and subsequently gains some knowledge
about them. The set of unsatisfied stabilizers returning a −1
measurement outcome is called a syndrome. The syndrome
serves as a classical input to a decoding algorithm, which
allows one to find a recovery Pauli operator bringing the
corrupted encoded state back to the codespace. For a special
class of stabilizer codes, the CSS codes [47], the stabilizer
generators of which are products of either X - or Z-type Pauli
operators, one can independently correct Z- and X -type errors
using the appropriate X - and Z-type syndrome.

Topological stabilizer codes [11–15] are a family of sta-
bilizer codes exhibiting particularly good resilience to noise.
The distinctive feature of topological stabilizer codes is the
geometric locality of their generators. Namely, physical qubits
can be arranged to form a lattice in such a way that every
stabilizer generator is supported on a constant number of
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FIG. 1. (a) 2D triangular color code on a patch of the hexagonal
lattice with three-valent vertices and three-colorable faces. Every
face supports both X and Z stabilizers. The string of Pauli Z operators
(yellow ⊕) implements a logical Z operator, while the string of Pauli
X operators (orange ⊗) implements a logical X . Both operators
connect all three boundaries. (b) 2D triangular toric code with a
twist. Dark and white faces support X and Z stabilizers, respectively.
Depending on the coloring of mixed dark or white faces along
a one-dimensional defect line (dashed line), stabilizers are mixed
products of Pauli X and Z . Red and blue strings depict two equivalent
representatives of a logical Z operator. Upon crossing the defect line,
the string changes from X type (blue ⊗) to Z type (blue ⊕).

qubits within some geometrically local region.1 At the same
time, no logical Pauli operator can be implemented via a
unitary acting on physical qubits in any local region. By
enlarging the system size, one increases the distance and
error-correction capabilities of the topological code without
changing the required complexity of local stabilizer measure-
ments. This is in stark contrast with other quantum codes, such

1The topological codes studied here are also within a more general
class of stabilizer codes, low-density parity check (LDPC) codes.
These codes have stabilizers the support of which is bounded on a
constant number of qubits, and each qubit is only in the support of
a few stabilizers. However, for general LDPC codes, there are no
further constraints on the support of the stabilizers, such as geometric
locality, rendering their decoding more difficult.

as concatenated codes [48], the stabilizer weight of which
necessarily increases with the distance and thus makes those
constructions experimentally more challenging.

Two well-known examples of topological stabilizer codes
are the toric and color codes. The triangular color code is
defined on a two-dimensional lattice with a boundary, the
vertices of which are three-valent2 and the faces f ∈ F of
which are three-colorable [see Fig. 1(a)]. Qubits are identified
with vertices. The color code is a CSS code and its stabilizer
group is defined as follows:

SCC = 〈Xf , Z f | f ∈ F 〉, (1)

where Xf and Z f are Pauli X and Z operators supported on all
qubits belonging to a face f ∈ F . Accordingly, X - and Z-type
errors can be independently corrected using the Z- and X -type
syndromes.

The triangular toric code with a twist [49] can be defined
for the same arrangement of physical qubits as the triangular
color code. Its lattice can be obtained from the color code
lattice by keeping all the vertices, adding extra edges and
modifying some faces [see Fig. 1(b)]. The resulting lattice is
four-valent3 and the faces are two-colorable, except for the
“mixed” faces along a one-dimensional (1D) defect line. The
color of the face indicates the type of the stabilizer generator
identified with that face. Namely, dark f ∈ FD and white
g ∈ FW faces support X -type Xf and Z-type Zg stabilizers.
Depending on the coloring of mixed faces h ∈ FM , stabilizers
Sh are defined to be mixed products of both Pauli X and Z
operators. We emphasize that the choice of mixed stabilizer
generators along the defect line is needed for the stabilizers Sh

to commute with Xf and Zg for all f ∈ FD, g ∈ FW , h ∈ FM .
The full stabilizer group is thus given by

STC = 〈Xf , Zg, Sh| f ∈ FD, g ∈ FW , h ∈ FM〉. (2)

We remark that due to mixed stabilizer generators the toric
code with a twist is not a CSS code and thus one should not
decode X and Z errors independently. As we will explain in
Sec. II C, the excitation graph of the toric code with a twist
does not split into two disconnected components for X and Z
errors (see Fig. 3).

Logical Pauli operators of the 2D topological stabilizer
codes can be thought of as deformable noncontractible 1D
stringlike operators. In the case of the triangular color and
toric codes, logical operators connect certain boundaries as
depicted in Fig. 1.

B. Quasiparticle excitations

It is illustrative to establish a connection between quan-
tum error-correcting codes and quantum many-body systems
described by commuting Hamiltonians. For a topological
stabilizer code with the stabilizer group S we can define
a commuting stabilizer Hamiltonian H (S ) to be a sum of
stabilizer generators of S with a negative sign. In particular,

2All the vertices are three-valent except for three corner vertices on
the boundary.

3All the vertices are four-valent except for three corner vertices
on the boundary and one vertex in the bulk, which corresponds to
a twist, i.e., the end of the defect line.
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for the color code and the toric code with a twist we choose
their stabilizer Hamiltonians to be

HCC = −
∑

f ∈F

Xf −
∑

f ∈F

Z f , (3)

HTC = −
∑

f ∈FD

Xf −
∑

g∈FW

Zg −
∑

h∈FM

Sh. (4)

Note that all the terms in the stabilizer Hamiltonian H (S )
are mutually commuting, thus any eigenstate of H (S ) has
to be an eigenstate of every single term. Since eigenstates
of stabilizer generators can only have ±1 eigenvalues, we
conclude that the code space defined as the (+1) eigenspace of
all the elements of S coincides with the ground space of H (S ).
We will highlight some of the important properties of the
Hamiltonian formulation of stabilizer codes in this subsection
(see Ref. [50] for an extended description).

We can think of errors affecting information encoded in
the topological stabilizer code as operators creating localized
quasiparticle excitations in the related quantum many-body
system. Namely, consider any Pauli error which anticommutes
with some stabilizer generators. The error moves the encoded
logical state outside the code space or, equivalently, the
ground state outside the ground space. The resulting state is
excited in the sense that its energy is larger than the ground
space energy by the amount proportional to the number of
violated stabilizer Hamiltonian terms. The unsatisfied stabi-
lizer terms can be identified with quasiparticle excitations
[11,51–53]. Depending on whether the unsatisfied stabilizer
is of X or Z type, we will call the excitation electric eK or
magnetic mK .4 The subscript K indicates the color of the face
supporting the excitation. In particular, for the toric code we
can only have eD and mW , whereas the color code excitations
can be supported on faces of any color, i.e., eK and mK for any
K ∈ {R, G, B}.

In order to understand excitation configurations arising
from any Pauli errors, it suffices to know what excitations
geometrically local Pauli operators can create and how to
combine them. We now discuss these constraints, also known
as fusion rules for topological stabilizer codes. In case of the
toric code, a single-qubit Pauli X or Z error on the qubit in
the bulk of the system violates two Z- or X -type stabilizers on
neighboring faces and thus necessarily creates two excitations
of the same type, either magnetic or electric [see Fig. 2(b)]. If
two errors with nonoverlapping support independently create
the same excitation on a face f ∈ F , then the product of both
errors will not create any excitation at that location. For an
illustration, let us consider two single-qubit errors Xi and Xj

on qubits i and j belonging to the edge {i, j}. Each error
independently creates a magnetic excitation on the face f
containing the edge {i, j}; however, the combined error XiXj

results in no excitation on f . The above discussion can be
summarized by the toric code fusion rules

eD × eD = mW × mW = 1, (5)

4For the mixed stabilizers along the defect line, there is ambiguity
in associating the type of the excitation since the electric and mag-
netic excitations are exchanged upon crossing the defect line. Thus,
we would refer to those excitations without specifying their type.
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FIG. 2. Quasiparticle excitations in the 2D triangular color and
toric codes. (a) A single X error (white ⊗1) in the bulk of the color
code leads to three unsatisfied Z stabilizers on neighboring faces, and
thus creates a triple of magnetic excitations (red, green, and blue �1).
A string of X errors (white ⊗2) creates a pair of magnetic excitations
(red �2). A string of Z errors (white ⊕3) terminating at the blue
boundary creates a single electric excitation (blue �3). (b) A single Z
error (white ⊕1) in the bulk of the toric code with a twist leads to two
unsatisfied X stabilizers on neighboring dark faces, and thus creates a
pair of electric excitations (gray �1). A single X error (white ⊗2) on
the rough boundary creates a single magnetic excitation (white �2).
A pair of electric (gray �3) and magnetic (white �3) excitations can
be created by a string of errors (white ⊗3 and ⊗3) across the defect
line (dashed line).

which express the fact that in the bulk excitations of the same
type can only be created (by geometrically local operators) or
annihilated in pairs. Note that 1 denotes no excitation.

The fusion rules for the color code are slightly more
complicated than for the toric code. Namely, we have

eK × eK = mK × mK = 1, (6)

eR × eG × eB = mR × mG × mB = 1, (7)

where K ∈ {R, G, B}. Similarly as for the toric code, combin-
ing two excitations of the same type and color results in no
excitation. However, in the bulk of the color code it is also
possible to create (by a local operator) or annihilate a triple
of excitations. We can see this by considering a single-qubit
Pauli X or Z error. It violates three Z- or X -type stabilizers on
neighboring red, green, and blue faces and thus creates a triple
of magnetic or electric excitations [see Fig. 2(a)].
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The topological stabilizer codes we consider are defined on
lattices with boundaries. By acting with a local Pauli operator
on the qubits near the boundary of the system it is possible
to create or annihilate a single magnetic or electric excitation.
We emphasize that the type of the boundary determines the
type of the allowed excitation [54]. For the triangular toric
code, there are two types of boundaries, rough or smooth
[12], and a single electric (magnetic) excitation can only be
created on the rough (smooth) boundary [see Fig. 2(b)]. In
case of the triangular color code, there are three types of
boundaries—red, green, or blue [13]—and single electric and
magnetic excitations of a given color can be created on the
boundary of the matching color [see Fig. 2(a)].

Once a quasiparticle excitation is created, it can always be
moved in the bulk of the 2D topological stabilizer code by
applying an appropriate 1D stringlike Pauli operator [55,56].
Given fusion rules, the excitation movement can be under-
stood as a process of creating pairs of excitations along
some path and fusing them together with the initial one,
which results in the excitation changing its position. When the
quasiparticle excitation moves its type does not change, unless
it passes through a defect line. A defect line, also known as a
transparent domain wall5 [57–59], is a 1D object, along which
the stabilizer generators are appropriately modified. In case of
the triangular toric code with a twist, one chooses stabilizers
on faces intersected by the defect line to be mixed products
of Pauli X and Z operators [see Fig. 1(b)]. When an electric
excitation eD crosses the defect line, it becomes a magnetic
excitation mW , and vice versa, eD ↔ mW . We emphasize that
logical Pauli operators for the triangular color and toric codes
can be implemented by creating a single excitation on one
of the boundaries and transporting it to the other boundary,
where it can annihilate (see Fig. 1 for examples of logical
operators).

We remark that there are only two possible types of defect
lines in the toric code, one of which is trivial. However, in
case of the color code, there are 72 different defect lines [60].
We encourage readers to explore Ref. [61] for an illuminating
discussion of all the possible boundaries and defect lines in
the 2D color code.

C. Decoding of topological codes as a classification problem

As we already discussed, generic errors affect the encoded
information by moving it outside the code space, which results
in some stabilizers being unsatisfied. A classical algorithm
which takes the syndrome as an input and finds an appropriate
recovery restoring all stabilizers to yield +1 measurement
outcome is called a decoder. For stabilizer codes the recovery
operator is a Pauli operator. We say that decoding is successful
if no nontrivial logical operator has been implemented by the
recovery combined with the error.

We can view decoding as a process of removing quasipar-
ticle excitations from the system and returning the state to
the ground space of the stabilizer Hamiltonian. To facilitate

5A transparent domain wall can be thought of as an automorphism
of the excitation labels which preserves the braiding and fusion rules
of the quasiparticle excitations.

the discussion, we introduce an excitation graph G = (V, E ),
which captures how the excitations can be moved (and even-
tually removed) within the lattice of the topological stabilizer
code (see, for example, Refs. [34,62]). The vertices V of the
excitation graph G correspond to the (possible locations of)
quasiparticle excitations. Note that there is one vertex for
every single electric, as well as for magnetic excitation. We
also include in V one special vertex w, called the boundary
vertex. Two different vertices v1, v2 ∈ V \ {w} are connected
by an edge {v1, v2} ∈ E if there is a Pauli operator Pv1,v2 with
geometrically local support which can move an excitation
from v1 to v2 without creating any other excitations. We say
that v ∈ V \ {w} and the boundary vertex w are connected by
an edge {v,w} if one can locally create a single excitation at v.
In case of the toric and color codes, we restrict our attention to
local operators, which are supported on, respectively, one or at
most two neighboring qubits. We identify the edges {v1, v2} in
E with the local operators Pv1,v2 . We illustrate how to construct
the excitation graph in Fig. 3.

We consider a very simple deterministic procedure, see
Algorithm 1, which effectively eliminates quasiparticle exci-
tations from the toric and color codes. We refer to Algorithm 1
as the excitation removal algorithm. The excitation removal
algorithm builds on the idea of error decomposition [30,63]
and resembles the simple decoder in Ref. [44]. Let Q be
some Pauli error operator, which results in the excitation
configuration U ⊂ V \ {w} in the system. The input of the
algorithm is U , but not Q. For every excitation u ∈ U we
find the shortest path (v1, v2, . . . , vn) in the excitation graph
G between u = v1 and the boundary vertex w = vn, where
vi ∈ V and {vi, vi+1} ∈ E . We define an operator Pu to be
a product of local Pauli operators Pvi,vi+1 identified with the
edges {vi, vi+1} along the path (v1, v2, . . . , vn), namely, Pu =∏n−1

i=1 Pvi,vi+1 . The operator Pu moves an excitation from u to
the boundary where it is annihilated. As the output of the
algorithm we choose an operator RU = ∏

u∈U Pu. We remark
that the operator RU returns the state to the ground space
since it removes all the excitations, and thus RU Q ∈ L. At
the same time, the output RU combined with the initial error
Q likely implements some nontrivial logical operator. Thus,
the excitation removal algorithm viewed as a decoder would
perform rather poorly.

Algorithm 1: excitation removal

Require: the excitation graph G = (V, E )
Input: positions U ⊂ V \ {w} of excitations
Output: Pauli operator RU removing all excitations
initialize RU ← I
for every u ∈ U :

1. find the shortest path (v1, . . . , vn) in G between u = v1 and
the boundary vertex w = vn

2. find an operator Pu = Pv1,v2 · . . . · Pvn−1,vn corresponding to
the path (v1, . . . , vn)

3. RU ← RU Pu

return RU

Now we explain how to reduce the decoding problem
to a classification problem by using the excitation removal
algorithm. The task of classification is to assign labels,
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(a)

(b)

FIG. 3. Construction of the excitation graph G = (V, E ) for
(a) the color code and (b) the toric code with a twist. For every face
f of the topological code lattice we add a vertex v f to the set of
vertices V of G. We also include the boundary vertex w (enclosing
circle) in V . (a) It is not possible to move a single excitation in the
bulk (without creating more excitations) by applying a single-qubit
operator. However, since a two-qubit operator XX or ZZ can move
an excitation between two nearby faces f and g of the same color,
we add an edge {v f , vg} to E . (b) A single-qubit Pauli X or Z error
can move an excitation between two neighboring faces f and g of
the same color, thus we add an edge {v f , vg} between v f and vg to
the set of edges E of G. We connect a vertex v f with the boundary
vertex w if we can create a single excitation on f by (a) a single-
or two-qubit operator and (b) a single-qubit operator. Note that in
panel (a) we depict only a part of the excitation graph corresponding
to electric excitations and Z-type errors, since the parts for magnetic
excitations and X -type errors are identical.

typically from some small set, to the elements of some
high-dimensional dataset. In the decoding problem, we know
positions U ⊂ V \ {w} of the excitations and want to find a
recovery operator removing all the excitations and implement-
ing the trivial logical operator. We do not know, however,
the Pauli operator Q resulting in the excitation configuration
U . Using the excitation removal algorithm we easily find
the operator RU . Clearly, we would be able to successfully
decode if we chose RU L as a recovery operator, where L is

any operator implementing the same logical operator L ∈ L as
RU Q. Unfortunately, there are many different error operators
creating the same configuration of excitations U . We can split
all those error operators Q into equivalence classes identified
with different logical operators L implemented by RU Q. Then,
for any given excitation configuration U we can find the most
probable equivalence class of errors creating U . What we
would like to achieve is to label U by a logical operator
L, which is implemented by the output RU of the excita-
tion removal algorithm and any operator Q from the most
probable class of errors. Such a problem is well suited for
machine learning techniques, in particular for artificial neural
networks. We defer further discussion of the classification
problem to Sec. III A, where we explain it in the context of
neural-network decoding.

D. Noise models and thresholds

In order to test versatility of neural decoders, we numeri-
cally simulate their performance for various noise models. In
particular, we consider the following three Pauli error models
specified by just one parameter, the error rate p.

(1) Bit- or phase-flip noise: every qubit is independently
affected by an X error with probability p, and by a Z error
with the same probability p.

(2) Depolarizing noise: every qubit is independently af-
fected with probability p by an error, which is uniformly
chosen from three errors X , Y , and Z .

(3) NN-depolarizing noise, i.e., the spatially correlated
depolarizing noise on nearest-neighbor qubits: every pair of
qubits i and j sharing an edge in the lattice is independently
affected with probability p by a nontrivial error, which is
uniformly chosen from 15 errors of the form PiPj , where
Pi, Pj ∈ {I, X,Y, Z} and PiPj �= II .

We emphasize that one should not necessarily think of the
aforementioned noise models as accurately describing errors
in the experimental setup. Rather, we choose those models
since they are easy to specify and simulate but, at the same
time, they also capture realistic noise features, such as spatial
correlations of errors, which any good decoder should be able
to handle [26]. In addition, in the current proposed circuit-
based models for syndrome measurement [64] correlated er-
rors across neighboring qubits would naturally arise.

We would like to easily compare the bit- or phase-flip,
depolarizing, and NN-depolarizing noise models. However,
the error rate p has a different meaning depending on the
considered model. This motivates us to introduce a figure
of merit for Pauli error models, the effective error rate peff .
For any physical qubit we define the effective error rate peff

to be the probability of any nontrivial error affecting that
qubit. Note that in the scenarios we consider the effective
error rates are the same for all the qubits (except for the
ones identified with the corner vertices and the twist for the
NN-depolarizing noise). Thus, we can unambiguously talk
about the effective error rate without specifying which qubit
we are referring to. For the depolarizing noise we simply
have peff = p, whereas for the bit- or phase-flip noise we
find peff = 1 − (1 − p)(1 − p) = 2p − p2. In case of the NN-
depolarizing noise, the effective error rate depends on the
local structure of the lattice. Namely, if n denotes the number
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of nearest neighbors for some qubit, then the effective error
rate p(n)

eff for that qubit can be recursively calculated as

p(n)
eff = p(n−1)

eff

(
1 − 4

15 p
) + (

1 − p(n−1)
eff

)
12
15 p (8)

= 4
5 np + O(p2), (9)

where we use p(0)
eff = 0 and denote by o(p2) the second-order

corrections in p. In particular, for the analyzed color and toric
code lattices we, respectively, have p(3)

eff and p(4)
eff .

In order to assess the performance of a decoder for
the given family of codes with growing code distance d
and specified noise model, we use the quantity called the
error-correction threshold. The error-correction threshold
is defined as the largest pth, such that for all effective error
rates peff < pth the probability of unsuccessful decoding
pfail (peff , d ) for the code with distance d goes to zero in
the limit of infinite code distance, limd→∞ pfail (peff , d ) = 0.
Note that in the definition of the threshold we assume
perfect stabilizer measurements. We remark that one typically
estimates the threshold pth by plotting the decoder failure
probability pfail (peff , d ) as a function of the effective error
rate peff for different code distances d and identifying their
crossing point (see Figs. 6 and 7).

III. PERFORMANCE OF NEURAL-NETWORK DECODING

A. Neural decoders

We have already seen in Sec. II C that the task of successful
decoding can be deterministically reduced to the following
problem: for any configuration of excitations U ⊂ V \ {w}
created by some unknown Pauli operator Q assign a label
L from the set of logical operators L, such that L is the
logical operator implemented by RU Q, where RU is the output
of the excitation removal algorithm with U as the input.
We approach this classification problem by using one of
the leading machine learning techniques, feedforward neural
networks [65,66]. The input layer encodes the configuration of
excitations U . Then, there are Hd hidden layers, each contain-
ing Nd nodes. Nodes from layer l + 1 are fully connected with
nodes from the preceding layer l . For each code of distance
d , we therefore train a neural network consisting of Hd + 2
layers (see Fig. 4). Every node ν in layer l + 1 evaluates an
activation function σ (wν · ol + bν ) on the output ol of nodes
from layer l , where wν and bν are the weights and biases
associated with the node ν. We choose the rectified linear unit
activation function σ (x) = max(0, x). The output layer uses
the softmax classifier, which converts an output vector to a
discrete probability distribution describing the likelihood of
different logical operators L ∈ L being implemented by RU Q.

We are now ready to describe neural-network decoding
for topological stabilizer codes. The neural decoder is an
algorithm which returns a recovery operator R for any config-
uration of excitations U ⊂ V \ {w} created by some unknown
operator Q. We emphasize that error operators Q are chosen
according to some a priori unknown noise model. The neural
decoders we consider consist of the following two steps. In
step 1, we use a simple deterministic procedure, the excitation
removal algorithm, to find a Pauli operator RU , which removes
quasiparticle excitations by moving them to the boundaries of
the system, where they disappear. In step 2, we use a neural

...
...

...

...

v1

v2

v3

vn−1

vn

l = 1 l = 2 l = 3

I

X

Y

Z

FIG. 4. A feedforward neural network with Hd = 3 hidden layers
can be viewed as an acyclic directed graph. Each hidden layer has
the same number of nodes Nd . Nodes from layer l + 1 are fully
connected with nodes from the preceding layer l . The input layer
encodes all the initial excitation configuration U ⊂ V \ {w}. The
output layer encodes the likelihood of each logical operator L ∈
{I, X ,Y , Z} assigned to the input configuration U .

network to guess what are the most likely errors Q resulting in
U and which logical operator L is subsequently implemented
by RU Q, as was done in Ref. [44]. As the output, the operator
RU L is returned, where L is any operator implementing the
logical operator L. We emphasize that the neural decoder
always returns a valid recovery operator but decoding suc-
ceeds if and only if the neural network correctly identifies
the logical operator L implemented by RU Q. The output of
the trained neural network is found by multiplying matrices
of size determined by the number of nodes in each layer, and
thus the decoding complexity will scale polynomially6 with
the number of nodes. We see that in step 1 we implicitly make
use of the excitation graph, which contains information about
the topological code lattice and the fusion rules. However, no
information about the topological code is required to train the
neural network, which is used in step 2.

We emphasize that the details of step 1 in the neu-
ral decoder (Algorithm 2) do not matter as long as the

Algorithm 2: neural decoder

Require: excitation removal algorithm, trained neural network
Input: locations of excitations U ⊂ V \ {w} created by some

unknown operator Q
Output: recovery operator R
using the excitation removal algorithm with U as the input, find
an operator RU

using the neural network with U as the input, find the logical
operator L implemented by RU Q
R ← RU L, where L is any operator implementing L
return R

6One may increase the computation speed by sparsifying the matri-
ces of the final trained network. Another possibility of reducing the
complexity of decoding is to consider convolutional neural networks,
which may have many fewer nodes and links than the networks we
consider.
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returned operator RU is found in an efficient deterministic
way. We choose the excitation removal algorithm because it
is simple and has an intuitive explanation—it removes all the
excitations by moving them to the boundaries of the system.
We point out that we could use a similar version of the neural
decoder for other topological codes (or even codes without
geometric structure), as long as we knew how to efficiently
find the operator RU . For instance, if we considered the toric
or color codes on a torus, with or without boundaries, then
we could always find a simple removal procedure which
deterministically moves all excitations of the same color to
the same location in the bulk or on the boundary, where they
are guaranteed to disappear. Such a procedure can then be
used to create the training dataset for the neural network.
We remark that step 1 becomes more challenging for codes
without stringlike operators, such as the cubic code [15].

B. Training deep neural networks

Before a neural network can be used for decoding, it needs
to be trained. We do this via supervised learning, where the
network is trained on a dataset of preclassified samples. Sam-
ple Pauli errors are generated using Monte Carlo sampling ac-
cording to the appropriate probability distribution determined
by the noise model. For each generated error configuration Q,
we determine the corresponding syndrome, i.e., the excitation
configuration U ⊂ V \ {w}, which is the input to the neural
network. Then, using the excitation removal algorithm, we
find the Pauli operator RU , and check what logical operator L
is implemented by RU Q. This allows us to label each input ex-
citation configuration U with the corresponding classification
label L we want the neural network to output. We remark that
the testing samples used to numerically estimate thresholds
are created in the same way as the training samples.

Training the neural network can now be framed as a min-
imization problem. The network parameters, i.e., the weights
and biases, are optimized to minimize classification error on
the training dataset. We use the categorical cross entropy cost
function C to quantify the error, namely,

C =
∑

i

�yi · log[ �f (�xi )] + (�1 − �yi ) · log[�1 − �f (�xi )], (10)

where �yi is the classification bit string for the input �xi, �f (�xi ) is
the likelihood vector returned by the neural network, and �1 =
(1, . . . , 1). Importantly, this cost function is differentiable,
which allows us to use backpropagation to efficiently compute
the gradient of the cost function with respect to network
parameters in a single backwards pass of the network. The
minimization is performed using Adam optimization [67],
a highly effective variant of gradient descent, the learning
parameters of which do not need to be fine tuned for good
performance. In practice, we find that Adam optimization con-
verges significantly faster than standard gradient descent, with
the effects becoming more pronounced for larger networks.

Instead of computing the cost function on the entire
training set, which becomes computationally expensive for
very large datasets, we use minibatch optimization. This is
a standard technique, which estimates the cost function on
individual batches, i.e., small subsets of the training datasets
(see, e.g., Ref. [68]). We define a training step as one round of

backpropagation and a subsequent network parameter update,
using the cost function C in Eq. (10) estimated on a single
batch. The batch size controls the accuracy of this estimate
and needs to be manually adjusted.

Until recently, training deep neural networks had been
next to impossible. However, innovations by the machine
learning community have made it easy to train extremely deep
networks. We too were unable to successfully train networks
with more than three hidden layers, until we implemented two
of these improvements: He initialization and batch normal-
ization. He initialization [69] ensures that learning is efficient
for the rectified linear unit activation function, whereas batch
normalization [70] stabilizes the input distribution for each
layer. Batch normalization makes it possible to train deeper
networks and improves performance on shallower three-layer
networks.

One disadvantage of larger networks is the potential for
overfitting. This occurs when free parameters of a model learn
features in the training dataset which do not generalize to
other samples from the target distribution, causing perfor-
mance to suffer as shown in Fig. 5(a). Overfitting can be
countered by reducing the size of the network or by increasing
the size of the training dataset. In our application, training data
can be generated with little computational overhead. As such,
we avoid the problem of overfitting by generating training
samples in parallel with training. Each training step uses a
new batch of data, ensuring the model generalizes perfectly
to other samples from the same distribution as evidence from
Fig. 5(b).

The training set is generated according to the noise model
and some chosen error rates. Once the neural network is
trained, it should be able to successfully label syndromes for
error configurations generated at various error rates below the
threshold. In particular, any fine tuning of the network for
specific error rates is not desired. Since the error syndromes
for higher error rates are in general more challenging to
classify, it would be desirable to train the neural network
mainly on configurations corresponding to error rates close
to the threshold. However, during training of the networks for
higher-distance codes and correlated noise models the opti-
mization algorithm is very likely to get stuck in local minima
if we start training on the high error-rate dataset directly. This
problem is manifested in the network not effectively learning
the noise features and the resulting performance showing only
small improvements over random guessing. A solution we
propose is to first pretrain the network on a lower error-rate
dataset, and only then use the training data corresponding to
the near-threshold error rate. We find that as the code size
increases then one benefits from increasing the size of the
dataset from the low error-rate regime (as well as the number
of considered different low error rates) used in the pretraining
stage; further study of the optimal pretraining would be valu-
able. We believe that this is an important observation for any
future implementations of neural networks for decoding quan-
tum error-correcting codes. We also speculate that a similar
strategy might help to speed up training of neural networks
for experimental systems. Namely, we imagine pretraining
the neural network for some simple theoretical error models
at low error rates, and then using the experimental data for
further training.
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FIG. 5. Performance of the network as a function of training
steps. (a) A finite training set of 5×107 samples is repeatedly iterated
over. The network begins overfitting as performance on a validation
dataset begins decreasing. (b) Training samples are generated in
parallel and no overfitting occurs even after many training steps.

C. Selecting neural-network hyperparameters

In addition to network parameters, there are also hyperpa-
rameters which cannot be trained via backpropagation. These
include the number of hidden layers Hd , the number of nodes
per hidden layer Nd , the size of each batch Bd , and the total
number of training steps Td . We optimize these parameters
using a grid search based approach (see Table II for the
optimal values we find). A heuristic rule for determining the
size of a well-performing neural network for the code with
distance d is to use Hd = d − 2 hidden layers and Nd ∝
2d/2 nodes per layer. Whether or not this exponential trend
continues for larger code sizes is an open question. Note
that the runtime of the decoder, once the trained network is
found, scales polynomially with the number of nodes and
layers, and as such exponential scaling would be limiting.
However, we considered fully connected neural networks here
when more sparsely connected graphs along the lines of the
renormalization group decoding, such as convolutional neural
networks [71,72], may allow one to push to higher distances
more easily.

TABLE II. Optimal neural-network hyperparameters of the neu-
ral decoder for the triangular color code (top) and the triangular toric
code with a twist (bottom) with distance d under different noise
models. Hyperparameters varied are the number of hidden layers Hd ,
the number of nodes in the hidden layer Nd , the batch size Bd , and
the number of training steps Td . The total number of training samples
seen during training is Bd Td .

Training cost for the triangular color code

Parameters

Noise d Hd Nd Bd Td

Bit- or phase-flip 5 3 100 103 3×104

7 5 200 5×103 5×104

9 7 400 104 1.1×105

11 9 800 104 2.1×105

Depolarizing 5 3 200 104 1.1×105

7 5 600 104 3×105

9 7 1400 104 4.1×105

NN-depolarizing 5 3 200 5×103 6×104

7 5 400 104 1.1×105

9 7 800 104 2.1×105

11 9 1600 104 4.1×105

Training cost for the triangular toric code with a twist

Parameters

Noise d Hd Nd Bd Td

Bit- or phase-flip 5 3 100 103 3×104

7 5 200 104 6×104

9 7 400 104 1.6×105

11 9 800 104 2.6×105

Depolarizing 5 3 200 5×103 3×104

7 5 600 104 1.1×105

9 7 1200 104 2.1×105

NN-depolarizing 5 3 200 5×103 6×104

7 5 400 104 1.1×105

9 7 800 104 2.1×105

11 9 1600 104 4.1×105

We notice that very large training sets are needed for opti-
mal performance. In order to save on computational memory,
we choose to generate training samples in parallel to training,
since it can be done efficiently. Note that with this strategy the
number of different samples seen during training is Bd Td . We
observe that the training time appears to scale exponentially
with code distance, approximately doubling as the distance
increases by 2.

We find evidence that there is some minimal batch size be-
low which the gradient estimates are too noisy for the network
to converge to a solution that outperforms random guessing.
However, increasing the batch size beyond that minimal value
does not improve the final network performance. Rather, it
reduces the number of training steps needed for convergence,
but with diminishing returns. The batch size we choose is
primarily optimized to minimize the training time.

D. Thresholds of neural decoders

In order to assess the versatility of neural-network de-
coding, we qualitatively study its performance for the toric
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FIG. 6. The failure probability pfail (peff , d ) of (a–c) the neural decoder and (d–f) the projection decoder for the 2D triangular color code
of distance d as a function of the effective error rate peff . We consider three noise models: (a, d) bit- or phase-flip, (b, e) depolarizing, and
(c, f) NN-depolarizing noise models. We report that the neural decoder outperforms the projection decoder for all types of noise, exhibiting
threshold near the optimal one. Threshold values are given by light gray lines.

and color codes under three different noise models: bit- or
phase-flip, depolarizing, and NN-depolarizing noise models.
First, we train a neural network for every code with the code
distance up to d = 11. The optimized hyperparameters of con-
sidered neural networks are presented in Table II. Then, we
numerically find the decoder failure probability pfail (peff , d )
of the neural decoder as a function of the effective error rate
peff . By plotting the decoder failure probability pfail (peff , d )
for different code distances d and finding their intersection we
numerically establish the existence of nonzero threshold for
the neural decoder and estimate its value (see Figs. 6 and 7).

We benchmark the performance of the neural decoder
against the leading efficient decoders of the toric and color
codes. In particular, we analyze the standard decoders based
on the Minimum-Weight Perfect Matching algorithm and
the projection decoder. In our implementation, we use the
Blossom V algorithm provided by Kolmogorov [73].

We report that the neural decoder for the color code signif-
icantly outperforms the projection decoder for all considered
noise models, even for the simplest bit- or phase-flip noise
model. The neural decoder threshold values we find approach
the upper bounds from the maximum likelihood decoder. The
neural decoder for the toric code shows comparable perfor-
mance as the Minimum-Weight Perfect Matching decoder
for the bit- or phase-flip noise, however it offers noticeable
improvements for correlated noise models. We remark that op-
timal decoding thresholds for topological codes can be found
via statistical-mechanical mapping (see Refs. [24,39,40,74]).
The threshold values we find are expressed in terms of the
effective error rate peff and are listed in Table I. It should be
noted that for the correlated noise model we considered the
optimal threshold has yet to be established. However, a recent

extension of the ideas of statistical-mechanical mappings
could be used to study the nearest-neighbor noise model [75].

As with all learning models, it is important to address the
possibility of overfitting. We know that the test samples are
different (with high probability) from the training samples,
since they are randomly chosen from a set that scales expo-
nentially with the number of physical qubits. We remark that
the required training set seems to scale exponentially with the
code distance, however it constitutes a vanishing fraction of all
possible syndrome configurations. Moreover, the classifica-
tion accuracy on the test samples is the same as the final train-
ing accuracy. Thus, we can conclude that the neural network
learns to correctly label syndromes typical for the studied
noise models, resulting in well-performing neural decoders.

IV. DISCUSSIONS

We have conclusively demonstrated that neural-network
decoding for topological stabilizer codes is very versatile and
clearly outperforms leading efficient decoders. We focused
on the triangular color code and the toric code with a twist,
the physical qubits of which are arranged in the same way
but the stabilizer groups of which are different. We studied
the performance of neural-network decoding for different
noise models, including the spatially correlated depolarizing
noise. In particular, we numerically established the existence
of nonzero threshold and found significant improvements of
the color code threshold over the previously reported values
(see Table I and Figs. 6 and 7). This result indicates that
the relatively low threshold of the color code, which was
considered to be one of its main drawbacks, can be easily
increased, making quantum computation with the color code
more appealing than initially perceived [76–78].
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FIG. 7. The failure probability pfail (peff , d ) of (a–c) the neural decoder and (d–f) the Minimum-Weight Perfect Matching (MWPM) decoder
for the 2D triangular toric code with a twist of distance d as a function of the effective error rate peff . We consider three noise models: (a, d)
bit- or phase-flip, (b, e) depolarizing, and (c, f) NN-depolarizing noise models. We report that the neural decoder significantly outperforms the
Minimum-Weight Perfect Matching decoder for noise models with correlated errors and exhibits threshold near the optimal one. Threshold
values are given by light gray lines.

We emphasize that the neural network does not explicitly
use any information about the topological code or the noise
model. The neural network is trained on very simple data
usually available from the experiment, which includes the
information about the measured syndrome and whether the
simple deterministic decoding, i.e., the excitation removal
algorithm, succeeds. Importantly, this raw data can be used
not only to train the neural network but also to characterize
the quantum device [79]. Without assuming any simplistic
noise models the neural network efficiently detects the actual
error patterns in the system and subsequently “learns” about
the correlations between observed errors. This provides a
heuristic explanation for why neural decoding is currently the
best strategy to decode the color code, since the correlations
between errors in the color code are difficult to account for
in standard approaches [80]. Using neural networks simplifies
and speeds up the process of designing good decoders, which
is rather challenging due to its heavy dependency on the
choice of the quantum error-correcting code as well as the
noise model.

Our results show that neural-network decoding can be
successfully used for quantum error-correction protocols, es-
pecially in the systems affected by a priori unknown noise
with correlated errors. Moreover, the neural decoder yields
a higher threshold for decoding the triangular color code
than any previously known method. In particular, it shows
similar threshold behavior for the 2D color and toric codes,
suggesting that the color code may be more competitive
than previously thought with the surface-code architecture.
However, in order to solidify such a claim, neural decoders
addressing circuit-level noise should be considered. We note
that the networks studied in this paper were not optimized

for efficiency, but rather served as a proof of principle that
decoding with such networks is possible and yields good
performance regardless of the noise type. Moreover, we stress
that neural-network decoding already provides an enormous
data-compression advantage over methods based on (partial)
look-up tables, even for small-distance quantum codes. How-
ever, an important question of scalability has to be addressed
if neural decoders are ever going to be used for practical
purposes on future fault-tolerant universal quantum devices.
One possible approach to scalable neural networks is to
reduce the connectivity between the layers by exploiting the
information about the topological code lattice and geometric
locality of stabilizer generators. We imagine incorporating
convolutional neural networks as well as some renormaliza-
tion ideas in the future scalable neural decoders. Such an idea
was recently studied in a follow-up work in the context of the
toric code [46]. Also, a fully fledged neural decoder should
account for the possibility of faulty stabilizer measurements
[42,81,82]. We do not perceive any fundamental reasons why
neural-network decoding, possibly based on recurrent neural
networks, would not work for the circuit-level noise model.
However, in that setting the training dataset as well as the size
of the required neural network grow substantially, making the
training process computationally very challenging.

Note added. During the preparation of the paper two related
preprints were made available [83,84], however their scope
and emphasis are different from our paper.
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