
Download and Access Trade-offs in
Lagrange Coded Computing

Netanel Raviv?, Qian Yu†, Jehoshua Bruck?, and Salman Avestimehr†
?Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA

†Department of Electrical Engineering, University of Southern California, Los Angeles 90089, CA, USA

Abstract—Lagrange Coded Computing (LCC) is a recently
proposed technique for resilient, secure, and private computa-
tion of arbitrary polynomials in distributed environments. By
mapping such computations to composition of polynomials, LCC
allows the master node to complete the computation by accessing
a minimal number of workers and downloading all of their
content, thus providing resiliency to the remaining stragglers.
However, in the most common case in which the number of
stragglers is less than in the worst case scenario, much of the
computational power of the system remains unexploited. To
amend this issue, in this paper we expand LCC by studying a
fundamental trade-off between download and access, and present
two contributions. In the first contribution, it is shown that
without any modification to the encoding process, the master
can decode the computations by accessing a larger number of
nodes, however downloading less information from each node in
comparison with LCC (i.e., trading access for download). This
scheme relies on decoding a particular polynomial in the ideal
that is generated by the polynomials of interest, a technique we
call Ideal Decoding. This new scheme also improves LCC in the
sense that for systems with adversaries, the overall downloaded
bandwidth is smaller than in LCC. In the second contribution
we study a real-time model of this trade-off, in which the data
from the workers is downloaded sequentially. By clustering nodes
of similar delays and encoding the function with Universally
Decodable Matrices, the master can decode once sufficient data is
downloaded from every cluster, regardless of the internal delays
within that cluster. This allows the master to utilize the partial
work that is done by stragglers, rather than to ignore it, a feature
that most past works in coded computing are lacking.

I. INTRODUCTION

The immensity of contemporary datasets no longer allows
computations to be done on a single machine, and distributed
computations are inevitable. Since most users cannot afford to
maintain a network of servers (or workers), burdensome com-
putations are often outsourced to third party cloud services.
However, this approach opens a Pandora’s box of resiliency,
security, and privacy issues. First, it was demonstrated in the
past (e.g. [16]) that a fraction of the servers, referred to as
stragglers, can be 5 to 8 times slower than the average, and
hence computation tasks that rely on successful completion of
all subtasks are destined to be delayed considerably. Second,
many computations are highly susceptible to adversaries, or
Byzantine workers, that might attempt to alter the result of the
computation for their benefit [2]. Third, privacy infringement
is major concern in the information age, and hence privacy-
preserving computation protocols are essential.

The term Coded Computing broadly refers to a family of
techniques that utilize coding to inject computation redun-
dancy in order to alleviate the various issues that arise in
distributed computations. Over the past few years, Coded
Computing has seen a tremendous success in providing el-
egant solutions to the aforementioned issues in various tasks
of interest, such as gradient coding (e.g., [5], [6], [10]), matrix
multiplication (e.g., [3], [4], [17]), and bandwidth reduction
in iterative algorithms (e.g., [7]). More recently, Lagrange

Coded Computing (LCC) has been proposed in [18] as a
universal data encoding technique that can simultaneously
alleviate the issues of resiliency, security, and privacy for arbi-
trary multivariate polynomial computations, hence expanding
coded computing to new domains.

In LCC, the dataset is encoded by evaluations of the well-
known Lagrange polynomial, and each codeword symbol is
stored on a different worker in the distributed system. Then,
the workers apply the multivariate polynomial of interest on
their encoded data, as if no coding is taking place, and return
the computation results back to the master. By viewing the
computation as a composition of a multivariate polynomial
(the computation that is to be executed), and a univariate one
(the encoding Lagrange polynomial), the task of finalizing the
computation in the presence of stragglers and adversaries boils
down to polynomial interpolation with errors and erasures.
Then, the master finalizes the computation by evaluating the
interpolated polynomial at appropriately chosen points. Being
fundamental to our current contribution, the LCC scheme is
described in greater detail in Subsection II-A.

However, LCC allows no flexibility in terms of download-
access trade-off. That is, the master performs the computation
by accessing a minimum number of workers, and downloading
their data in its entirety. As a result, in every scenario with less
than the maximum number of stragglers, some non-stragglers
remain idle during the download process, and the communi-
cation bottleneck intensifies due to unexploited parallel links
between these non-stragglers and the master. Moreover, LCC
considers every worker as being either a straggler or a non-
straggler, and the partial work that is done by stragglers is
ignored. In this paper we improve LCC by addressing these
aspects, the static and the dynamic, of the download-access
trade-off.

In our first contribution, it is shown that with no further
changes in the encoding phase, the decoding phase can be
flexible in terms of the number of workers that are accessed,
and the number of symbols that are downloaded from each
of them. This is done by having the server perform extra
linear computations; these computation turn multiple low-
degree polynomial evaluations (the computation results) to a
smaller number of high-degree polynomial evaluations. These
high-degree polynomials lie in the ideal that is generated by
the lower-degree ones, and hence we term this technique Ideal
Decoding. More importantly, the surprising corollary of this
part of the paper is that the overall download bandwidth can
be reduced for systems with adversaries, when compared to
ordinary LCC.

In our second contribution, we consider a dynamic model of
the access-download trade-off, where the master has continu-
ous access to all servers, and the data arrives sequentially. By
encoding the polynomial itself with Universally Decodable
Matrices (UDMs), a previously defined notion, we match

the amount of download from each server to the naturally
occurring delays in the system. Specifically, we cluster the
workers in the system according to the expected computation
times, and have workers in the same cluster operate on the
same encoded data. By allowing the functions that are applied
in each cluster to differ, it is shown that the decoding can be
completed once sufficient information has arrived from each
cluster, regardless of the internal delays within that cluster.

This paper is structured as follows. Preliminary background
on LCC and UDMs is given in Section II, and our contribu-
tions are formally stated in Section III. The former extension
of LCC is given in Section IV, and the latter in Section V.

II. PRELIMINARIES

We use the standard notation [N] for the set {1, . . . , N},
denote the underlying field1 by F, and denote the composition
operation between polynomials by ◦.

We consider a system with a master node and N workers,
in which a dataset X = (x1, . . . , xK), with xk ∈ FM×1 for
every k ∈ [K], is coded as x̃1, . . . , x̃N , and each codeword
symbol x̃n is stored in one of the N workers. The master node
is interested in the computation results {yk , f(xk)}k∈[K]

for a polynomial f = (f1, . . . , fL), where f` : FM → F for
all ` ∈ [L] and G , max{deg(f`)}`∈[L]. To achieve this, f
is applied by the workers on their stored data, and the results
of the computation {ỹn = f(x̃n)}n∈[N] on the codeword
symbols are transmitted back to the master. Many tasks which
are studied in coded computation fall under this framework,
including matrix multiplication, and gradient coding whenever
the loss function is a polynomial, or is approximated by one.

For integers A and S, a coding scheme is said to be S-
resilient and A-secure if the master is capable of extract-
ing {yk}k∈[K], even if up to S workers fail to respond in a
timely manner, and up to A workers reply with purposefully
erroneous data. In addition, for an integer T the scheme is
called T -private if every set of T colluding workers remain
information-theoretically oblivious to the content of X, i.e.,
if I({x̃t}t∈T ;X) = 0 for every T ⊆ [N] of size at most T ,
where I denotes mutual information, and X is seen as chosen
uniformly at random.

In Section V, it is further assumed that the results
of the computation on the coded data ỹn = f(x̃n) =
(f1(x̃n), . . . , fL(x̃n)), from every worker n ∈ [N], arrive at
the master sequentially. That is, f1(x̃n) arrives, followed by
f2(x̃n), and so on. In addition, we allow the polynomial f
itself to be coded, and the encoding can potentially differ
from one worker to another. That is, each worker n ∈ [N]
corresponds to L polynomials hn,1, . . . , hn,L, each of which
is a linear combination of the polynomials {f`}`∈[L].

A. Lagrange Coded Computing

Lagrange Coded Computing [18] follows the outline that is
described above, and achieves resiliency, security, and privacy
that is known to be optimal in many cases. LCC relies heavily
on the Lagrange polynomial, as follows.

Given the data matrix X, fix K distinct elements β =
(β1, . . . , βK) and additional N distinct elements α =
(α1, . . . , αN) in F. By using the well-known Lagrange in-
terpolation formula, define u = uX,β as the lowest degree
polynomial such that u(βk) = xk for every k ∈ [K]. Notice
that u is in fact a vector of polynomials, but we refer to it as

1Our techniques operate over any large enough finite field or any infinite
one.

f ◦ u

α1 β1 α2 β2 αN βK

y1
y2

yK
ỹ1 ỹ2 ỹN

Fig. 1. Illustration of LCC. Following the computation, worker n ∈ [N]
holds ỹn, which is an evaluation of f ◦ u at αn. The results of the
computation {yk}k∈[K] are obtained by interpolating f◦u from {ỹn}n∈[N],
and evaluating it at β1, . . . , βK .

a polynomial for simplicity. It is well known that the degree
of u (or more precisely, the degree of every component of u)
is at most K−1. Then, in the storage phase, the polynomial u
is evaluated at αn and the evaluation is sent to worker n, i.e.,
x̃n = u(αn) for every n ∈ [N].

In the computation phase, every worker applies the poly-
nomial f on its stored data, and sends the results back to
the master. Since x̃n = u(αn), it follows that f(x̃n) is an
evaluation at αn of the univariate polynomial f ◦ u, whose
degree is at most G(K − 1). Hence, since u(βk) = xk for
every k ∈ [K], it follows that the results of the computa-
tion {yk}k∈[K] can be obtained by decoding the coefficients
of f ◦ u, and evaluating it at β1, . . . , βK (see Figure 1).

Moreover, whenever there exists a privacy requirement (i.e.,
when T > 0 and F is finite), the data matrix X is padded
with T random entries T = (t1, . . . , tT) ∈ FM×T . The user
fixes β = (β1, . . . , βK+T) and α such that {βk}k∈[K] ∩
{αn}n∈[N] = ∅, and defines u = uX|T,β as the unique
polynomial such that u(βk) = xk for every k ∈ [K]
and u(βK+t) = tt for every t ∈ [T]. Then, the encoding
is performed by evaluating u at the points of α, and we have
the following theorem.

Theorem 1. [18] Lagrange Coded Computing provides
an S-resilient, A-secure, and T -private scheme for com-
puting {yk}k∈[K] for any polynomial f , as long as N ≥
(K + T − 1)G+ S + 2A+ 1.

Remark 1. LCC has additional applications in obtaining
another aspect of information-theoretic privacy. In the so-
called function-privacy, the identity of the polynomial f
should be kept private from sets of colluding servers. This
problem, that is also known as Private Computation [13],
is a generalization of the well-studied Private Information
Retrieval problem, and is studied in [9].

B. Universally Decodable Matrices

Universally Decodable Matrices (UDMs) have been studied
in the past for various applications, such as slow-fading
channels [14], and decoding of scalar codes in the presence of
stragglers [8]. They are tightly connected to various previously
defined notions, such as m-codes [11], and their correspond-
ing metric was thoroughly studied in [1].

Definition 1. For integers L and P , matrices B1, . . . ,BP ∈
FL×L are called UDMs if for every nonnegative inte-
gers n1, . . . , nP that sum to L, the following matrix is
invertible–

(b1,1, . . . , b1,n1
, b2,1, . . . , b2,n2

, . . . , bP,1, . . . , bP,nP
), (1)

where bi,j is the j’th column of Bi, indexed from left to right.

For example, the following matrices are UDMs for L = 4,
P = 3 and F = GF (2).

B1 = I, B2 = J, B3 =


1
1 1
1 1
1 1 1 1

 ,

where I is the identity matrix, and J is a matrix whose anti-
diagonal is all 1’s, and the remaining entries are 0. We focus
our attention on the following construction of UDMs, that
requires |F| ≥ P − 1.

Theorem 2. [15, Prop. 14] For positive integers P and L,
and a primitive2 element α ∈ F, the matrices B1 = I, B2 = J,
and B3, . . . ,BP are UDMs, where (Bp+2)k,n =

(
k
n

)
αp(k−n)

for (p, n, k) ∈ [P − 2]× [L]× [L].

A crucial ingredient of the proof of Theorem 2 is the
following proposition, which utilizes the notion of Hasse
derivative. For a nonnegative integer n, the n’th Hasse deriva-
tive of a polynomial ζ(x) ,

∑L−1
i=0 zi+1x

i is ζ(n)(x) =∑L−1
i=0

(
i
n

)
zi+1x

i−n (for i < n we have
(
i
n

)
= 0). Note

that ζ(x) has a zero of multiplicity m at a point γ ∈ F if and
only if ζ(n)(γ) = 0 for every 0 ≤ n ≤ m, and ζ(m)(γ) 6= 0
[15, Lemma 13]. In addition, we define ζ(n)(∞) = zL−n.

Proposition 1. Let γ1 = 0, γ2 = ∞, and γp = αp for p ∈
{3, . . . , P}. For a polynomial ζ(x) =

∑L−1
i=0 zi+1x

i and
integers p ∈ [P] and ` ∈ [L], we have that (z1, . . . , zL)·bp,` =
ζ(`−1)(γp).

Intuitively, to prove Theorem 2, one shows that
if (z1, . . . , zL) · B′ = 0, where B′ is the matrix in (1), then
the respective polynomial ζ(x) =

∑L−1
i=0 zi+1x

i must have
at least L zeros (including multiplicities). This follows easily
from Proposition 1 and the properties of the Hasse derivative.

III. OUR CONTRIBUTION

In order to successfully interpolate the polynomials {f` ◦
u}`∈[L] in LCC (Subsection II-A), the user must download the
results f1(x̃n), . . . , fL(x̃n) from at least (K+T−1)G+2A+1
workers n ∈ [N]. In Section IV, we provide a scheme which
enables to complete the computation on Lagrange encoded
data in many other points of the download-access trade-off.
In what follows, we let H , G(K + T − 1) + 1.

Theorem 3. In Lagrange Coded Computing, it is possible to
complete the computation by downloading L/R symbols from
any set of RH+2A workers, for every rational R = Re

Rd
> 1

such that Re|L, Rd|H , and N ≥ RH + 2A.

It will be clear in the sequel that the requirements Re|L
and Rd|H are mere convenience, and can be alleviated at the
price of rounding operations. Theorem 3 is proved by using
a technique we term Ideal Decoding. In this technique, every
server n ∈ [N] linearly combines the results {ỹn,`}`∈[L],
together with powers of αn, to produce evaluations of certain
polynomials {gi}i∈[L/R], which lie in the ideal which is
generated by {f`◦u}`∈[L] in the ring of univariate polynomials
over F. These gi’s are interpolated by the master from their
evaluations, and the original {f` ◦ u}`∈[L] are obtained by
computing some polynomial combinations of the gi’s. We
emphasize that this final polynomial computation can be done

2If F is infinite, α should be any element whose order is at least P − 1.
If F is finite, the binomial coefficient should be computed over the integers,
and then naturally embedded in F.

by a combination of shifts, additions, and negations of field
elements, and does not require polynomial multiplications.
Having obtained {f` ◦ u}`∈[L], the master finalizes the com-
putation as in ordinary LCC.

A surprising corollary of Theorem 3 is that for systems with
adversaries, the overall download of our suggested scheme
outperforms that of ordinary LCC (see Remark 2).

While the scheme of Theorem 3 enables the user to
download fewer symbols from every worker than in ordinary
LCC, computing these symbols requires the computation of
all functions fi on the coded data. Furthermore, the reduction
factor R must be known a priori, and hence, this scheme is
not suitable to handle run-time delays in the system.

To amend these issues, in the second part of this paper
(Section V), we consider systems in which the workers are
arranged in clusters. Then, the data is encoded by an LCC
scheme whose code length is the number of clusters (rather
than the number of workers), and all servers in a cluster
store the same codeword symbol (we refer to such systems
as clustered LCC). By encoding f with UDMs, it is shown
that the computation can be completed by downloading L
elements from each cluster, regardless of their exact source
within the cluster. This scheme enables stronger stragglers
tolerance, in the sense that it exploits the partial work that is
done by the stragglers, in a way that can accommodate any
possible combination of delays within each cluster.

Theorem 4. In clustered LCC, it is possible to complete the
computation by downloading L sequentially arriving symbols
from each one of H + 2A clusters.

Further, in cases where the number of adversaries per
cluster is known, we have the following.

Theorem 5. In clustered LCC with at most Ai adversaries in
each cluster i, it is possible to complete the computation by
downloading (2Ai + 1)L sequentially arriving symbols from
cluster i for each one of H clusters.

IV. ACHIEVING A DOWNLOAD-ACCESS TRADE-OFF

In this section we prove Theorem 3 by introducing extra
linear computations at the workers. Let R > 1 be the required
reduction factor, which is known to all workers, and for now
assume that it is an integer (fractional reduction factors will
be treated in the sequel). In addition, for every ` ∈ [L]
denote f` ◦ u by r`. Following the storage phase and the
computation phase, every server n ∈ [N] contains {ỹn,`}`∈[L],
and computes

∑R
i=1 α

(i−1)H
n ỹn,i∑R

i=1 α
(i−1)H
n ỹn,R+i

...∑R
i=1 α

(i−1)H
n ỹn,L−R+i

 ,


g1(αn)
g2(αn)

...
gL/R(αn)

 .

Since ỹn,` = r`(αn) and deg(r`) ≤ H−1 for every ` ∈ [L],
it follows that each server n ∈ [N] now holds L/R evaluations
at αn of the polynomials {gi}L/R

i=1 , each of which is of degree
at most RH − 1. Hence, having received the responses from
any set of at least RH + 2A servers, the user is able to
obtain the coefficients of all gi’s by Reed-Solomon decoding.
Now, it is readily verified that for every i ∈ [L/R] the
first H coefficients of gi coincide with those of r(i−1)R+1,
the next H with those of r(i−1)R+2, and so on. Hence, all
the polynomials {r`}`∈[L] can be found, and the scheme is
finalized by evaluating them at β1, . . . , βK .

It is apparent from the simple case of an integer R that
the gist of the extra linear computations by the workers is to
obtain polynomial evaluations of some higher degree gi’s in
the ideal which is generated by the ri’s. Then, after obtaining
the coefficients of the gi’s, the coefficients of the ri’s can be
trivially extracted.

Now, let R be fractional. In this case, one must choose
different polynomials {gi}i∈[L/R] judiciously, so that this
extraction is still possible. In what follows, the polynomials gi
are defined anew so that some overlap exists between the coef-
ficients of the ri’s in them. Then, after the interpolation by the
master, this overlap is resolved by performing a polynomial
combination of the gi’s. We begin with an illustrative example.

Example 1. Let H = 4, R = 11/4, A = 0, and L = 22. For
every n ∈ [N], the n’th server computes

g1,n , ỹn,1 + α4
nỹn,2 + α7

nỹn,3

g2,n , ỹn,3 + αnỹn,4 + α5
nỹn,5 + α7

nỹn,6

g3,n , ỹn,6 + α2
nỹn,7 + α6

nỹn,8 + α7
nỹn,9

g4,n , ỹn,9 + α3
nỹn,10 + α7

nỹn,11.

It is readily verified that for every i and n, the value gi,n
is an evaluation at αn of a polynomial gi, whose degree is
at most 10. Hence, all gi’s can be extracted from RH = 11
workers. Then, the master computes

3∑
j=0

(−1)jx7jgj+1 = r1 + x4r2 − x8r4 − x12r5 + x16r7

+x20r8 − x24r10 − x28r11.

Since deg(ri) ≤ 3 for all i, the coefficients of r1, r2, r4, r5,
r7, r8, r10 and r11 in the above expression do not overlap, and
can therefore be extracted. Then, r3 can be found from g1, r1
and r2; r6 from g2, r3, r4, and r5; r9 from g3, r6, r7, and r8;
and finally, r9 from g4, r10, and r11. To obtain r12, . . . , r22,
we define g5, . . . , g8 similarly by using r12, . . . , r22, and
conclude the scheme by evaluating all ri’s. Overall, we have
accessed 11 workers and downloaded 8 elements from each,
instead of accessing 4 workers and downloading 22 elements
from each.

In general, for ` ∈ [L] and h ∈ [H], define g(`,h,n) as

ỹn,` + αh
n

j′−1∑
j=0

αjH
n ỹn,`+j+1 + αH(R−1)

n ỹn,`+j′+1, (2)

where j′ = j′(h) , dR − h/He − 1. Further, for i ∈ [L/R],
let

hi , H(b(i− 1)Rc − (i− 1)R+ 1), and

ji , j′(hi) = dR− hi/He − 1.

Finally, let `1 , 1, and for i ∈ {2, . . . , L/R} define

`i ,

{
`i−1 + ji−1 + 1 if hi 6= H

`i−1 + ji−1 + 2 if hi = H.

Following the computation of ỹn,` for every ` ∈ [L], every
server n computes {g(`i,hi,n)}L/R

i=1 and sends the results to
the master. It follows from (2) that for every i ∈ [L/R], the
expression g(`i,hi,n) is an evaluation at αn of

gi , r`i + xhi

ji−1∑
j=0

xjHr`i+j+1 + xH(R−1)r`i+ji+1,

and deg(gi) ≤ HR − 1. Hence, all polynomials gi(x) can
be interpolated from the responses of HR + 2A workers. It
remains to show how the coefficients of the ri’s can be found
from the gi’s.

We show how certain ri’s are extracted from {gi(x)}i
′

i=1,
where i′ is an integer such that h2, . . . , hi′ 6= H and hi′+1 =
H (this i′ clearly exists, and it is at most Rd + 1). The
remaining ri’s are extracted similarly. Given g1, . . . , gi′ ,
the master computes the following sum, in which the last
term xH(R−1)r`i+ji+1 of gi cancels out the first term r`i+1

of gi+1, for every i ∈ [i′ − 1].
i′−1∑
j=0

(−1)jxjH(R−1)gj+1 = r`1 + xh1

j1−1∑
j=0

xjHr`1+j+1

− xH(R−1)+h2

j2−1∑
j=0

xjHr`2+j+1

+ x2H(R−1)+h3

j3−1∑
j=0

xjHr`3+j+1

...

(−1)i
′−1x(i

′−1)H(R−1)+hi′

ji′−1∑
j=0

xjHr`i′+j+1 (3)

+ (−1)i
′−1xi

′H(R−1)r`i′+ji′+1. (4)

Therefore, to show that all ri’s in the above expression can be
extracted, it is shown that the monomial degrees in the above
sums, as are the ones in the first and the last summand, do
not overlap. Since (`1, h1) = (1, H) and deg(ri) ≤ H−1 for
all i, it follows that r`1 and xh1r`1+1 do not share a common
monomial, and hence the first sum does not overlap r`1 .
For k ∈ [i′ − 1], in order to show that the k’th sum does
not share a common monomial with the (k + 1)’th sum, we
must show that

(k − 1)H(R− 1) + hk + (jk − 1)H +H − 1 <

kH(R− 1) + hk+1, (5)

which readily follows from the definitions (see Lemma 7 in
the appendix). Finally, to show that the last sum (3) does not
share a common monomial with the last summand (4), we
ought to show that

(i′ − 1)H(R− 1) + hi′ + (ji′ − 1)H +H − 1 < i′H(R− 1),

and this inequality follows from the definitions as well (see
Lemma 8 in the appendix).

Thus, we have obtained the coefficients of all involved ri’s,
except for r`2 , r`3 , . . . , r`i′ , that were canceled out in (4).
However, r`2 can be extracted from g1 and r`1 , . . . , r`2−1;
r`3 can be extracted from g2 and r`2 , . . . , r`3−1; and so on.

Remark 2. In cases where A > 0, the download bandwidth of
the suggested scheme strictly outperforms the one in ordinary
LCC. In LCC, the user downloads L symbols from each one
of H+2A workers, L(H+2A) symbols overall. In our scheme
however, the user downloads L/R symbols from RH + 2A
workers, L(H + 2A/R) symbols overall.

For instance, if Example 1 is accompanied by A = 1
adversary, then the gi’s are interpolated by accessing 13
workers, and downloading 8 symbols from each, an overall
of 104 symbols. In ordinary LCC, the 22 polynomials ri are
interpolated by accessing 6 workers, and downloading 22
symbols from each, an overall download of 132 symbols.

V. UTILIZING PARTIAL WORK BY UDMS

In this section we prove Theorem 4 and Theorem 5 by
adding a layer of encoding. That is, we encode the polyno-
mial f itself by using UDMs, and apply the encoded poly-
nomials on a partially replicated Lagrange code. To exploit
the full potential of the scheme in this section, one must
possess some knowledge regarding the expected computation
power of the workers in the system; this assumption aligns
well with contemporary cloud services, in which performance
guarantees of workers are given as a function of their cost.
The approaches towards proving both theorems are similar.
However, in one the error correction is performed between the
clusters, and in the other, within each cluster. We begin by
proving Theorem 5, and then proceed to show that Theorem 4
is an easy corollary of it.

We partition the N workers to C different clusters
C1, . . . , CC of varying sizes P1, . . . , PC , respectively. Broadly
speaking, one should group together slow workers to large
clusters, and fast workers to small ones. In addition, for
every i ∈ [C] assume that there are at most Ai adversaries in
cluster Ci, for some Ai such that 0 ≤ Ai ≤ bPi−1

2 c.
First, the data matrix X is encoded by using a Lagrange

code of length C, producing codeword symbols x̃1, . . . , x̃C .
For every i ∈ [C], the codeword symbol x̃i is replicated Pi

times and each copy is stored on a different server in Ci.
Second, in the computation phase, every server computes L
functions on its stored codeword symbol. These L functions
are linear combinations of the polynomials {fi}Li=1, and are
unique to each server. The precise functions hi,1, . . . , hi,L of
worker i can either be agreed upon in advance, be transmitted
by the master to the worker incrementally or together, or be
computed at the worker after receiving the polynomials fi.

For i ∈ [C] identify the workers in Ci by the inte-
gers 1, 2, . . . , Pi, and let B1, . . . ,BPi

be L×L UDMs over F.
The L functions of server j in Ci are

(hj,1, . . . , hj,L) , (f1, . . . , fL) · Bj .

Then, each server j computes hj,1(x̃i), transmits the result to
the master, continues to compute and transmit hj,2(x̃i), and so
on. In what follows, it is shown that once at least (2Ai+1)L
responses are received from cluster i for at least H clusters,
regardless of their particular source within each cluster, the
master is capable of finalizing the computation. The decod-
ing process operates in two steps. In one, the true value
of ỹi = f(x̃i) is extracted from the partial responses of every
server in Ci. Then, these error free results are given to a
decoding algorithm for LCC of length C, which finalizes the
computation. Hence, we focus on the decoding process at the
cluster level, which is identical in all clusters.

For a given cluster Ci and j ∈ [Pi], let uj be the number
of responses that were obtained from worker j up to a given
point in time, and notice that 0 ≤ uj ≤ L for every j. Thus,
the response from Ci can be written as

(w1, . . . , wN ′) , (ỹi,1, . . . , ỹi,L)· (6)
(b1,1, . . . ,b1,u1

, . . . ,bPi,1, . . . ,bPi,uPi
),

where bi,j is the j’th column of Bi, and N ′ ,
∑Pi

j=1 uj .

Lemma 6. For every i ∈ [C], if N ′ ≥ (2Ai+1)L, then f(x̃i)
is decodable.

The outline of the proof is as follows, and complete details
can be found in the appendix.

Proof sketch. It suffices to show that no two distinct code-
words (w1, . . . , wN ′) and (w′1, . . . , w

′
N ′) can be made equal

by an addition of an error vector which results from the
presence of Ai adversaries in the cluster. Thanks to linearity,
this is equivalent to obtaining the zero codeword by encod-
ing {ỹi,`}`∈[L] that are not all zero, and introducing 2Ai

adversaries. If such a scenario is possible, one uses Propo-
sition 1 to get that

∑L−1
j=0 ỹi,j+1x

j is the zero polynomial, a
contradiction.

Therefore, once at least (2Ai+1)L responses has arrived at
the master from each one of at least H clusters Ci, the master
obtains the respective f(x̃i) = (f1(x̃i), . . . , fL(x̃i)), and the
computation can be finalized by LCC decoding.

Now, to prove Theorem 4, observe that if there are no
stragglers in a given cluster Ci, then L responses from it
suffice to obtain ỹi. Furthermore, if there are at most A
adversaries overall in the system, in the worst case there
will be at most one adversary in each cluster, and hence the
master may potentially fail to produce ỹi in at most A clusters.
Therefore, having obtained ỹi from at least H+2A clusters i,
at most A of which are potentially erroneous, the master can
apply LCC decoding, and the theorem follows.

REFERENCES

[1] A. Barg and W. Park, “On linear ordered codes,” IEEE Int. Symp. on
Inf. Th. (ISIT), vol. 33, p. 34, 2015.

[2] P. Blanchard, R. Guerraoui, and J. Stainer, “Machine learning with
adversaries: Byzantine tolerant gradient descent,” Adv. in Neural Inf.
Proc. Sys. (NIPS), pp. 119-129, 2017.

[3] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” Adv. in Neural
Inf. Proc. Sys. (NIPS) pp. 2100–2108, 2016.

[4] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” IEE Int. Symp. on Inf. Th. (ISIT), pp. 2418–2422, 2017.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Inf. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[6] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-
optimal straggler mitigation for distributed gradient methods,” IEEE Int.
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 857–866, 2018.

[7] S. Li, M. A. Maddah-Ali, Q. Yu, A. S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed
Computing,” IEEE Trans. on Inf. Th., vol. 64, no. 1, pp. 109–128, 2018.

[8] N. Raviv, Y. Cassuto, R. Cohen and M. Schwartz, “Erasure correction
of scalar codes in the presence of stragglers,” IEEE Int. Symp. on Inf.
Th. (ISIT), pp. 1983–1987, 2018.

[9] N. Raviv and D. A. Karpuk, “Private polynomial computation from
Lagrange encoding,” arXiv:1812.04142, 2018.

[10] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs,” Int. Conf. on Machine
Learning (ICML), 2018.

[11] M. Y. Rosenbloom and M. A. Tsfasman, “Codes for the m-metric,”
Problemy Peredachi Informatsii, vol. 33, no. 1, pp. 55–63, 1997.

[12] A. Shamir, “How to share a secret,” Comm. of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[13] H. Sun and S. A. Jafar, “The capacity of private computation,”
arXiv:1710.11098, 2017.

[14] S. Tavildar and P. Viswanath, “Approximately universal codes over
slow-fading channels,” IEEE Trans. on Inf. Th., vol. 52, no. 7, pp. 3233–
3258, 2006.

[15] P. O. Vontobel and A. Ganesan, “On universally decodable matrices for
spacetime coding,” Designs, Codes and Cryptography, vol. 41, no. 3,
pp. 325–342, 2006.

[16] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-task
learning for straggler avoiding predictive job scheduling,” The Journal
of Machine Learning Research, vol. 17, no. 1, pp. 3692–3728, 2016.

[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,”
Adv. in Neural Inf. Proc. Systems (NIPS), pp. 4403–4413, 2017.

[18] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, S. Aves-
timehr, “Lagrange Coded Computing: Optimal design for resiliency,
security, and privacy”, arXiv:1806.00939, to appear in The International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

APPENDIX
OMITTED PROOFS

Lemma 7. For every k ∈ [i′−1], we have that (k−1)H(R−
1) + hk + (jk − 1)H +H − 1 < kH(R− 1) + hk+1.

Proof. The claim is equivalent to

jkH < H(R− 1) + hk+1 − hk + 1. (7)

On the one hand, we have

H(R− 1) + hk+1 − hk + 1 =

= H(R− 1) +H(bkRc − kR+ 1)−
H(b(k − 1)Rc − (k − 1)R+ 1) + 1

= H(bkRc − b(k − 1)Rc − 1) + 1.

On the other hand, we have

jkH = (dR− hk
H
e − 1)H

= H(dR− b(k − 1)Rc+ (k − 1)R− 1e − 1)

= H(dkR− b(k − 1)Rc − 1e − 1)

= H(dkRe − b(k − 1)Rc − 2)

where the last equality follows since −b(k − 1)Rc − 1 is an
integer. Therefore, it is readily verified that (7) is equivalent
to

H(dkRe − 2) < H(bkRc − 1) + 1. (8)

Let z ∈ Z and f ∈ [0, 1) such that kR = z + f . Then, (8)
is equivalent to H(z − 1) < H(z − 1) + 1, which is clearly
true.

Lemma 8. Following the definitions of Section IV, we have
that (i′−1)H(R−1)+hi′+(ji′−1)H+H−1 < i′H(R−1).

Proof. First, observe that since hi′+1 = H , it follows from
the definition of hi′+1 that i′R is an integer. Therefore, we
have

hi′ = H(b(i′ − 1)Rc − (i′ − 1)R+ 1)

= H(i′R+ b−Rc − i′R+R+ 1)

= H(R+ b−Rc+ 1). (9)

Hence, it follows that

ji′H = (dR− hi′

H
e − 1)H

= (dR− (R+ b−Rc+ 1)e − 1)H

= (d−b−Rc − 1e − 1)H

= (−b−Rc − 2)H. (10)

Now, it is readily verified that the claim to be proved is
equivalent to

hi′ + ji′H − 1 < H(R− 1),

that together with (9) and (10), is

H(R+ b−Rc+ 1) + (−b−Rc − 2)H − 1 < H(R− 1)

−H − 1 < −H,

which is clearly true.

To prove Lemma 6, we identify [N ′] with N , {(s, t)|s ∈
[Pi], 1 ≤ t ≤ us} in a way that follows from (6)
naturally. That is, we denote w1 = w1,1, . . . , wu1

=
w1,u1

, wu1+1 = w2,1, . . . , wu1+u2
= w2,u2

, and so on. Hence,
we have that ws,t = ζ(t−1)(γs) according to Proposition 1,

where ζ(x) ,
∑L−1

j=0 ỹi,j+1x
j . In addition, we cite the follow-

ing lemma from [15], and provide its proof for completeness.

Lemma 9. [15] If there exists J ⊆ [Pi] such
that ζ(`−1)(γj) = 0 for every j ∈ J and every 1 ≤ ` ≤ uj ,
and

∑
j∈J uj ≥ L, then ζ is the zero polynomial.

Proof. If 2 /∈ J , it follows that γj is a root of ζ of
multiplicity uj for every j ∈ J , hence ζ has more roots than
its degree, and the claim follows. Otherwise, we have that ζ
has at least L−u2 roots, and ζ(k−1)(∞) = ỹi,L−k+1 = 0 for
all 1 ≤ k ≤ u2, which implies that deg(ζ) ≤ L−u2− 1, and
the claim follows once again.

Proof of Lemma 6. It suffices to show that no two distinct
codewords (w1, . . . , wN ′) and (w′1, . . . , w

′
N ′) can be made

equal by an addition of an error vector which results from
the presence of Ai adversaries in the cluster. To define
the structure of such error vector, for an integer W and a
vector e = (es,t)(s,t)∈N in FN ′

, we say that e has u-weight
at most W if there exists a subset I ⊆ [Pi] of size W such
that

es,t 6= 0 only if s ∈ I.

Put differently, if there are at most Ai adversaries in Ci, then
the data received at the master from Ci is (w1, . . . , wN ′) + e,
where e is of u-weight at most Ai. Hence, thanks to linearity,
it suffices to show that the encoding in (6) cannot produce a
nonzero codeword of u-weight at most 2Ai.

Assuming the contrary, we have that there exists I ⊆ [Pi]
of size 2Ai such that if ws,t 6= 0 then s ∈ I. Moreover, we
have that

(2Ai + 1)L ≤
Pi∑
j=1

uj =
∑
j∈I

uj +
∑
j /∈I

uj ≤ 2AiL+
∑
j /∈I

uj ,

which implies that
∑

j /∈I uj ≥ L. Hence, by defining J ,
[Pi] \ I and applying Lemma 9, it follows that ζ is the zero
polynomial, a contradiction.

	Introduction
	Preliminaries
	Lagrange Coded Computing
	Universally Decodable Matrices

	Our Contribution
	Achieving a download-access trade-off
	Utilizing Partial Work by UDMs
	References

