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ABSTRACT

A theory is developed which explains the operation of a

traveling wave tube when operated near the cutoff frequency of

the slow wave circuit, including the effect of two circuit waves

instead of the usual one. The theory is normalized in a manner

analogous to that used in more conventional analyses, making a

relatively small number of curves applicable to a large number of

cases. The relationship between this theory and the three-wave

theory usually used in traveling-wave tube analysis is shown, and

they are in agreement when the system is operated far from the

cutoff frequency. Numerical results are given for a range of

parameters which might be useful in traveling wave tube design, 

and an excellent agreement with published experimental results is

shown.
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BEHAVIOR OF TRAVELING-WAVE TUBES NEAR CIRCUIT CUTOFF

1. Introduction

The conventional analysis of the traveling wave amplifier 

(or oscillator) assumes a slow wave circuit with only one space 

harmonic which is capable of interacting with the electron beam.

In actual fact, any useful slow wave circuit has an infinite number

of space harmonics which may be capable of interaction with the beam.

It is normally assumed that only one of these at a time will be of

any interest, and this is usually the case.

There is one example, however, in which the presence of two

circuit waves is extremely important. This occurs when the frequency

is adjusted so that the tube operates right at the edge of a pass

band. At this point, there will be two space harmonics of approxi-

mately equal importance, and the analysis of interaction will 

necessarily require four characteristic waves (two from the circuit 

and two from the beam) instead of the usual three. This paper will 

present an analysis of a particular circuit model which exhibits the

features described, and shows the relationship with the simpler

three-wave theory. In addition, the theory is normalized in a

manner analogous to that used by Pierce for the three-wave case, so

that the numerical results obtained can be applied with some gener-

ality.

It should be pointed out that this type of analysis is not 

 new in principle. Reutz 1 and Gould 2 have used methods similar to the
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ones used here, but in each case they treated only very specialized

circuit models. By an appropriate normalization in the present

paper, we have generalized the results a great deal, with, of course,

a certain loss in accuracy.

This paper was initially motivated by a particular application;

the suppression of backward-wave oscillation. It has been shown that 

a stop band can be deliberately used in a helix 3 (or other slow wave 

circuit) in order to prevent backward wave oscillations which would 

otherwise appear. While this technique is known to work empirically, 

it has never been explained quantitatively to the author's knowledge,

except for the one case worked out by Gould.

In order to analyze this problem, it must first be recognized 

that the basic source of space harmonics is the periodicity of the 

circuit. In other words, the basic feature of the analysis will be

the inclusion of the periodic nature of the circuit. It is most con-

venient mathematically to do this using a particular model, but it

will be shown that the results apply at least to two cases which might

represent two types of traveling wave tubes. Using the particular 

model, a periodic traveling wave tube will be analyzed and numerical

data presented for the conditlons of start oscillation in a backward

wave oscillator.

2. Basic Analysis of a Periodic Traveling Wave Tube

a) The circuit equation. Since this problem was originally

motivated by the filter helix method of oscillation suppression, a 

loaded transmission line equivalent circuit will be used to derive
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the applicable circuit equation. A number of equivalent circuits can 

be made to give approximately the same final result, but in an exact 

analysis the form of the equivalent circuit is important. Reutz1 has 

investigated some of the consequences of this for a particular class 

of equivalent circuits.

The circuit model used is shown in Figure 1. One might specu-

late whether it is more reasonable to have the beam interact with the

voltage across a shunt element or a series element. The shunt element

has been chosen for this analysis, while the use of voltage across the 

series element would result in a factor 1/4 sin2 θ/2 in the coupling 

impedance (right side of equations 8, 13, 14, 32, 33, 38, and 40) and 

no other change. One can estimate which to use in any physical situa-

tion by studying the case θ = 0. If longitudinal field exists at the

beam when θ = 0, the equations should be used as they stand. If no 

such field exists, the 1/4 sin2 θ/2 factor may be used as indicated 

above.

For the circuit shown in Figure 1, the a.c. current in the elec-

tron stream is denoted by i , and is assumed to interact with the

circuit through narrow gaps connected to the circuit. These gaps are

assumed to have no capacitance. The relationship between this model

and a more physical model of a helix is basically a modification of the

effective interaction impedance. It appears most straightforward to 

use the model of Figure 1, converting to a more physical model through 

the use of the effective coupling impedance later.

The circuit itself is considered to be a transmission line of 

characteristic admittance Yo, and with a phase shift per section of
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θo. This transmission line is loaded periodically by shunt ad- 

mittances of value Y . It is assumed that these admittances are

connected at the same point that the current flows into the circuit

from the beam. This restriction can be removed if necessary, through

use of the coupling impedance concept. Since the circuit is periodic

it will be assumed that all quantities change by a multiplicative 

factor e-jθ when the signal advances one section of the circuit.

Thus the phase shift per section is θ which may be a complex

number in the presence of the beam or loss. With these definitions,

and those apparent from the figure, the following equations can be

written among the variables.

(1)

(2)

(3)

(4)

These reduce eventually to Eq. 5 relating i1 and v, the circuit

voltage at the reference point.

(5)

If there were no beam present, that is, i1 = 0, the circuit 

would have a phase shift per section , which will be called the 

cold circuit phase shift. Since this is usually a measurable quan- 

tity, while θ is not, it is preferable to express Eq. 5 in terms
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of this quantity, and the resulting circuit equation which will 

be used is given in Eq. 6 .

(6)

b) Electronic equation. Since the beam sees exactly the

environment which was used by Gould 2, the same electronic equa-

tions may be used. Converting the matrix notation used in his

results to the direct physical quantities, results in Eq. 7

describing the effect of a circuit voltage V on the beam current

i1. In this equation the following new variables have been used:

where uo = d.c. beam velocity

ω = signal radian frequency

ωq = reduced plasma frequency for the beam

Io = d.c. beam current 

vo = d.c. beam voltage

(7)

If there is no circuit present, that is, V=O, the denomi- 

nator of the right side of (7) must vanish, and this will give the 

correct result for space charge waves in a drift region.

c) Characteristic equation. To find the characteristic 

waves of the system, the circuit admittance, Eq. 6, must be equated
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to the beam admittance, Eq. 7. The result of this is given in 

Eq. 8 which is a transcendental equation for the various allowed 

values of θ . If this equation could be solved, it would give 

all of the characteristic waves of the system consisting of a 

beam (with two space charge waves) coupled to the circuit (with 

an infinite number of space harmonics)

(8)

Fortunately, it will not be necessary to attempt the solution 

of this equation, since we are interested in the system behavior 

when the beam is approximately synchronized with a space harmonic,

or at most with two of them. The condition to be investigated in

detail is indicated in Fig. 2 where one forward space harmonic and

one backward space harmonic are coupled together to create a cutoff

frequency, and the electron beam velocity is near to the velocity

of these two space harmonics. It is well known that the effect of

the beam is negligible unless it does have approximately the same

velocity as a circuit wave.

The relationship between this equation and the standard

characteristic equations for forward and backward wave tubes will

be demonstrated later. For the present, let us assume -- in accord- 

ance with Fig. 2 -- that θ, θe, and θ1 are all close to π. The

following definitions will be used, where F is a constant to be

determined later.
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(9)

(10)

(11)

(12)

Using these definitions, and the assumption that all of the devia-

tions from π are small, the trigonometric functions can be

expanded, resulting in Eq. 13.

(13)

Since F has not yet been fixed, it seems reasonable to let the 

terms in the equation for x be independent of current, voltage, 

and other quantities on the right side of (13). This results in

the definition

(14)

Furthermore, on the right side of (13), the quantity F4 

will usually be small and thus we shall neglect, as being of second 

order in small quantities, the term involving F in (π + Fbe) . 

The resulting characteristic equation is a fairly simple quartic 

in x as given in Eq. 15. The roots of this equation will give 

the four values of allowed propagation constant.

(15)



9.

It is interesting to consider physically the effect of 

these approximations. The initial characteristic equation, (8), 

accounts for all waves and all space harmonics. The traditional

approach using a smooth transmission line would result if we assumed

all phase shifts to be small and expanded about θ = 0. This would

result in an equation with two basic circuit waves, but no space

harmonics. When the smooth circuit approach is used, it is easy to 

show as Pierce 4 does, that if one of the circuit waves is coupled to 

the electron beam, the other one is essentially unperturbed by it.

This demonstration would hold for the backward traveling fundamental

of our present circuit also, but is not true for our first backward

space harmonic. By expanding all phase shifts about π, we have kept

only the forward fundamental, and the first backward space harmonic.

We have neglected all of the circuit space harmonics which are not 

synchronous with the beam, and are left with a four-wave system

instead of the traditional three-wave one.

d) Boundary conditions. In order to complete the solution,

the effect of the boundary conditions must be included. The model of

Fig. 1 shows the circuit boundary conditions which are assumed. In the

general case, a current generator and terminating admittance are con- 

nected at each end, so that input signals may be sent in either 

direction along the circuit. In any particular case, of course, at 

least one of the generators will be absent; however, the boundary

condition equations will be written with both of them present. The

two other boundary conditions on the system concern the condition of

the electron beam as it enters the system. For the present purposes
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the beam will be considered unmodulated on entrance, so that the a.c. 

beam current and its first derivative will be set equal to zero.

These four boundary conditions are stated mathematically in Eqs. 19 

through 22. First, the circuit current at the left can be found from 

Fig. 1, Eq. 2 and Eq. 3, modified for the end section

(16)

(17)

(18)

The voltage ν(o) is the sum of voltages of four waves V1 through 

V4, corresponding to the characteristic roots x1 through x4 of 

Eq. 15, or four values of θ ; θ1 through θ4. Using the four amp­

litudes Vi, this boundary condition may be written

(19)

At the other end, Eq. 1 is of use, but now the voltage V(z) =

Σ e-jθiM vi, where M is the total number of sections. The result- 

ing equation is

(20)

The beam current is the sum of partial waves also, and can be found 

directly from Eq. 6.
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(21)

The derivative must also be zero. Since z variation is as

, this requirement becomes

(22)

In considering the behavior near a stop band, the normali-

zations given in Eqs. 9 through 12 will be used, and all higher order 

terms in F will be dropped. It is convenient also to write the

terminating impedances and current sources in normalized forms, using

the following definitions:

(23)

(24)

The boundary condition equations are then given approximately by 

Eqs. 25 through 28

(25)

(26)

(27)
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(28)

The xi are the four roots of Eq. 15.

At this point there are several choices. This set of equations

is capable of giving forward gain, backward gain, or the start oscil-

lation condition, depending on the driving current used. In the

present problem, attention was focussed on the condition for start 

oscillation initially in the range where the oscillation is of the

backward wave type, and passing through the stop band into the range 

where oscillation, if any, is due to forward wave interaction. In 

between these regions, there can be a range of oscillations which are 

not clearly either forward or backward wave, and the transition between

the two is continuous. This has been pointed out for a particular case 

by Gould 2.

Since we are principally concerned with the start oscillation

condition, let us set both current sources equal to zero, giving a

homogeneous set of equations. Then to find start oscillation condi- 

tions, the determinant of coefficients must be set equal to zero.

Since this determinant is a complex number, it must be considered a

function of two real variables in order to find its zero. The proce- 

dure used was to fix all variables except FM and be, and then 

determine the values of FM and be required for the determinant to 

become zero. The numerical results are given in Section III.

Comparison with conventional three-wave theory. To compare

this approach with the conventional traveling-wave tube theory first 

developed by Pierce 4 , we shall return to the exact characteristic 

equation, (8). Let us assume that θe  ≈ θ1 ≠ π so the beam is
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approximately synchronized with a forward wave, and the backward

wave is definitely asynchronous. The first factor on the left of 

Eq. 8 can then be rewritten as a product.

(29)

To make this look like the Pierce theory, assume that θ ≈ θ1, and 

denote small differences by the relations

(30)

(31)

Then (8) becomes approximately

(32)

in which it is assumed θq << 1. If we now set θ2q/θ2e = 4QC3, and 

(33)

we are left with Pierce's determinantal equation for more conventional

traveling wave tube analyses.

(34)

If the Pierce impedance, E2/2β2p is calculated for the circuit model 

used, and used in the expression for C3, the result is the same ex- 

cept that θ21 replaces θ2e. This is, of course, consistent with the

assumptions usually used in the Pierce theory.
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The comparison of boundary conditions is somewhat more diffi-

cult, but it is not hard to see that the system of Eqs. 19 through 22

reduces to three equations if θ1 ≈ θe ≈ θ π . To see this, examine

these as they might appear in finding the gain of a traveling wave

tube. For three of the roots, θ1 ≈ θ1 but for the fourth θ1 ≈ -θ1.

Taking this root to be , we note that this represents the back- 

ward traveling wave, and its amplitude may be reduced to zero approxi- 

mately by adjusting the terminating admittance Yb, so that

(35)

In this case, the i = 1, 2, and 3 terms of (20) are small, while the 

fourth one is large, since sin θ4 ≈ -sin θ1. Thus, Eq. 20 says 

approximately

(36)

If Ib = 0, only the first three voltage amplitudes enter into 

the boundary conditions. In this manner the assumption usual in 

this type of analysis has been made explicit. That is, the collector

end of the tube is matched and thus there is no reflected wave.

The remaining Eqs. 19, 20, and 21, each with V4 = 0, can be 

adjusted to give the familiar equations for traveling-wave tube gain 

as customarily used. To do this, one must use the small C approxi- 

mations and expansions as done in the discussion above of the

determinantal equation.

Table I gives a summary of the relationships among the present
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quantities and those customarily found in traveling-wave tube

analysis. The approximate equalities hold far from a stop band

(b21 >> 1) .

Space-charge parameters. In the accompanying computations,

a space charge parameter bq has been used because of the simple 

form which this gives to the determinantal equation. In this res-

pect it is similar to QC in the three-wave analysis. Note that 

QC varies both with beam current and voltage. It is Q (and also 

Q/n) which is a function of geometry. Johnson 5 has used Q/N at 

start oscillation as a convenient geometrical parameter which can 

be written as QC/CN . Both of these latter quantities can be found 

from the generalized analysis.

In an analogous way, one should find the dependence of b2q on 

current and voltage, and find a space charge parameter which is a
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function only of geometry. Consider first the defining relation for

b

or, near the band edge,

The current dependence of this function can be removed by a division

 
by F4. That is, b2q/F2 is independent of current. This quantity 

will be given a specific name, Q21 = b2q/F2 and thus the parameter

Q1∕M , is a function of geometry and is constant for a given tube 

and frequency regardless of current. This quantity Q1∕M at start 

oscillation is plotted where necessary in the section concerning

numerical results.

Application of the analysis to the helix. The helix as a slow

wave circuit poses some special problems in this analysis because of

its skew symmetry. As a result of this symmetry, the field patterns

for the fundamental and the first backward space harmonic in the

absence of a stop band are different. The former vary with radius

as the modified Bessel function of zero order, Io, while the latter 

vary as the corresponding function of first order, I1. In the 

presence of periodic loading, and thus a stop band, these field pat-

terns will no longer be correct, and near the band edge the field 

patterns will be thoroughly mixed between the two modes. Thus in the
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immediate vicinity of a band edge, the theory should be applicable 

when applied to a filamentary beam at some location in the helix. 

The closer the beam is to the surface of the helix itself, the 

better the theory will hold over an average of phase shift, since 

the impedances measured right at the surface of the helix are func- 

tions principally of the phase shift and wire configuration, and 

are the same for either wave at a specified phase shift.

To consider the physically useful case, where the beam is not 

filamentary, one must use in the impedance calculation, the mean

square value of electric field averaged over the area of the beam.

Again, the theory is difficult to apply exactly in many cases due

to the different interaction impedances presented by the two waves.

For a thin hollow beam near the surface of the helix, the two im- 

pedances are very nearly equal, and this theory may be directly 

applied. For a solid beam on the axis of a helix, the coupling to

the backward wave is weaker than that to the forward wave. It seems

that one should use some sort of weighted average impedance, but the

exact nature of the weighting function has not been ascertained.

If the stop band is very small, as that due to a small pertur~ 

bation on the helix, the present theory cannot be applied to any 

useful result due to the different space patterns of the two waves, 

and the relatively important effect of small values of sin θo 

which will then appear in the equations.

As a result of the above restrictions, when a helix is consi-

dered the present theory can only be applied where the stop band is
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large enough that Fb1 << sin θo near the band edge. Furthermore, 

the number to be used for interaction impedance should be some

sort of average of the lmpedances of the forward space harmonic 

and the backward space harmonic. Fortunately, the coupling

parameter, F , is only proportional to the fourth root of this

impedance, and the result is correspondingly insensitive to the

exact weighting function. It seems reasonable to use the geomet- 

rical mean of these impedances near the band edge, while realizing

that sufficiently far in either direction the impedance must be

just that of the uncoupled wave.

Fortunately, this difficulty does not exist in any circuit for

which the stop band is an intrinsic property of the circuit and not 

a perturbation. Such circuits as the folded waveguide, disc-loaded 

waveguide, cloverleaf, or other coupled cavity circuits, have the 

same spatial form in both space harmonics and thus can be discussed

with no ambiguity in the coupling impedance which appears in the

normalizing quantity F .

Comparison with Gould's analysis. Since this paper has drawn 

from time to time upon a previously published paper by Gould 2, who 

discussed a coupled cavity circuit in a similar context, it is

worth while at this point to make a short comparison between the

two analyses. To do this, we turn immediately to the circuit model 

(Fig. 3) and characteristic equation, (37), used by Gould. The 

characteristic equation used in this paper is written below it for

convenience. The left side of Gould's equation has been written to
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coincide with Eq. 38 of the present paper, and the two right sides 

are to be compared. Up to this point, there have been no approxi-

mations beyond those assumed in the circuit models.

(37)

(38)

To compare these, one should also introduce the conventional

coupling impedance of each circuit. In Gould's analysis

(39)

and in the present paper:

(40)

With these interaction impedances set equal to each other, the com­

parison between these two approaches reduces to the following 

approximate equality, after cancelling common factors:

(4l)
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That this is indeed an equality to within the approximation θ ≈ θ1

results from Gould's equation for , which is (for lossless 

circuits)

(42)

Thus these two circuit models give identical characteristic waves

within a very good approximation, based only on the use of gener- 

alized circuit quantities, phase shift per section, and interaction 

impedance. If these quentities can be calculated or measured (and 

of course impedance will become infinite at the band edge), the 

behavior of the traveling-wave tube near the band edge can be cal-

culated from the accompanying theory regardless of the most

appropriate exact circuit model. It should be noted that the

application of the theory to circularly symmetric circuits such as

the coupled cavity type does not result in complications such as

arose in the case of the helix.

3. Numerical Results

In order to apply the theory developed to the problem of back- 

ward wave oscillation near a band edge, it is necessary to solve Eqs. 

25 through 28. The condition of incipient oscillation occurs when 

the determinant of coefficients of this system of equations equals

zero. It is this condition which was coded for the Datatron 205

computer and solved for the cases presented here. The numerical

procedure is the following. First the machine solves the quartic 

equation for the characteristic roots (Eq. 15). These roots are then
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substituted in Eqs. 25-28 and the determinant evaluated. If the 

determinant is smaller than a pre-assigned tolerance, the assumed 

quantities are considered to be solutions. If the determinant is

larger than the tolerance, a two-dimensional form of Newton's

method is used to find a second approximation to the independent

variables. Any two of the quantities be, b1, bq, FM, ba, 

or bb might be used as independent variables. In practice it is 

found that FM and b1 are most convenient, although FM and be 

were used for a few cases. In general, the approximation method is

repeated until the results satisfy the tolerance or until the search

is arbitrarily stopped as being fruitless.

In order to usefully tabulate the results, they must be recon-

verted to parameters more closely related to physical operation than

those appearing in the determinant. To do this, we note that the

quantity FMbe is the amount by which the total phase shift on the

(uncoupled) beam would deviate from πM . Similarly, the quantity

FMb1 is the amount by which the circuit phase shift would differ

from πM in the absence of the beam. The quantities Fba and 

Fbb are normalized admittances appearing at either end of the tube. 

The numerical output will be plotted as much as possible in terms of

those quantities.

Typical results of the numerical calculations are shown in 

Figs. 4 and 5. The solid curve represents FM and the dashed curve 

FMb1 at start oscillation for the parameters stated. From these 

curves a number of interesting things can be noted. First, if the
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terminal admittances represent perfect cold circuit terminations

at all frequencies, the correct terminal conditions are ba = bb = b1.

As shown in Fig. 4 this results in a zero value of start oscillation 

current at exactly b1 = 0, that is, at the band edge.

As a matter of fact, the curve of Fig. 4 corresponds exactly 

to CN = .314. In other words, if the circuit is perfectly matched 

in the absence of a beam, the three-wave theory predicts the starting 

conditions exactly. Of course, as the band edge is approached, 

matching becomes more and more difficult. It is expected that finite 

circuit loss would have a major effect on curves such as Fig. 4, 

removing the sharp dip to FM = 0.

Fig. 5 shows a typical result when ba and bb are held con- 

stant as the beam voltage (be) is varied. The start oscillation 

current (represented by the parameter FM) is seen to go through a 

broad minimum at a beam velocity slightly higher than that required 

for synchronism at the band edge. Note, however, that the frequency 

of oscillation represented by b1 does not actually reach the band 

edge until a somewhat higher voltage is reached. Thus the lowest

start oscillation current does not produce oscillation at the band

edge, but rather at a slightly lower frequency.

This figure illustrates the behavior of the higher order modes, 

and also the transition between backward wave oscillation (on the 

right hand part of the picture, where be is positive), and forward 

wave oscillation engendered by reflections from the mismatched ter- 

minations (left side of the figure where be is negative). It is
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seen here that the oscillation conditions transform smoothly from 

backward wave to forward wave, and that the various modes of forward 

wave oscillation appear to come in one at a time from the higher

current forms of backward wave oscillation in the course of the

transition. One can see on the left side of this figure, the typi- 

cal pattern followed in forward wave feedback oscillators in which

the frequency changes discontinuously at some voltage because the 

curves of the threshold current (FM) cross each other. Although the 

present theory loses accuracy as one goes far from the stop band, it 

is interesting to see that it predicts the well-known behavior in

this region.

In the course of the computations, many curves of the general

nature illustrated in Figs. 4 and 5 were calculated and plotted.

These were the most convenient formulations mathematically, but

other curves are likely to be of more use practically. In Figs. 6,

7, and 8, the minimum values of FM for start oscillation have been

plotted as a function of the terminating admittances for three cases

of space charge parameter bq. It is seen that the minimum start

oscillation current rises steeply as a function of terminating ad-

mittance up to a maximum near FMba ≈ 2.5, and then drops off slowly 

with further increase of the admittance. The general form is inde-

pendent of space charge although the numbers are slightly different.

A number of cases have also been calculated where ba and bb are 

not equal, and some for which they are complex. In all of these

cases which have been calculated so far, the maximum of the curves
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equivalent to Fig. 5 through 8 falls below but near to the values 

for equal, resistive terminations. At present there is no funda-

mental mathematical or physical explanation for this fact, and the

extra degrees of freedom in assigning initial parameters have pre-

cluded a systematic numerical study.

Having obtained curves of the form of Figs. 6 through 8, it 

appears that for optimum suppression of oscillations at the band

edge, one should pick the value of terminating admittance which

gives the maximum. Having done this, we recognize that the admit­

tances are not constant with frequency in these figures since the 

parameters ba and bb have been fixed in such a calculation. By 

cross plotting from the curves available, we have obtained the 

curves shown in Figs. 9 through 11, which predict the start oscil- 

lation current as a function of frequency for fixed terminating

impedances which were first selected from the maxima of Figs. 5

through 7.

4. Interpretation

Having achieved a considerable mass of numerical data, we

should now ask in what way this data can be applied to traveling

wave tube design. There are two cases in which stop bands may be

used for the suppression of backward wave oscillation. In one

case, typified by the helix, a tube is to be operated continuously,

but there is a backward wave which can cause oscillations. A stop

band may be inserted in such a location that the electron beam is
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no longer synchronous with any backward wave component. The

present theory is capable of giving an estimate of the width

which may be required in this stop band. A second possible case 

is that in which a tube is operated on a pulsed basis, and oscil-

lations can occur as the voltage is rising and falling, although

they will not be in synchronism during the flat topped part of 

the pulse. Such oscillations have been given the name "rabbit-ears" 

because of the characteristic pips which they add to the detected

output pulse. While the present theory is applicable to this type

of oscillation, it appears to indicate that they cannot be elimin-

ated with a lossless circuit and any reasonable values of interac-

tion. The details of the interpretation follow.

a) Oscillation suppression by stop bands. In this case,

we shall assume that the interest is concentrated on the output

section of a high power traveling wave tube for continuous opera-

tion. A stop band has been created so the mathematical analysis

of the earlier sections is approximately valid. We expect that the

termination on the input end will be some sort of tapered attenuator

which ought to be a fairly good match up to frequencies fairly close 

to the stop band. On the other end, the termination is the output 

connector, which is presumably matched over the operating band, and 

is thus probably about equal in impedance to the midband character­

lstic impedance of the slow wave circuit. The paper published by

Siegman and Johnson  3 gives a discussion of this mode of operation, 

and Fig. 12 shows the comparison between the present theory and the 

published curve in that paper. To generate this comparison it was
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assumed that the knee of the curve of start oscillation current

versus voltage (Siegman and Johnson, Fig. 19) occurs at θ1 ≈ π.

Then the curve is traced back to the point where the classical

theory is assumed to hold. At that point (Io = 1 ma, Vo = 1300 v.

in the present case), CN, QC, and are found from conventional

theories 5,6 and FM from

(43)

FM in the stop band is then

(44)

The subscript s signifies stop band and p signifies the pass band.

It is assumed that in the pass band region θ1 = θo, and that θo is 

linearly proportional to frequency, equaling π in the center of the

stop band.

b) The suppression of "rabbit ears" oscillation in pulsed tubes.

In order to suppress this type of transient oscillation, we would need

a circuit whose start oscillation current never is lower than the

value which the tube will have as the voltage swings through the back-

ward wave frequency range. Unfortunately, one can determine fairly 

quickly from the curves of this paper that the current will always 

exceed the start oscillation current by an appreciable factor if high

gain is desired in the output section. Assume a tube with gain maxi- 

mum at θo = π/2 and assume that CN = .5 or more is required in 

the output section. We use subscripts 0 for forward wave opera-

tion and 1 for the backward wave oscillation.
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(45)

(46)

(47)

(48)

For wide stop bands (k small, or

(49)

If perveance is constant, this becomes

(50)

and the latter factor is very near unity. Thus

(51)

(52)

From Figs. 9 through 11 it appears that this tube will exhibit 

"rabbit-ears" oscillations. Note that the situation worsens as

M increases, making high-C tubes preferable to those with lower 

C, at least in this respect.
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FIG. 1

Equivalent circuit used for the analysis, including arbitrary im- 
pedances and generators at each end of the circuit.



FIG. 2

Synchronism of an electron beam velocity with the cutoff frequency 
of a slow wave circuit.



FIG. 3
Circuit model used by Gould in analyzing periodic traveling wave 
tubes. As long as k is small, this circuit is equivalent to the 
one used in this paper, with appropriately chosen values of Zo 
and θo. 



FIG. 4
FM at start oscillation versus beam phase shift for no space charge, 
when the terminations are perfectly matched at all frequencies. This 
curve is identical to that given by CN = .314, b = 1.52.



FIG. 5
FM at start oscillation versus beam phase shift for no space charge 
and finite terminations. This curve is expressed in terms of the 
basic equations, and thus corresponds to varying terminating admit— 
tances, FMba and FMbb .



FIG. 6
Minimum value of FM (on curve such as Fig. 5) as a function of ba 
(bb = ba), bq = 0) . 



FIG. 7

Minimum value of FM (on curve such as Fig. 5) as a function of ba
(bb = ba), bq = 0.5 . 



FIG. 8
8. Minimum value of FM (on curve such as Fig. 5) as a function of ba 

(bb = ba), bq = 1.0.



FIG. 9
FM at start oscillation versus beam phase shift with FMba and FMbb 
chosen from the maximum of Fig. 6, bq = 0. (Terminating admit- 
tances fixed for maximum oscillation.)



FIG. 10
FM at start oscillation versus beam phase shift with FMba and FMbb 
chosen from the maximum of Fig. 7. bq = 0.5. (Terminating admit- 
tances fixed for maximum oscillation suppression).



FIG. 11

FM at start oscillation versus beam phase shift with FMba and FMbb 
chosen from the maximum of Fig. 8. bq = 1.0. (Terminating admit- 
tances fixed for maximum oscillation suppression).



FIG. 12

Comparison of theory with published experimental results (Siegman 
and Johnson 3, data from their Figs. 18 and 19). The circled points 
were based on data taken from the published paper. The x's represent 
points computed by the present theory.
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