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ABSTRACT

The bandwidth limitation on the reflection coefficient of circuits

containing a reactance limited negative conductance such as a tunnel diode

is derived, and the insertion loss method of modern network theory is

adapted to the synthesis of low pass ladder equivalents of amplifiers

containing these elements. Amplifiers which have a considerable band­

width advantage over simple single tuned circuits, and which approach

the ultimate bandwidth limit as rapidly as possible as the number of

passive components is increased, are demonstrated.

Fundamental bandwidth limitations of three-frequency nonlinear 

reactance amplifiers, parametric amplifiers, and non-inverting upconver- 

ters are also found. A low pass ladder equivalent circuit and the

insertion loss method are shown to be useful tools for synthesis of

these amplifiers. Considerable bandwidth advantage over single-tuned 

circuits is again demonstrated. Syntheses which yield the ultimate

bandwidth as the number of circuit elements is increased are found.

These synthesis methods and the reverse predistortion technique 

are used to synthesize stable amplifiers whose bandwidth capability

increases almost linearly with the number of active elements employed.

Relationships between physically achievable amplifier circuits 

and the low pass equivalents are shown, and the general compatibility 

of presently available active elements with these circuits is considered.



TABLE OF CONTENTS

Partial list of symbols and subscripts i

I Introduction 1

1.1 The Tunnel Diode and Other Negative Resistance Devices 3
1.2 Nonlinear Reactance Amplifiers 7
1.3 The Lossless Low Pass Ladder Network 9

II Ladder Networks with Tunnel Diodes in Terminations 11

2.0 Introduction 11
2.1 Ladder Network Synthesis Procedure—A Review 16
2.2 Normalized Bandwidth of Basic Ladder Network with

One Active Termination 23

2.3 Four Low Pass Amplifier Configurations 31
2.4 Three Configurations with Tunnel Diodes in Both 

Terminations 45

2.5 Band Pass Equivalents 50
2.6 Sensitivity to Element Variation and Approximate

Loss Calculations 56

2.7 Warm Up Stability 62
2.8 Compatibility of Tunnel Diode Packaging Elements 

with Basic Configurations 69

III Gain and Bandwidth in Nonlinear Reactance Amplifiers 77

3.0 Introduction 77
3.1 Basic Equations of Nonlinear Reactance Amplifiers 78
3.2 Required Symmetry and Ladder Network Representation 90
3.3 Physical Configurations which Approximate Low Pass 

Ladder Networks in One or Two Frequency Bands 95

3.4 The Non-Inverting Upconverter 103
3.5 Fundamental Parametric Amplifier Bandwidth Limitations 108
3.6 Degenerate and Pseudo-Degenerate Cases 116
3.7 Some Non-Degenerate Cases 127



3.8 Comparison of Non-Degenerate and Pseudo-Degenerate
Results 132

3.9 Configurations and Noise Figure 134

IV Synthesis of Negative Resistance Amplifiers with Several
Active Elements by Predistortion 139

4.0 Introduction 139
4.1 Integral Limitations and Noise Figure 144
4.2 Uniform Predistortion Synthesis of Tunnel Diode

Bandpass Amplifiers
152

4.3 Predistortion Synthesis of Multi-Element Parametric 
Amplifiers 166

V Summary and Suggestions for Further Work 172

References 176



i

Partial List of Symbols

A power attenuation ratio

η modulation factor for sinusoidal reactance

B noise bandwidth

C capacitance or capacitive reactance slope

CT differential capacitance of tunnel diode or an equivalent reac-
tance limited element

df small frequency interval

ε Tchebysheff ripple factor

F noise figure

G conductance

-GT differential conductance of a tunnel diode or equivalent active
element

I complex current coefficient

K Boltzmann factor in noise expressions

L inductance or inductive reactance slope

Lp series inductance of a tunnel diode

ω angular frequency

ω angular bandwidth not specifically connected with a single
response function

ωB Butterworth angular bandwidth

ωT Tchebysheff angular bandwidth

ωo signal frequency of time varying reactance amplifier

ω+1 idler frequency of non-inverting upconverter
ω1 = 

ω-1 idler frequency of parametric amplifier (negative)

Ω angular frequency of time varying reactanceP
Ωo,Ωi,
 band center frequencies of ωo, ωi, ω+1, and ω-1 bandsΩ+1,Ω-1,  

PG power gain



ii

q charge or complex charge coefficient

qo normalized loss factor of elements in a uniform loss network

p voltage reflection coefficient

ρBo midband Butterworth ρ

ρTo midband Tchebysheff ρ

ρT RMS Tchebysheff ρ over the equal ripple band

s = iω    complex angular frequency variable

spm complex location of mth pole

son complex location of nth zero

T transmission, voltage gain between two elements normalized
so that |T|2 is power gain

T' or Tq transmission under positive or negative loss conditions 

TT RMS Tchebysheff T over the equal ripple band

τ noise temperature

τs source noise temperature

V complex voltage coefficlent

Y admittance

Yc characteristic admittance

Z impedance

Zc characteristic impedance

Partial List of Subscripts

A, A'
B,  B' tunnel diode amplifier typesC, C' 

D
B Butterworth L load
c characteristic                                                p           pump, pole

G gain s source
T tunnel diode or Tchebysheff
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CHAPTER I

INTRODUCTION

The recent discovery of the tunnel diode and the maser, and the

re-emergence of the principles of parametric amplification with

nonlinear reactances have led to a reconsideration of the performance 

capability of negative resistance amplifiers. The characteristics of

available nonlinear reactors and negative resistance devices serve as

boundary conditions limiting the performance of systems containing

them. There is a need to translate these characteristics into equa-

tions and tables in order to facilitate their engineering application.

In the past attention has been focused mainly on noise performance. 

This present work places the analytic emphasis on bandwidth in 

attempting to give a theoretical but practical evaluation of the 

system performance of these devices in terms of gain, bandwidth, noise 

figure, and circult complexity.

The approach here is to give first order synthesis procedures

for designing wide band amplifiers. Only physical amplifier configu- 

rations which allow synthesis in terms of simple low-pass ladder 

equivalent circuits are considered. In each problem presented the 

relation between the basic low pass ladder equivalent circuit and the

physical configuration of an amplifier is pointed out. This should

be sufficient to allow the first order design of a physical amplifier

from a knowledge of the elements in the low pass equivalent.

In no case in this work, however, is the synthesis of a low

pass equivalent ever carried to the point where all its elements are

determined. The object is to obtain as much information as possible
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about the bandwidth capabilities of the active elements. In this

light, only those parameters of the equivalent circuit which correlate

explicitly with the essential properties of the active elements are

actually calculated. The physical realizability of the other elements

required in the equivalent circuit is guaranteed indirectly by the

synthesis technique used.

For the design engineer then, the synthesis problem still lies

ahead. He can only find here synthesis procedures to be used and the 

results he may obtain in terms of the properties of the active elements

and circuit complexity. It is hoped that the information contained in 

this work will increase his understanding of the capabilities of tunnel

diode and nonlinear reactance amplifiers. It is also hoped that the 

results given will allow him to make a good preliminary choice of an 

amplifier configuration which will meet his first order requirements in 

terms of bandwidth and noise figure. He will then be in a position to 

do an intensive analysis and synthesis directly in terms of a single 

configuration. In doing this he can remove any approximations which 

have been required in this more extensive than intensive work to treat 

physical truths with mathematical simplicity.

A brief review of basic information on negative resistance and

nonlinear reactance amplifiers is presented here first. Some of the 

problems which will be approached in succeeding chapters are suggested, 

and some reason for the choice of the low pass ladder network formalism

is given.
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1.1 The Tunnel Diode and Other Negative Resistance Devices

The tunnel diode (1,2) is a very heavily doped semiconductor 

P-N junction. Under low forward bias conditions, current carrying 

electrons may traverse the depletion layer which is normally forbid­

den to them on energy band considerations, by quantum mechanical 

tunneling. A typical current voltage characteristic arising from

the process is shown in Figure 1.1. The shape of this curve and the

resulting differential negative conductance have no theoretical fre- 

quency variation for frequencies under 10+13 cps. The high doping 

levels and extremely narrow depletion layer give rise to appreciable

capacitance in parallel with the effective conductance of the junction.

This capacitance is the essential bandwidth limiting factor of this

device. Taking into account ohmic losses and series inductance arising

in packaging, we use the equivalent circuit shown in Figure 1.2 for the 

tunnel diode (2). The noise generator 12TN in parallel with -GT has 

been found experimentally to be correctly given by the shot noise for­

mula (3)

(1.1)

Several other negative resistance devices such as the maser and 

the reflex klystron have models which are bandpass equivalents of the 

internal tunnel diode. The analogies are close enough so that no more

need be said about them.

The negative conductance can be used as a two-terminal amplifier. 

However, the maximum gain bandwidth is always achieved by isolating 

the generator from the load with a circulator. Under these conditions
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Figure 1.1 Typical current voltage characteristics of a tunnel 
diode

Figure 1.2 An equivalent circuit of a tunnel diode
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the power reflection coefficient

(1.2)

defined at the negative conductance is the power gain. Under single

tuning conditions the shunt capacitance of the tunnel diode limits the

half power gain bandwidth of the reflection to

(1.3)

giving rise to the common voltage gain-bandwidth product. As will be 

shown in Chapter II, a more fundamental limitation on bandwidth is (4,5)

. One can predict, then, a maximum bandwidth for con-

stant reflection ρo,

(1.4)

The disparity between equations 1.3 and 1.4 is the motivation for the wide- 

band tunnel diode amplifier syntheses in Chapter II. In this chapter 

amplifiers with and without circulators are considered and the bandwidth 

and noise figure properties of several configurations are discussed. Fun- 

damental limitations and practical difficulties due to the series induc­

tance of the tunnel diode package are also presented and discussed in 

Chapter II.

In many potential applications the ultimate bandwidth of a single 

tunnel diode may be too small at the required gain level. One must then 

think of amplifiers containing multiple active elements. While single 

negative conductance amplifiers containing perfect circulators may be 

easily cascaded, it is more difficult in general to guarantee the
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stability of a cascade of stages containing only reciprocal elements. 

One approach taken by Carlin (6) involves the synthesis of amplifier 

stages whose input and output characteristic impedances are real and 

constant at all frequencies, so-called constant resistance networks. 

He has shown that each stage has a power gain bandwidth integral

limitation

(1.5)

These so-called constant resistance stages will not be simple con-

figurations such as ladder networks or their band pass equivalents.

They must be networks of the lattice or twin or shunt tee variety, and 

may be physically difficult to achieve at high frequencies. In addi- 

tion, they must contain at least two conductances. If one of these is 

required to be passive, it may have a seriously degrading effect on

the noise figure.

Another approach commonly taken to the multiple element problem

is the design of iterative circuits by image parameter theory. This 

technique, however, lends itself better to analysis than to synthesis 

procedures. The gain or transmission of the overall circuit including 

terminations may be evaluated in terms of the propagation constant and 

characteristic impedance of the basic section which are simply calcu- 

lated. The reverse or synthesis process, however, cannot be carried

out except by trial and error, making the terminating sections diffi-

cult to design.

In Chapter IV a synthesis of multiple element amplifiers by 

"negative predistortion", a technique suggested by Weinberg (7) is
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considered. Syntheses which give 60% of the bandwidth limitation 

given in equation 1.5 are found and the method is apparently capable

of achieving the full integral limitation. The problems arising from

reflections in these circuits as well as the noise figure properties 

are also discussed. The synthesis is in terms of band pass ladder 

networks which contain one tunnel diode per section. These are 

definitely simpler than Carlin's networks and should be physically

achievable in all frequency ranges.

1.2 Nonlinear Reactance Amplifiers

The power flow relations for a nonlinear reactance in the presence

of excitation at two frequencies whose ratio is an irrational fraction,

and all the multiple sum and difference frequencies have been given by

Manley and Rowe (8). In Chapter III we will consider two devices in

which only three of this infinite set are of major importance. In both

cases Ωp will be considered the pump frequency supplied by a local 

oscillator. The signal frequency, ωo < Ωp as well as Ωp, are con­

sidered positive, while the third frequency may be either positive,

ω+1, = ωo + Ωp or negative, ω-1 = ωo - Ωp, depending on whether the

device is to be called, respectively, a non-inverting upconverter or

a parametric amplifier.

The non-inverting upconverter obeys the power relations

(1.6)
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The device is unconditionally stable when imbedded in a linear passive 

network and may give a maximum power gain

(1.7)

It is essentially a two port amplifier. The nonlinear reactance used 

as a three frequency parametric amplifier obeys the power relations

(1.8)

The fact that Po and P-1 may be simultaneously negative allows 

unlimited gain. In circuit terms this capability must appear as a

negative real part to the input immittance at the reactance terminals

at both ωo and ω-1.

The discussions of nonlinear reactance amplifiers in this work

are restricted to circuits containing nonlinear capacitances or

elastances whose time variation due to the pump excitation at Ωp is

explicitly defined as

or

The choice as to which of these representations is best suited to a

given physical nonlinear reactance will depend on whether the parasitic 

and packaging elements fit better into a parallel or series equivalent 

circuit. The nonlinear capacitance of the back biased semiconductor



diode, for instance, is usually associated with series inductance and 

resistance and the So representation will be preferable. Results 

for the two other types of nonlinear reactances can be obtained from

a consideration of these two and the application of the duality prin-

ciple. One may expect the bandwidth of parametric amplifiers and 

upconverters to be limited in some way by the D.C. parameter Co or 

So. In Chapter III the same assumptions which are made by virtually 

all workers in the field of three frequency parametric amplifiers and

upconverters lead to equivalent circuits for these devices. It is

shown that the parametric amplifier does have a gain bandwidth limlta- 

tion in the form of equation 1.4. It is also shown that under some 

circumstances it may be treated with complete analogy to the tunnel

diode, but that these conditions do not necessarily lead to a synthesis

that gives the greatest possible bandwidth for the least circuit com- 

plexity. In Chapter IV the conditions under which multiple element 

parametric amplifiers can be synthesized by negative predistortion are

related.

1.3 The Lossless Low-Pass Ladder Network

The lossless low-pass ladder network has many advantages as a 

basis for synthesis. It and its equivalents are realizable either 

exactly or approximately in any frequency range with lumped, semi- 

distributed and mixed elements. One bandpass approximant, the coupled 

resonator circuit, can be built with coupled cavities or loaded trans- 

mission lines and waveguides for operation at very high frequencies.

In addition the coupled resonator circuit allows a useful and somewhat 

arbitrary impedance level transformation not achievable in other cir- 

cuits. The second major advantage of the lossless ladder network in

-9-
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design is the fact that the synthesis may be carried out simply and

directly starting from the poles or zeros of a desired response func-

tion. Physical realizability and stability arguments will remove any 

arbitrary choices in most of the active networks. The simplicity of

the method will become clear in Section 2.1.

An infinite variety of response functions are of course achiev- 

able in ladder networks. Certain response shapes, however, have been 

proven optimum for achieving desirable gain versus frequency relations 

with the least circuit complexity. In some cases these optimum response

functions are also optimum for approaching the reflection coefficient

bandwidth limitations most rapidly as a function of circuit complexity.
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2.0 Introduction

The bandwidth over which gain can be obtained from a tunnel diode

can be associated qualitatively with the bandwidth over which its essen-

tial reactance can be canceled by an external immittance. The accuracy 

required of this cancellation must depend in some measure on the gain 

desired. The ladder network has been successfully applied in the past

to impedance matching problems involving the cancelation of reactance 

associated with passive conductances (9). This success, plus the fact 

that the well known methods of passive ladder network synthesis can be 

applied to the active network problem, suggests the synthesis of tunnel 

diode amplifiers from the basic low pass configurations shown in Figure

2.1 A, B, C and D.

The power gain of all these configurations may be associated with 

the reflection and transmission power gains of the low pass circuit 

shown in Figure 2.2 A and B. This circuit provides a unified approach 

to the synthesis of the networks in the four basic configurations. In 

addition practical questions of stability, stability under variation of 

the circuit elements, and "warm up" stability, may be answered in terms 

of the basic circuit. The transformation of this basic low pass circuit

into a band pass equivalent aids in the construction of the band pass

equivalents of the four amplifier configurations.

The unification provided by the basic network does not extend to

the calculation of amplifier noise figure. This will be done separately 

for the various configurations. The reciprocity theorem (10) for net- 

works containing bilateral elements will prove of extreme utility. This

CHAPTER II

LADDER NETWORKS WITH TUNNEL DIODES IN TERMINATIONS
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A. Reflection amplifier with circulator

B. Bilateral reflection amplifier

C. Transmission amplifier, load in parallel with tunnel diode

D. Transmission amplifier, source in parallel with tunnel diode

Figure 2.1 Four low-pass ladder network amplifiers containing a tunnel 
diode in one termination
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Figure 2.2a Basic low pass ladder network with an odd number 
of reactive elements

Figure 2.2b Basic low pass ladder network with an even number 
of reactive elements
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theorem states that the ratio of power delivered to resistor 1 to

power available from resistor 2, PG12, is equal to the ratio of power 

delivered to resistor 2 to power available from resistor 1, PG21.

(2.1)

While the power available in a frequency range df from a passive 

conductance at temperature τR is well known to be KτR df , a

definition may also be made for negative conductances through the

artificial use of an impedance negator as shown in Figure 2.3 A and B.

The power flowing out of the impedance negator is the negative of the

power flowing out of its termination. It is therefore appropriate to 

associate with -GT and ITN2 a negative available noise power

(2.2)

While the basic circuit approach deals with an idealized tunnel 

diode containing only a negative conductance -GT in parallel with a 

capacitance CT, presently available tunnel diodes also have series 

inductance and resistance associated with packaging and bulk material 

resistivity. The last section of this chapter will consider the com-

patibility of these elements with the basic configurations as well as 

any new fundamental limitations which the inductance places on tunnel

diode amplifiers.
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Figure 2.3 Illustrating the equivalence between
(a) a noisy negative conductance, and
(b) a noiseless impedance negator terminated 

in a noisy positive conductance
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2.1 Ladder Network Synthesis Procedure -- A Review

Before considering the analysis of the basic network in Figure 

2.2, let us review some of the nomenclature and techniques of ladder 

network synthesis (11). Transmission gain is defined as the ratio of 

power delivered to one termination to power available from another and

is written as

(2.3)

The ratio of power reflected to power available from a termination is

(2.4)

The reflection coefficient between arbitrary admittances Ya and Yb 

must be defined as

(2.5)

and is analytic in the s plane only when Ya is real. When Ya is 

not real analyticity may be restored by writing Ya and Yb as ratios 

of polynomials in iω and removing any phase rotation factors:

(2.6)

For lossless networks conservation of energy yields
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(2.7)

and therefore for all values of s

(2.8)

The reciprocity theorem indicates that T(iω) T(-iω) is the same in 

either direction when the network contains bilateral elements. When 

one of the terminations of the ladder network is negative, T(iω) T(-iω) 

must also be negative. To avoid confusion, however, the sign and

absolute value will be used here.

Equation 2.6 greatly simplifies the synthesis of lossless ladders 

operating between passive terminations by giving p(iω) almost 

directly in terms of the transmission gain. Equation 2.5 gives

(2.9)

when Ya is real, and the continued fraction expansion of Yb/Ya 

yields directly the ladder network elements normalized to Ya. Some 

choice must be exercised in choosing the poles and zeros of ρ(s).

In networks with passive terminations the numbers of poles and zeros 

of ρ(s) are equal and must equal the number of reactances to appear 

in the low pass ladder. The elements of the ladder will be physically 

realizable if all the poles of p(s) are in the left half plane, LHP, 

but its zeros can be chosen anywhere. In all cases the zeros of p(s) 

defined at one termination are the negatives of the zeros of p(s) 

defined at the other termination. Equation 2.5 can be used to show 

that the change in the sign of a termination simply inverts the ref­

lection coefficient and interchanges the poles and zeros.
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(2.10)

Thus, the zeros of the reflection coefficient at the active element 

must be chosen in the LHP to guarantee that all other network elements 

are positive. The poles of p(s) are arbitrary but must be chosen in 

the LHP for stability.

It was indicated in the introduction that the bandwidth limita-

tion on the reflection coefficient at a negative conductance -G in 

parallel with a capacitance C obeys the limitation

(2.11)

The frequency range over which p is large can be maximized by mini- 

mi zing the contribution of ℓn ρ(ω) to the integral elsewhere. Thus 

outside the desired bandwidth of the reflection it is desirable to

have

(2.12)

Fortunately, something is known of synthesizable response functions

which have desirable properties in the light of equations 2.11 and 2.12.

Of all transmission response functions synthesizable with an N pole

ladder network, the Tchebysheff transmission response has the property 

that it gives the fastest possible rate of cutoff of |T(iω)|2 outside

the passband consistent with a prescribed maximum deviation of
   |T(iω)|2 and |ρ(iω)|2 from their maximum values |TTo|2 and

|ρTo|2 within the passband (12). The Tschebysheff response functions
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are written as

(2.13)

in which

and

This response is also commonly called equal ripple response with 

ε known as the ripple factor and ωT the ripple bandwidth.

is a polynomial of order 2N in ω∕ωT. Typical

reflection response shapes and pole zero locations for N = 2 and 3 

are shown in Figure 2.4. Because of its oscillatory nature and 

because it. may lead to extremely nonlinear transmission phase charac- 

teristics, the Tchebysheff response is often dismissed in favor of 

the Butterworth response. This transmission response has the maximum

number of zero frequency derivatives at the band center consistent with 

the number of poles allowed (12). The Butterworth response functions

are written as
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Figure 2.4 Tchebysheff reflection gain versus frequency and pole 
zero locations for |ρT|2 = 75, ε = 1, N = 2 and 3
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(2.14)

in which |TBo|2 = |1 - ∣ρBo|2|. The Butterworth response, also

called maximally flat response, is a special case of the Tchebysheff 

with ε = 0. The Butterworth normalization frequency ωB, however, 

is the 3 db bandwidth of the transmission function. It may be said of

the Butterworth transmission response then, that it has the fastest 

rate of cutoff at the band edge consistent with the flattest possible 

gain at midband. Typical Butterworth reflection response characteris- 

tics and pole zero locations for N = 2 and 3 are shown in Figure 2.5.

The Butterworth and Tchebysheff responses will form the basis 

for the synthesis not only of the one and two element tunnel diode 

amplifiers discussed in this chapter but also for the nonlinear reac- 

tance amplifiers to be discussed in Chapter III and the multi-element 

amplifiers to be synthesized in Chapter IV. The analytic expressions 

for poles and zeros of these response functions will be required for 

all further work and are given below in equations 2.15 through 2.18 (13).

Butterworth poles:

(2.15)
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Figure 2.5 Butterworth reflection gain versus frequency and pole
zero locations for |ρBo|2 = 75, N = 2 and 3 
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Butterworth reflection zeros:

(2.16)

Tchebysheff poles

Tchebysheff reflection zeros

(2.17)

(2.18)

2.2 Normalized Bandwidth of Basic Ladder Network with One Active 
Termination

It is appropriate to think of the circuit parameters G1 and 

C1 in the basic low pass ladder network of Figure 2.2 as determining 

the bandwidth normalization factors ωB and ωT since these two 

elements will be directly associated with the terminations of the four

amplifier configurations. The frequency normalization can be found 

directly from the knowledge of the poles and zeros of ρ1(s) without 

carrying out the detailed continued fraction expansion of the ladder 

by considering the evaluation of ∮ ℓn [-ρ1(s)]ds on the two contours 

shown in Figure 2.6.
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Contour 1, enclosing the RHP

Figure 2.6 Integral contours in s plane for functions with 
logarithmic singularities
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From Figure 2.2 the asymptotic dependence of ρ1(s) can be evaluated.

(2.19)

On contour 1

(2.20)

Since for stability and physical realizability , and

since arg ρ1 is an odd function of s, this gives the fundamental

limitation

(2.21)

and on contour 2

(2.22)

In Equation 2.22 the left half plane singularities of ρ1(s) appear 

and are taken as negative. The addition of equations 2.20 and 2.22 

gives

(2.23)
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The RHP summation has been shown zero for stable physically realiz-

able response. The LHP summation can be evaluated for the Butterworth 

and Tchebysheff roots given in equations 2.15 through 2.18 (13).

Closed form expressions for these summations lead to

(2.24)

(2.25)

For infinite N equation 2.24 becomes

which agrees with equation 1.4 . Figure 2.7 shows ωBC1/G1 as a

function of ρBo, for several values of N. Figure 2.8 shows ωTC1∕G1 

as a function of , the approximate root mean square average reflec-

tion coefficient over the Tchebysheff ripple band. Approximately 
2three decibel ripple was assumed and ε2 taken as 1. The curves of 

ωTC1∕G1 for smaller e do not lie between the Butterworth and ε = 1 

curve. Curves of ω3DBC1∕G1 for ε < 1, do, however, lie between 

the Butterworth and ε = 1 curves. The asymptotic values of the But- 

terworth and Tchebysheff bandwidths are the same for ρBo = ρT.

Similar arguments may be applied to ρN(s) to calculate

GN∕ωBCN and GN∕ωTCN or RN∕ωBLN and RN∕ωTLN as shown in Figure 

2.2. The zeros and poles of ρN(s) are in opposite half planes giving
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Figure 2.7 Normalized half power bandwidth for Butterworth Response 
versus ρBo
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Figure 2.8 Normalized Tchebysheff ripple bandwidth for ε = 1 versus ρT
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(2.26)

(2.27)

The quantities GN∕G1 and 1∕RNG1 can be determined from the zero 

frequency reflection coefficient on which the inductors and capacitors 

have no effect. Stability criteria manifested in the requirement 

that the poles of ρ1 be in the LHP require GN∕G1 or 1∕RNG1 to 

be greater than unity. Using equation 2.5 to obtain these quantities 

from the zero frequency reflection and using equations 2.11 to find the 

Tchebysheff zero frequency reflection from ρTo and ε, one finds for

odd N,

(2.28)

and for even N ,
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Because of the reciprocity under a change in sign of GN as 

exhibited by equation 2.10, the network of Figure 2.2 with active 

response may be completely synthesized in terms of an equivalent 

passive circuit. The reciprocal of the active Butterworth response

is

(2.29)

Reciprocal Tchebysheff response is

(2.30)

Tables or closed form expressions (14, 15) for the elements of lossless 

Butterworth and Tchebysheff filters are generally given for the case 

where the zeros and poles are in the same or opposite plane, as we 

require, and equations 2.29 and 2.30 put the reciprocal of active res- 

ponses into the normal passive network form. Tchebysheff and Butter- 

worth responses for both active and passive terminations may also be
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obtained with lossy reactances in the filter. Tables of network

elements given for passive responses as a function of element loss 

factors cannot, however, be used to synthesize lossy networks with

an active termination.

2.3 Four Low Pass Amplifier Configurations

The bandwidth normalizations for the basic network of Figure 2.2

have been found in terms of the time constants of the terminations for

Butterworth and Tchebysheff reflection responses. The bandwidth and

noise figure of the four amplifier configurations in Figure 2.1 which

all use this same basic network can now be determined. For brevity,

these amplifiers will be called Type A, B, C and D referring to the

designation in Figure 2.1. The reflection and transmission factors

appearing in the following discussions are defined in this figure.

Although the ladder reactance network has been assumed lossless in

previous sections, the effects of network loss on the noise figure will

be formulated here using τN as the temperature of the network. As

shown in the introduction an effective temperature -τT will be used

for the tunnel diode. The noise figure is written with respect to a

source temperature τs rather than the standard 290ºK, and any amp- 

lified noise arising from the load conductance is also considered when 

important. The noise which the load would contribute to the output of 

an ideal matched unilateral amplifier is subtracted from this contribu­

tion since it should not be considered as a detrimental factor.

2.31 Type A Reflection Amplifier with Circulator. The presence

of the ideal matched circulator in configuration A makes the power 

gain PGA of the circuit equal to the reflection gain ρNρ*N. For
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a lossless ladder ρ1ρ*1 = ρNρ*N and the integral limitations on the 

reflection coefficient given in equation 2.21 are directly the limi­

tations on the bandwidth of this amplifier.

(2.31)

The Butterworth or Tchebysheff responses therefore represent optimum 

choices. Figures 2.7 and 2.8 can be used directly to find ωBCT/GT 

or ωTCT∕GT|ε-1 as a function of N , and ρBo or ρT.

The circulator reflection amplifier dlffers from the other con­

figurations which will be analyzed in that its noise figure is fixed 

by the configuration. We calculate this noise figure by assuming 

first an ideal matched circulator and then adding the effects of at-

tenuation or mismatch. Using the reciprocity theorem, one may say that 

the ratio of noise power transmitted to the circulator Pout T to 

noise power available from -GT equals the ratio of power transmitted 

to -GT to power available from the circulator.

(2.32)

Similarly reciprocity can be applied to calculate Pout N, the noise 

out due to losses in the network.

(2.33)

The noise figure of the amplifier relative to a source at temperature

τs is 
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(2.34)

The contribution to FA of attenuations A1 and A2 in the circula-

tor at temperature τc can now be added by application of the noise 

figure formula for cascade amplifiers

(2.35)

using

(2.36)

The result is

(2.37)

τc should be considered zero if A1 and A2 are mismatch losses 

rather than matched attenuations. Some further attention to the quan- 

tity 1 + |T|2 - |p1|2 will be given in section 2.5.

In closing discussion of the Type A Amplifier, it is well to

point out that because of the circulator it is completely stable to 

changes in the source and load impedance and may be cascaded at will.
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Equations 2.26 or 2.27 give the maximum tolerable reactance of the 

low-pass equivalent circulator or the slope of the reactance about 

the center frequency, ωo, of a bandpass circulator in terms of 

and N or ρTo, N and ε.

2.32 Type B Bilateral Reflection Amplifier. The amplifier 

configuration of type B does not give exact maximally flat or equal 

ripple response when synthesized in terms of section 2.2. The required 

reflection poles and zeros to achieve this effect are not known in 

general and can be calculated only with some difficulty. Sard (16) has 

done this for N = 2 and N = 3 maximally flat response. In terms of 

ρN the power gain of configuration B is

(2.38)

Having poles and zeros in opposite half planes, ρN will in general

exhibit a rapid phase change with frequency. Assuming this phase change

roughly uncorrelated with the amplitude changes in ρN, the average

power gain over the band may be related to the average value of |ρN|2,

ρNρ*N by

(2.39)

and the extra induced ripple or ratio of maximum to minimum gain is on

the order of

(2.40)
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For a given ρN, PG in equation 2.39 has a maximum for Gs = GL 

(2.41)

The fundamental bandwidth limitation on bilateral amplifiers with flat 

gain has been found by Youla and Smilen (5) to be

(2.42)

giving only very slightly higher bandwidth than would be predicted 

using equations 2.41 and 2.21.

The quantity GsGL/(Gs + GL)2 will, however, be chosen on 

noise consideration and may be considerably less than 1∕4 for practi- 

cal amplifiers. We therefore calculate noise figure before bandwidth.

Following the reciprocity technique used before,

(2.43)

A third source of output noise, namely the amplified noise of the load

conductance must be taken into account. The power dissipated in GL

due to its own noise current generator, INL2 = 4KτL GL df, is 

(2.44)
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KτL df is generally subtracted from this as present in the load of 

any ideal matched unilateral amplifier. The noise figure is

(2.45)

For a lossless ladder FB may be written as 

(2.46)

The last additive factor of the noise figure may be very important 

since τL is frequently high. It may be reduced to zero, however, 

or even negative, by choosing GL/Gs to be on the order of the 

reciprocal of the average power gain.,

The required ρBo or ρT for a given average power gain can be

calculated from equation 2.39 once GL/Gs is chosen on noise figure 

considerations. The normalized bandwidth can then be found from 

Figures 2.7 or 2.8, or equations 2.24 or 2.25. For GL∕Gs = 1/PG, 

the Butterworth derived bandwidth is
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(2.47)

Figure 2.9 shows the Butterworth bandwidth for PG, = 40 as a function 

of the load noise contribution factor with N as a

parameter.

The results of computing the normalized bandwidth on this basis

which gives maximally flat response only in the high gain limit agree 

very well with Sard's (16) results* down to PG = 10. It is implicit 

in this derivation that the reactances associated with the physical

source and load generators can be accommodated by the configuration as

per equations 2.26 and 2.27.

2.33 Type C Transmission with Load in Parallel with Active

Element. With configuration C minimum phase power gain can be

achieved, and the Butterworth and Tchebysheff responses, insofar as they

are desired for band shaping, are optimum for utilization of the band-

width capabilities of the CT, GT, GL combination. The bandwidth 

limitations on ρ1 are now normalized to but the power gain

is greater than the transmission gain.

*Figure 7 of Sard's paper showing Bandwidth vs. Gain for Bilateral Ref- 
lection Type Negative Conductance Amplifiers for

actually represents his calculations for ρ = 1.
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Figure 2.9 Normalized Bandwidth of Butterworth type B reflection 
amplifier for PG = 40 versus α = GL∕Gs - 1∕PG
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(2.48)

The possibility that GL is greater than GT will not be considered

here since it gives rise to a very high noise figure and very small 

bandwidth corresponding to a low noise situation in configuration D .

The noise figure may be calculated as before

(2.49)

(2.50)

Since the zeros and poles of ρ1 lie in the same half plane, 

its net phase shift may be small over most of the frequency range. It

will be shown in a later section that designs in which the maximum 

phase change exceeds 180º are impractical. For purposes of approxi­

mating Fc we assume here that arg ρ1 is close to π over the 

bandwidth of the amplifier. It will usually be correct if ρ1 is
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small and will make little difference if ρ1 is large. In this 

approximation Fc for lossless networks can be written

(2.51)

which is the same as equation 2.46, the noise figure of the type B 

amplifier.

For the lossless case the zero frequency power gain can be

written as

(2.52)

Using this equation and equation 2.48, or

can be calculated as functions of PG and

GL/Gs. The normalized bandwidths may then be found from the equations 

or figures of section 2.2. Figure 2.10 shows the Butterworth transmis­

sion bandwidth for PG = 40 as a function of . The

bandwidth of the type C amplifier generally shows a maximum for 

GL/Gs less than unity, but is in all cases slightly lower than for 

type B amplifiers for equal gain, noise figure, and number of compon-

ents. These calculations for the bandwidth of the type C transmission 

amplifier have also been done by Sard (16) for the maximally flat case

and the results for this case are identical.

The above calculations assume that the actual tunnel diode can

accommodate a load impedance directly in parallel with its internal

conductance and that the load impedance does not contribute any addi- 

tional capacitance to CT. As we shall see in section 2.8 some
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Figure 2.10 Normalized bandwidth of Butterworth type C transmission 
amplifier for

PG = 40 versus 
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band pass configurations of the tunnel diode and load or source imped- 

ance will be analyzable on these terms without this direct but 

physically impossible connection being required. In low-pass 

circuits, however, or in extremely wide band amplifiers, the series 

inductance of the tunnel diode may limit the practical accuracy of 

this analysis of type C and D configurations. The effects of induc- 

tance intervening between GT and GL or GT and Gs may be consi- 

dered with results from section 2.6, but compensation for this element

must be considered on an individual case basis.

2.34 Type D Transmission Amplifier with Source in Parallel 

with Actlve Element. The power gain in the type D amplifier is

(2.53)

The noise figure may again be evaluated from the components of the

output noise power.

(2.54)
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(2.55)

The poles and zeros of ρN lie in opposite half planes, and the

arg ρN will vary by as much as 2Nn over the passband. Except 

for the N = 1 case in which types B, C, and D are all the same, we 

are justified in substituting for (1 + ρN)(1 + ρ*N) its approximate 

average value in the lossless ladder case.

ωc = nominal cutoff frequency or bandwidth. 

As before, the required reflection coefficient for a given 

power gain can be calculated with equations 2.52 and 2.53. For the

GL/Gs in the configuration equal to in the type C configu­

ration, the bandwidths are the same. For comparably low noise 

figure, however, configuration D gives much lower bandwidth. Figure

2.11 shows the Butterworth bandwidth as a function of the load noise

factor
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Figure 2.11 Normalized bandwidth of Butterworth type D transmission 
amplifier versus

for PG = 40 
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While this configuration gives generally lower bandwidth than the

others, it may have one advantage. In all other configurations signal 

power must pass through the ladder network before reaching the nega- 

tive conductance where amplification can occur. Here, the signal is 

amplified first and losses in the ladder network would not ostensibly 

contribute so heavily to the noise figure. This appears as the

factor in the noise figure term due to .

2.4 Three Configurations with Tunnel Diodes in Both Terminations

One may calculate the gain bandwidth capability of the ladder 

network amplifier configurations when the capacitance of a second tun-

nel diode is used to fill the reactance requirements at the passive

termination. Figure 2.12 shows three such configurations which can 

be called types A', B', and C'. These low-pass configurations are 

theoretically achievable for odd N only. Some bandpass circuits will 

be shown in section 2.5, however, which are bandpass approximants of 

these configurations and yet may contain two tunnel diodes for even N .

In this section the network will be assumed lossless and both 

tunnel diodes are assumed to have the same time constant CT∕GT and 

noise temperature. The required calculations for bandwidth involve 

the simultaneous application of equations 2.24 and 2.26, or 2.25 and 

2.27. The method may be simplified for the A' and B' cases by calcu- 

lating the increase in gain that may be obtained in these configurations 

over that of type A amplifiers with the same bandwidth and noise figure. 

In Figure 2.12A' the admittance level of the circulator is shown raised 

over that in Figure 2.1A by GTN so that the same network and GT1



-46-

A' Reflection Amplifier with circulator

B' Unilateral reflection amplifier

C' Transmission amplifier

Figure 2.12 Three low pass ladder network amplifiers containing tunnel 
diodes in both terminations
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give the same reflection response in both cases. The ideal noise

figure will also be essentially for both. The increase in

gain of A' over A is the ratio ρ'Nρ'*N∕ρNρ*N as defined in 

Figure 2.12A'. This may be calculated to be

or, neglecting 1/ρN

(2.57)

in which Go is the admittance level of the circulator in Figure 2.1A 

Remembering that GTN∕CTN = GT1∕CT1 , GTN∕Go may be computed from

section 2.2 as a function ρβo or ρTo. The resulting gain increase 

factor is

(2.58)

for Butterworth response, or

(2.59)

for Tchebysheff response.

Figure 2.12B' shows the admittance level of the load and signal 

generator combination raised with respect to Figure 2.1B by GTN but 

with the ratio of load to generator impedance maintained. For equal 

noise figures and bandwidths equations 2.58 and 2.59 are again correct 

for the increase in gain of the B' configuration over configuration B.
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The comparison of the type C' circuit to the type C is somewhat

more difficult to perform. Their noise performances are essentially

equal for equal gains and choices of GL/Gs. The calculations for 

ωBCT∕GT have been done for Butterworth response using equations 2.60 

through 2.63, below.

(2.60)

(2.61)

(2.62)

(2.63)

The increase in bandwidth capability was not significantly large in any

case, as one might expect. Figure 2.13 shows the normalized bandwidth

versus for PG = 40. 

The power gain increase of these configurations with two tunnel

diodes over the comparable single diode configurations cannot exceed

four. Considering that the bandwidth in the single diode configurations

varies at least as slowly as , this does not represent a very

large increase in gain bandwidth capability. The effort required to

fit the second diode into a practical circuit may therefore not always

be worth while. On the other hand, the second diode acts as a preamp­

lifier of the signal before it enters the network and should reduce the
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Figure 2.13 Normalized Butterworth bandwidth of type C' trans- 
mission amplifier versus

for PG = 40 
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effect of network losses on noise figure by something on the order 

of the square roots of the factors given in equations 2.58 and 2.59.

2.5 Band Pass Equivalents

The basic low pass characteristics of the ladder circuit may 

be translated to realizable band pass characteristics by the trans-

formation

(2.64)

where s' is the new band pass variable and Ωo is the band center.

The new circuits are derived from those in Figures 2.1 and 2.2 by

placing a capacitor in series with every inductance Li and an induc-

tance in parallel with every capacitor Cj such that each branch is

resonant at Ωo. The band pass equivalent of a low pass ladder is 

shown in Figure 2.14. This is sometimes called the band pass "constant 

K" configuration. The response has geometric symmetry about the band 

center so that

(2.65)

where ω2 - ω1 is equal to the characteristic bandwidth ωc = ωB or

ωT of the low pass network. No contraction of the bandwidth occurs

in the transformation. The ratio of series to shunt inductance is on

the order of (Ωo∕ωc)2 which makes the circuits as shown in Figure 

2.14 sometimes physically difficult to achieve.

To transform the circuit in Figure 2.14 into one of many coupled

resonator configurations, we first add an ideal impedance inverter on

both sides of each series or shunt resonant branch and convert these
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Figure 2.14 "Constant k" bandpass equivalent of low pass ladder in 
Figure 2.2

Figure 2.15 Equivalents of Figure 2.14 using ideal impedance inverters
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branches to their duals. Two examples are shown in Figure 2.15. An

ideal impedance inverter is described in image parameter theory as a 

four-terminal network with characteristic or image impedance Zo and

a constant phase shift . Terminated by Z1, such an element

exhibits an input impedance Zo2∕Z1. 1∕Z1 is physically realizable

as the dual network of Z1. The four impedance inverters shown in

Figure 2.16 have constant phase shift , but their image imped­

ance is only approximately constant in narrow band operation. Zo in 

each case equals the reactance of the positive arm. Flux coupling may

also be used to achieve impedance inversion.

When a proper choice is made the impedance inverters of Figure 

2.16 for insertion into the configurations in Figure 2.15, the negative

elements are absorbed into larger positive elements giving a realizable

circuit. Figure 2.17a and b shows two coupled resonator configurations

which are achievable transformations of the basic low pass ladder.

For equal numbers of resonant branches the "constant k" and

coupled resonator configurations have the same number of reflection 

poles and zeros. The transmission response T(s)T(-s) of the "constant k" 

configuration has two zeros at s = ∞ and s = 0 for each branch.

This is achievable in the coupled resonator only for an odd number of

resonators and when the resultant even number of coupling elements

is split evenly between inductances and capacitances.

The elements of Figures 2.17a and b may be specified directly

in terms of a low pass ladder such as in Figure 2.2 (17) to make their 

responses equivalent in the narrow band limit. For Figure 2.17a the 

requirements are:
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Figure 2.16 Some Non-Ideal impedance inverters

(a) Series inductance coupling

(b) Shunt capacitance coupling

Figure 2.17 Two coupled resonator bandpass approximants 
to the networks in Figures 2.2 and 2.14
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Each node resonates at Ωo when the other nodes are shorted. 

(2.66)

For Figure 2.17b the requirements are:

Each loop resonates at Ωo with the other loops open circuited 

(2.67)

The ratio of series to shunt elements in these configurations usually

comes out on the order of ωc/Ωo or Ωo∕ωc rather than these factors 

squared.

These relations do not completely specify the network elements.

Further specification may be obtained by demanding that the new network 

transform impedance levels; that is, GN'∕G1' = n2 GN/G1. Further 

specification is undoubtedly also obtained in removing the approximation

made in the impedance inverter insertion and synthesizing the network

more accurately and directly from the poles and zeros of the desired

reflection response. Cohn (18) has shown that Butterworth and Tcheby- 

sheff coupled resonator designs with bandwidths greater than 20% are 

achievable with lumped, waveguide, or coax elements.
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Exact low pass to multiple bandpass transformations similar to 

equation 2.64 can be used to synthesize multiple bandpass negative 

resistance amplifiers. Coupled resonator approximants for these 

networks can also usually be found. In Chapter III some double pass 

band networks are derived for use in wide-banding time varying reac­

tance amplifiers. These allow rather independent specification of

the network characteristics in the two bands and provide isolation.

They also allow the use of separate terminations for the two bands.

Direct transformations on s do not give these capabilities. As 

will be seen in Section 2.8, double band operation is required in 

order to obtain stable gain from a tunnel diode at frequencies above 

its self-resonant frequency, 1/√CTLp. Such networks may also be 

useful for tunnel diode mixers with gain at two frequencies.

In general, exact low pass to multiple pass transformations dis- 

tribute the gain and bandwidth but preserve the integral limitations

of the active element. Reasonable approximants also have these

properties. Thus the basic bandwidth limitations found for the low- 

pass structure of Figure 2.2 in terms of G1∕C1 and ρo apply 

equally well to bandpass circuits with the same G1∕C1 termination. 

The actual mechanism used to achieve the transformation will depend

on the type of elements available in the desired frequency range.
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2.6 Sensitivity to Element Variation and Approximate Loss 
Calculations

It will be of interest in amplifier design to know the approxi­

mate limits through which network elements can be varied without

causing instability and oscillation. We calculate here approximately

these limits for non-simultaneous errors in the ladder terminations.

Let us suppose that a network is designed to give a reflection

coefficient ρ1 and transmission T1 when terminated in an impedance

Go. The transmission for the same network terminated in 

Go + ΔYo(s) gives us a measure of the sensitivity to the error ΔYo. 

This response is found to be (9)

(2.68)

in which

and

Except when ρ2(s) = 0, the poles of T12 are the zeros of 

1 - ρ1(s) ρ2(s). For very small ρ2(s), these zeros must be in the
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left half plane since there must exist some small but finite

ΔYo(s) which does not lead to instability. These zeros may move 

toward the s = iω axis as ρ2(s) is increased, and instability sets

in when one of the zeros hits this axis. The critical value of

ΔYo(s) for this is when 

(2.69)

The magnitude of ρ1(iω) is nearly constant and large in a passband

and generally decreases rapidly at the band edge. ρ2(iω) is presum-

ably a slowly varying function everywhere. If within the passband

, no instability can occur. This sets an ap-

proximate limit on the critical magnitude of the error ∆Yo which 

cannot cause instability

(2.70)

This formula or its series equivalent may be applied at either ter-

mination. To a greater approximation the result is also correct for 

any other branches of a low pass ladder circuit for which the termina- 

tions are approximately G , and to "constant k" bandpass equivalents. 

It must be applied with care in coupled resonator configurations in

which impedance transformation occurs.

Using equation 2.68 as a guide, the engineer can set up rough

limits on the tolerable element errors in terms of system performance

degradation.

It is difficult to obtain useful results from a complete
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consideration of simultaneous element variations. One may guess,

however, that if the sum of the magnitudes of the fractional immi- 

tance errors is within the limits prescribed for any single error, 

no instability will result. It can be shown that the introduction 

of uniform loss in all the ladder branches; that is, placing a re­

sistance Ri in series with each Li and conductance Gi in 

parallel with each Ci in a low pass circuit so that all Ri∕Li and 

Gi∕Ci are equal, cannot lead to instability. The introduction of 

this loss is mathematically identical to evaluating real frequency

performance at rather than at s = iω . The real

frequency axis is thus moved away from left half plane poles and zeros

of the lossless system and no instability can ensue.

The effects of this uniform loss on the response can some-

times be removed by "predistorting" the lossless poles to the right.

We may make some evaluation of the effects of uniform loss when 

this predistortion is not carried out, but must base the discussion 

on results of Chapter IV. Figure 2.18 shows typical poles and zeros

of Butterworth transmission and reflections and the distorted

axis.

In low pass circuits qo represents the inverse quality factor 

of the network elements at the normalization or cutoff frequency ωc.

(2.71)

For bandpass circuits qo is associated with the inverse quality factor 

of the resonant pairs or resonators.
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Figure 2.18 Sketch showing poles and zeros of lossless Butter- 
worth response and axis for evaluating response in 
presence of uniform loss
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(2.72)

Results in Chapter IV give us that for small qo and Butterworth 

response

(2.73)

(2.74)

(2.75)

The effect of the loss on zero frequency transmission is

(2.76)

For the active termination reflection

(2.77)

and for the passive termination reflection
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(2.78)

The quantities 1 + |T|2 - |ρ1|2 and 1 + |T|2 - |ρN|2 which appear in

noise figure calculations may thus be evaluated at midband frequencies

ω = 0 or ω = Ωo

(2.79)

Using the small qo approximation and 1 + |T|2 = |ρ1|2o, we have

(2.80)

(2.81)

It is not known to what extent these formulas will be correct after pre-

distortion is used.

Equations 2.73 through 2.75 have Tchebysheff complements. The 

change in the transmission is computed with Tchebysheff poles in

Chapter IV.
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(2.82)

The Tchebysheff reflection zeros have nearly the same angular spacing 

as the Butterworth and an average radius

Thus

(2.83)

(2.84)

2.7 Warm Up Stability

To make a useful amplifier containing a tunnel diode and based on 

Figure 2.2, one must demand that -G1 be variable from zero to its 

operating value without causing instability. Otherwise the quiescent

operating point may be difficult to reach. This restriction is beyond

the scope of the previous analysis and must be considered separately.

The poles and zeros of the reflection coefficient at the active



termination fall in the same half plane. For near unity reflection

the zeros approach the poles and ρ1 has little phase shift. For

high reflection, the phase of -ρ1 may change from zero at the origin 

to a peak of Nπ/2 at some value of ω even though it again decreases 

to zero at infinity. The meaning of this in terms of Y1 in, the 

admittance seen by -G1, is clarified by Figure 2.19. These diagrams 

are in a sense Nyquist stability diagrams in which the locus of posi­

tive G1 is the positive real axis. The stability for G1 = G10 has 

been guaranteed by the synthesis technique. Should G1 cross the con- 

tour instability occurs. An unstable range of G1 is exhibited in 

Figure 2.19c. It is of use to calculate the critical value of ρo at 

a given N which gives the tangency of Yin 1(ω) to the real axis 

shown in Figure 2.19b.

The straightforward analytic approach is to form the imaginary

part of Y1 in(ω) and demand that its numerator polynomial be zero for 

some real value of ω. The numerator is of order N - 1 in ω2 and

the condition that it has a real ω root implies at least that the 

discriminant (b - 4ac for a quadratic) vanish. This condition yields

an equation of order 2N in for Butterworth response. The method

is untenable in practice and a less difficult method has been found which

gives exact results for the Butterworth cases and limits for the 

Tchebysheff cases. We consider the new reflection coefficient ρ1(ω)' 

obtained with a termination -aG10 in terms of the quiescent state 

value ρ1(ω).

-63-
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Figure 2.19 Sketches of possible loci of the admittance Yin 1 (iω) 
seen by -G1 in Figure 2.2 
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(2.85)

(2.86)

As a varies from 1 to -1 the roots of equation 2.85 move from the 

poles of ρ1(s) to the zeros of ρ1(s). The condition that Yinω 

has a point of tangency to the real axis as in Figure 2.19b now

results in the condition that the contour, formed by the roots of 

equation 2.86, has a point of tangency to the s = jω axis as shown 

in Figure 2.20a. At this point, as well as everywhere on the contour, 

arg -ρ1 equals π. The analytic method of locating this point on 

the jω axis and finding the value or values of ρc for which it exists 

involves as much algebra as the previously suggested analytic method.

However, the problem may now be associated with more general techniques 

in complex variables and, in particular, conformal transformations may 

be used on both the pole zero configuration and the root contour. The 

electrostatic analogy is helpful, and using it we associate the desired
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see Figure 2.5 for 
dimensions

Figure 2.20 Showing the s plane root contour for Butterworth reflection 
and illustrating the transformation s'∕ωB = ℓn s∕ωB 
applied to a Butterworth pole zero configuration
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root contours with specific electrostatic flux lines between equal

positive and negative line charges corresponding to poles and. zeros.

Figure 2.20 demonstrates the application of the transformation

to the Butterworth problem. The infinity of poles and

zeros in the s' plane transforms into the Butterworth poles and zeros

in the s plane. The root contour cannot be conveniently drawn in the

s' plane but from symmetry it is evident that any point of tangency to

the line must be at . In the s plane

this is . The condition that arg -ρ1 = π at

can be written analytically and the resulting transcen-

dental simplified sufficiently to yield a solution for the critical

values of ρBo. These are shown in Table 2.1 

Table 2.1

Critical Values of ρBo, for
Warm Up Stability with Butterworth Response

N ρBo, Critical 

1 ∞
2 ∞
3 320
4 92
5 50

The transformation is shown in Figure 2.21 applied to a

Tchebysheff pole zero system. The similarity of the transformed

Tchebysheff system to the transformed Butterworth may be used to estab-

lish some limits on the Tchebysheff critical reflection constants. We 

compare the initial angle of the field line leaving point a at an
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See Figure 2.4 for 
dimensions

Figure 2.21 Illustrating the transformation s∕ωT = sinh s'∕ωT 
applied to a Tchebysheff pole zero configuration
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angle αo for point a' which satisfies the conditions

, remembering that the

known root contour b - b' also satisfies this condition. For spacing

, the effect of the left

side poles and zeros in the Tchebysheff case is to decrease αo. The

Tchebysheff root contour will therefore fall inside the Butterworth

contour for equal pole zero spacings. We now have an upper critical

limit on ρTo and ε.

(2.87)

In the limit of small ε, for which Tchebysheff and Butterworth 

characteristics are identical, expression 2.87 gives the predictable 

result ρTo critical ρBo critical

2.8 Compatibility of Tunnel Diode Packaging Elements with Basic Con- 
figurations

The basic integral limitation on the reflection coefficient of a

parallel negative conductance and capacitance
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(2.88)

Figure 2.22 Illustrating the circuit for definition of ρT(s)
and discussion of limitations due to inductance
Lp
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can be generalized to include other reactance effects in a manner similar 

to that used by Fano (9) on passive reflections. We consider 

∮ s2 ℓn(-ρT(s))ds in which ρT(s) is defined in Figure 2.22 and equa- 

tion 2.88 and the contour is the s = iω axis and the infinite half

circle enclosing the RHP.

(2.89)

Integrating around the circle at infinity with

we have and

(2.90)

Integration of s2 ℓn (-ρ)ds around the LHP gives

(2.91)
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Just as GT/CT was determined in Section 2.2 from the pole and 

zero locations of the desired response, here we may further determine 

(Lp+ L')CT. Equation 2.90 sets an upper limit on Lp which cannot 

be exceeded if the desired low pass response is to be achieved. The

minimum value of the left hand integral for reasonably flat low pass

response over a bandwidth ωc is

(2.92)

(2.93)

Green's (15) closed form Butterworth and Tchebysheff formulas yield

(2.94)

(2.95)

For stable bandpass response about center frequency Ωo

(2.96)
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and equation 2.90 becomes

(2.97)

This may be interpreted as meaning that for stable operation, the self

resonant frequency of the tunnel diode must be at

least as high as the center frequency of the amplifier. The impossi­

bility of bandpass operation above ΩT does not extend to multiple 

bandpass operation. Consider an amplifier design which divides 

p(ω) into passbands centered at Ω1 and Ω2 such that

and (2.98)

Equation 2.90 is then written as

(2.99)

The greatest gain and bandwidth at Ω2 is obtained when Ω1 is zero 

and equation 2.99 gives X , the reduction factor of the gain bandwidth 

integral relation which must be taken to get stable amplification above 

the self-resonant frequency of the tunnel diode.

Equation 2.90 also sets an upper limit on L above which no 

stable operation of a tunnel diode in an otherwise passive circuit is

possible. Since must be positive, either
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is positive or is positive,

or both. We have seen that no can exist. Therefore, when

(Lp+ L') > 3CT∕GT2, the tunnel diode circuit of Figure 2.22 is unstable

independent of the nature of passive Y'(s) .

These arguments about Lp are based on the assumption that it 

is a truly lumped inductance. The integrals are not correct for the

distributed inductance of transmission lines and must be applied with

care in this case. It is likely that when the packaging structure of

a tunnel diode need not be specifically analyzed as a transmission line

in the design of an amplifier, then these limitations will apply.

In the low pass amplifier models which do not require the load or 

generator conductance to parallel GT equations 2.94 and 2.95 indicate 

the extent to which series inductance may be accommodated for Butter-

worth and Tchebysheff response. When the load or generator conductance 

must appear in parallel with GT, the approximate stability analysis

given in Section 2.5 will indicate the stability tolerance on Lp.

When Lp is one-tenth this value it is not likely to depreciate the 

performance badly. The magnitude of the effect of series resistance 

RB may be determined in the same way.

For bandpass circuits the normal low pass to bandpass transformation

requires an inductance L = 1/Ω2oCT to shunt GT and CT as in Figure 

2.23a. An equivalence between this circuit and that of Figure 2.23b is

found, however, which tolerates L to about 1/Ω2oCT and does not 

change GT/CT. This transformation is exact and leads to an element 

ratio L'2/L'1 not much different than the original L2/L1. It has
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already been suggested that this ratio becomes too large in narrow 

band amplifiers with "constant k" configurations.

For narrow bandpass operation it is possible to represent the 

parallel conductance and capacitance of the tunnel diode by an approxi- 

mate series resistance and capacitance as shown in Figure 2.24. The 

representation can be made exact at the band center, s = iΩo, and is 

good for s ≅ iΩo. The series resistance RB, as well as any 

generator or load resistance, can be accommodated directly in previously 

discussed amplifier configurations when this representation is used.

When amplifiers are synthesized on this basis, however, it will in 

general be necessary to check the second order terms of the series rep- 

resentation approximation to guarantee that they do not severely affect 

the actual response. The approximation will not, in general, be useful 

for high fractional bandwidth amplifiers, and the use of the equiva- 

lence shown in Figure 2.23 is preferable for that case.
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Figure 2.23 Two equivalent networks which evidence the com- 
patibility of tunnel diode lead inductance with 
the "constant k" bandpass configuration.

Figure 2.24 An illustration of a narrow band equivalent repre- 
sentation of a tunnel diode

(2.100)

(2.101)
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CHAPTER III

GAIN AND BANDWIDTH IN NONLINEAR REACTANCE AMPLIFIERS

3.0 Introduction

That the bandwidth of nonlinear reactance amplifiers depends on

the number of tuning elements in the amplifier circuit was recognized 

by Seidel and Herrmann (19). They postulated that maximally flat 

reflection response would be obtained in degenerate parametric ampli­

fiers, and that with N control factors or independent reactance

slopes at their disposal, the first 2N - 2 coefficients of a Taylor

series expansion of the power gain could be set to zero at the band 

center. They found ωB ρ1/No to be an invariant for constant N and 

felt that this indicated finite bandwidths could be obtained at un-

limited gain by choosing sufficiently large N. Their failure to 

find a logarithmic relation between ρo and ωB was due to the inabi- 

Iity of their analysis to yield values for the non-zero coefficients 

in this Taylor expansion.

Matthei (20) has attempted a design of wide band multiply tuned 

parametric amplifiers by using the D.C. reactance of the nonlinear

reactor as an element of a filter circuit whose input admittance, in- 

cluding this reactance, is nearly constant in a desired band. He has

chosen to synthesize these filters as matched Tchebysheff bandpass

networks whose transmission response with the correct passive termina-

tion is

These filters he finds, when inserted into parametric amplifier circuits,
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do not give adequately smooth gain response, and it is necessary to 

insert further reactances to shape the gain. Matthei's procedure is 

basically a "cut and try" method which does not attempt to approach an 

optimum synthesis based on a recognition of a fundamental bandwidth 

limitation and in terms of the circuit complexity.

In this chapter we will make essentially the same assumptions

as Herrmann and Seidel and Matthei have made in their works. Somewhat

greater space will be expended with fundamental and background material

to remove from the complete equations of nonlinear reactance amplifiers

all factors except those essential to the synthesis of parametric amp­

lifiers and upconverters in their simplest form. Many of these factors

can be later reinstated as perturbations.

The resulting first order theory, plus assumptions which are 

necessary for an analytic treatment of a two-frequency problem, do lead

to a definite bandwidth limitation for the parametric amplifier. A

consideration of some physical requirements of an amplifier operating at 

two frequencies further delineates this limitation. The low pass ladder 

network is again chosen as a configuration for synthesis.

3.1 Basic Equations of Nonlinear Reactance Amplifiers

Let us consider a nonlinear capacitance

(3.1)

in the presence of a large "pump" voltage Vp(t) and a vanishingly 

small signal voltage dV(t). As long as q(t) is analytic, it may be 

expanded in a Taylor series about Vp(t) as
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(3.2)

For dV(t) small, it is correct to write

(3.3)

effectively separating the pump excitation equations from the small sig­

nal equations. The quantity C[Vp(t)] is called a time varying

capacitance and in this work will be given explicit time dependence,

(3.4)

In a similar manner the large and small signal equations of a nonlinear

elastance can be separated to give

(3.5)

and we will consider only the case

(3.6)

The small signal voltage, charge, and current can now be written 

as a summation of cisoidal functions with complex coefficients:
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(3.7)

in which one of the frequencies ωn = ωo + nΩp, usually ωo, is asso­

ciated with a single small signal source in the system. In this work

both ωo and Ωp are taken as positive and ωo < Ωp. There is, how-  
ever, some significance to negative frequencies in time varying reactance 

amplifier equations and the general formulation methods of circuit 

analysis with complex variables can be used only when negative frequen-

cies are allowed.

The circuit equations for a time varying capacitance 

Co(1 + η cos Ωpt) in parallel with an admittance Y'(ω) and a current 

generator 2Im cos(ωo + nωp)t as shown in Figure 3.1 can now be separ- 

ated by harmonic components. The time dependence is then removed giving 

the set of equations 3.8 and their complex conjugates.

(3.8)

Desoer (21) has pointed out that an equivalent network can be drawn for 

such a system of equations in which the Vn can be associated with 

node voltages. Such a network is shown in Figure 3.2. It is useful as
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Figure 3.1 An equivalent circuit leading to equations 3.8

Figure 3.2 A section of a network whose loop equations are the same 
as equations 3.8

Figure 3.3 First order network extracted from Figure 3.2
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an aid in visualizing the effects of eliminating most of the frequencies 

ω from first order consideration in a synthesis technique. It is 

seen in Figure 3.2 that unless the shunt branches are near resonance,

that is, , the series branches represent much

higher impedance levels. For first order synthesis we will make the 

assumption that those branches whose frequencies are of fundamental 

interest, ωo and ω+1 for the non-inverting upconverter, or ωo and 

ω-1 for the parametric amplifier are near resonance and that all other 

branches are effectively short circuits. These other shunt branches can 

then be treated as perturbations after the general Yn are calculated 

from the resulting first order synthesized network. The equivalent

circuit resulting from this approximation is shown in Figure 3.3 in

which ωi may be either ω-1 or ω+1. Input admittances Yo in and  
Yi in and reflection coefficients ρo and ρj as shown in this  
figure may be written out as

(3.9)

(3.10)
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When ωi = ω-1 is negative both Yo in and Yi in have negative real 

parts and the reflection coefficients are greater than unity. The power 

flow from Re Yo to Re Yi can be shown to obey the Manley Rowe rela­

tions, and in all cases |ρo| = |ρi|. Thus we may write

(3.11)

Analogous equations and equivalent representations exist for the 

analysis of the time varying elastance So(1 + η cos ωpt). Postulat-

ing such an element in series with an impedance Z'(ω) and a voltage 

generator 2Vn cos (ωo + nωp)t as shown in Figure 3.4, one finds the har- 

monic components of the charge through S(t) to obey the equations

(3.12)

This results in an equivalent circuit representation in which the qn 

are loop charges as shown in Figure 3.5. The assumption of resonance 

in the ωo and ωi = ω+1 or ω-1 branches again justifies the removal 

of the other frequency effects to first order giving the equivalent 

circuit of Figure 3.6. As analogues of equations 3.9 and 3.10 we have

(3.13)
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Figure 3.4 An equivalent circuit leading to equations 3.12

Figure 3.5 A section of a network whose loop equations are the same 
as equations 3.12

Figure 3.6 First order network extracted from Figure 3.5
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(3.13)

(3.14)

Equations 3.11 are also valid for this circuit.

The essential propertles of the sinusoidal capacitance ηCo cos Ωpt

and elastance ηSo cos Ωpt working into admittances at frequencies ωo

and ωi = ωo ± Ωp are the properties of the center T and π sections 

in Figures 3.3 and. 3.6. These properties may be better delineated by 

looking at equations 3.9 through 3.14. They are seen to be impedance 

inversion with or without negation depending on the sign of ωi, and a 

unilateral gain mechanism which we may call Manley Rowe amplification. A

four-terminal network representation of these mechanisms is shown in 

Figure 3.7. The Manley-Rowe amplifier does not change impedance levels 

and may therefore be removed from reflection coefficient synthesis prob-

lems.

The assumption that Yo and Yi or Zi are resonant allows us

to calculate roughly the perturbations due to neglected frequencies. Let

us consider, for example, the degenerate parametric amplifier for which

ωo and -ω-1 are approximately Ωp/2. The resonance condition demands 
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Figure 3.7 A four-terminal equivalent circuit of sinusoidal 
reactance operating between admittances at ωo 
and ωi
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that an inductance L= 1/CoΩ2o parallel Co. Inserting the admittances  
Y+1 and Y-2 of this parallel combination at ωo + ωp and ωo - 2ωp 

into Figure 3.2, one finds the perturbing admittance at ωo and ω-1

to be approximately and . Thus the pertur-

bation appears as a negative capacitance and decreases the effective

D.C. capacitance Co by . Since η will in practice rarely

exceed one-half, this perturbation is likely to give a negligible in-

crease in bandwidth capability. In highly sensitive amplifiers, however.

this effect may be important for accurate circuit alignment. A similar

calculation may be done on a series basis with So assumed in series

with an inductance So/(Ωp/2)2 to make Zo and Z-1 resonant at 

Ωp/2. The resulting perturbation impedance to be added to Z due to 

Z+1 is approximately . This perturbation appears as

a negligible negative inductance which is down by a factor from

that already in the circuit.

For nondegenerate operation, more must be known about the ampli- 

fier circuit but the perturbations are generally on the same order of 

magnitude. Only in the case where Ωp∕ωo is very large (-ω-1 ≅ ω+1) 

are the perturbations likely to become so large as to invalidate the

synthesis procedure.

Throughout the following sections, admittances Yo and Yi will

be assumed resonant at frequencies Ωo and Ωi. It will also be

necessary in most analytic work to take the factor ωoωi appearing in 

Z2ci and Y2ci as a constant ΩoΩi over the amplifier passband. The 

actual variation of ωoωi can probably be incorporated in intensive
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synthesis focused on special cases. It is appropriate to evaluate

here the conditions when this may be necessary.

For the upconverter ρ may be written from equation 3.10 as

(3.15)

For a matched amplifier synthesis and the ref­

lection Δρo due to the variation of ωoω+1 is approximately

(3.16)

For ω+1 >> ωo 

(3.17)

The maximum value of ∆ρo occurs when ωo is at either band edge and 

Δρo max is therefore recognizable as one-fourth of the fractional

bandwidth of the amplifier

(3.18)

Thus even with upconverters whose fractional bandwidth is unity, the 

effect of this approximation is very small. In a similar fashion the

reflection coefficient of the parametric amplifier can be written ap-

proximately in terms of the synthesized reflection coefficient ρo and

the error ΩoΩ-1 - ωoω-1 as 
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(3.19)

For the degenerate (Ωo = Ω-1) case, ΩoΩ-1 - ωoω-1 is always very 

small. For the worst case, when -Ω-1 >> Ωo, we may arbitrarily 

stipulate that the effects of the approximation become important when

at the band edges. This defines a gain bandwidth

product below which the approximation is reasonably good.

(3.20)

In most amplifier synthesis the fractional bandwidth will be limited 

to something under 2/ρo by other factors, and this approximation will 

cause little trouble.

In the following work Y2ci and Z2ci, unless explicitly written 

out, will be assumed to have ωoωi replaced by ΩoΩi.
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3.2 Required Symmetry and the Ladder Network Representation

The analytic treatment of time varying reactance devices demands

that further restrictions be made on the immittance functions

Yo = Y'o + iωoCo, Yi = Y'i + iωiCi, , and

beyond that already made in section 3.1 concerning resonance proper- 

ties. The most commonly made assumption is that these functions ex- 

hibit exact complex conjugate symmetry about their respective band 

center frequencies Ω and Ωi, i.e., Yo(iΩo + ω) = [Yo (iΩo - ω)]*. 

This assumption not only makes possible mathematical synthesis tech­

niques but also can be realized approximately in the simplest physical

circuitry. Although it is not clear to what extent this assumption

narrows the possibilities of time varying reactance amplifier synthesiι 

and removes interesting results from our view, we shall nevertheless

make it here. This allows us to choose as the complex frequency vari­

able

(3.21)

where Ωo is the ωo band center frequency. Using the relationship

between ωo, ωi, and Ωp of section 3.1 we have also 

(3.22)

In order to apply to time varying reactance amplifiers the low pass

ladder network formalism established in Chapter II we now restrict the

form of Yo and the other immittance functions to that defined below. 

Over the range of s values with which the synthesis procedure is to 

be directly concerned, let the immittance functions be written as a
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continued fraction expansion of reactance slopes about their resonant 

center frequencies. This means choosing the immittance functions as 

bandpass equivalents of input impedances to low pass ladder networks.

The forms of these immittance functions are written below.

(3.23)

(3.24)
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(3.25)

(3.26)

In these formulas the GN and RN should be associated with network 

terminations. The other conductances and resistances represent losses 

in the network. Except for R1 and G1 which represent parasitic 

losses in the nonlinear reactance element, circuit losses will not be

considered in this work. The first reactive terms in each of these

expressions, Clo and Cli, or Llo and Lli, must somehow be fixed by 

the necessity of bringing Co or So to resonance at two frequencies

Ωo and Ωi.  
Low pass ladder networks representing these immittance functions 

can now be added to the four-terminal network of Figure 3.7 to give an
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over-all low pass equivalent of the parametric amplifiers or non- 

inverting upconverters to be synthesized. Figures 3.8 and 3.9 show 

such equivalent circuits. The ωi circuit has been converted by the 

impedance inverter to its positive or negative dual. The Manley Rowe

amplifier is represented by the dotted line M-R across which power 

gain ωi∕ωo takes place from left to right or gain ωo∕ωi from right 

to left. The properties of these equivalent circuits and syntheses

using them will be discussed in later sections. It is pertinent to 

state now, however, that any fundamental bandwidth limitations which

arise in this lossless circuit must be normalized in terms of the fixed 

elements Clo and Cli/Yci or Llo and Lli/Z2ci. The only possi­

ble combinations which have the dimensions of angular frequency are

(3.27)

and

(3.28)
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Figure 3.8 Low pass ladder network equivalent of a sinusoidally 
varying capacitance amplifier working at frequencies 

ωo and ωi.

Figure 3.9 Low pass ladder network equivalent of a sinusoidally
varying elastance amplifier working at frequencies
ωo and ωi
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3.3 Physical Configurations which Approximate Low Pass Ladder Networks 
in One or Two Frequency Bands

The aim of this section is to give physically realizable circuit

configurations which approximate as closely as possible the conditions

laid down in section 3.2. It is hoped that these conditions will appear

more reasonable in the light of their physical embodiments. Some rela-

tion between Co and √CloCli and between So and √LloLli is also 

sought so as to further our knowledge of bandwidth limitations in time 

varying reactance amplifiers.

In the so-called "degenerate" parametric amplifier with Ωo = -Ω-1

filter networks with only one complex conjugate symmetric passband are

required. The "constant k" bandpass configuration or any of the coupled

resonator configurations (see Figures 2.14 - 2.17) both fulfill the

symmetry conditions exactly in the narrow band limit and reasonably well

otherwise. For a "constant k" configuration Co must be the capacitance

of the first shunt resonator or So the elastance of the first series 

resonator. The admittance slope of the first resonator at Ωo is to be

associated with Clo and Cli and is given by 2Co for the shunt case; 

(3.29)

For the series case an inductance Lo = So∕Ωo2 must appear in series with 

So and the reactance slopes about Ωo are 

(3.30)

Just as the "constant k" bandpass configuration is derived from the low
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pass ladder by the transformation , other transforma-

tions may be found which convert low pass ladders into multiple bandpass

ladders. The transformation

(3.31)

converts a low pass ladder with first element Co into a double passband

ladder with first element Co. Figure 3.10 illustrates this. This trans- 

formation also yields the desired symmetry about Ωo and Ωi in the 

narrow band limit and the admittance slopes Clo and Cli are given 

respectively by

(3.32)

A fundamental principle of conservation of bandwidth is embodied in this

transformation resulting in the relation

(3.33)

The minimum value of CloCli, is obtained when for which

Clo and Cli are equal.

(3.34)
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A transformation can also be found to change a low pass ladder

whose first element is a unit series inductance into a double bandpass

filter whose first section contains a series elastance So.

(3.35)

This is illustrated in Figure 3.11. The slope parameters are found to

be

(3.36)

Writing (3.37)

one can show that

(3.38)

and

(3.39)

This has a minimum value of 16 at K = 1. Figure 3.12 shows the func­

tion , which appears in bandwidth normalization

equation 3.28, as a function of K = Ω2oLlo∕Ω2iLli.
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Figure 3.10 Illustrating a low pass to double bandpass transformation 
which preserves shunt capacitance Co

Figure 3.11 Illustrating a low pass to double bandpass transformation 
which results in a series elastance So
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Figure 3.12 A plot of versus
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The limitations on the minimum values of CloCli and LloLli, 

while derived here from double bandpass transformations, appear to 

be much more general. They are, in a sense, fundamental expressions

of conservation of bandwidth for resonant elements. The maximum

values of the frequency normalization factors given in equations 3.27 

and 3.28 can now be found. They have the same maximum for both the

shunt and series derived circuit:

(3.40)

One other case of interest is that in which the series inductance

associated with So is greater than the value SoΩ2r∕|Ω2i∣Ω2o

demanded by the transformation 3.35. More elastance S'o must then

be added in series with So to bring the physical element to double

resonance and the effective value of η is reduced by the factor 

Ω2DΩ2r∕Ω2oΩ2i in which Ω2D is the self-resonant frequency of So and 

its associated series inductance.

(3.41)

ωN is still maximized by K = 1 and its maximum value is

(3.42)

The double bandpass circuitry leaves something to be desired in 

terms of flexibility. It restricts discussion to situations in which 

the idler and signal frequencies have the same number of tuning
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elements, and it is not completely compatible with separate terminations

for these two frequencies. A more general approach is shown in Figures 

3.13 and 3.14 in which a doubly resonant section containing the time 

varying element is placed between two single passband filters. The

elements of the double tuned section must be chosen to resonate near

Ωo with the input immittance of the Ωi filter and to resonate near 

Ωi with the input immittance of the Ωo filter. The limitations expres­

sed in equations 3.32, 3.33, and 3.34 for Clo and Cli, and in equations 

3.36, 3.37 and 3.39 for Llo and Lli are still approximately correct 

for these new configurations. To indicate this more clearly for one 

case we consider the circuit in Figure 3.14b. The formulation of the 

coupled resonator configuration, as in Chapter II, demands that loop 0 

of Figure 3.14b be resonant at Ωo when loop 1 is open. At this fre­

quency, the input impedance to the Ωi filter is essentially set at 

iΩoLcli. The application of this same condition at Ωi demands that 

loop 0 resonate at Ωi with loop 2 open. The input impedance of the

Ωo filter at Ωi is essentially iΩiLclo. The simultaneous application 

of these resonance conditions demands that the double tuned section in

series with both Lclo and Lcli be resonant at both Ωo and Ωi. The 

configuration of these elements, however, is exactly that of Figure 3.11, 

and the reactance slope limitations found for this figure are therefore 

applicable directly.
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Figure 3.13 "Constant k" filters at Ωo and Ωi joined at a double 
tuned section

Figure 3.14 Coupled resonator filters at Ωo and Ωi joined at 
a double tuned section
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3.4 The Non-inverting Upconverter

A rather complete analysis of the gain and noise figure capabili-

ties of the upconverter including series or shunt losses in the

nonlinear reactance has been given by Leenov (22). In this section

the bandwidth capability of the device will be explored, neglecting

these losses. Figures 3.7, 3.8 and 3.9, in which ωi = ω+1 and 

Yc+12 and Zc+12 are positive, have been derived as equivalent circuits 

of the upconverter. No integral limitation on the bandwidth of the

upconverter has yet been shown in the literature. A non-rigorous 

derivation of the bandwidth over which the upconverter equivalent cir-

cuit can be perfectly matched is given below. It definitely proves

that no limitation in the form of an integral of the logarithm of the

reflection coefficient exists.

The basic problem here is to transmit power from an arbitrary

network through a fixed L,C segment of a ladder into a second arbitrary

network. Let us suppose the arbitrary networks to be infinite iterative

chains of shunt capacitances and series inductances very slightly lossy, 

but otherwise identical to the fixed L,C section. We know from image 

parameter theory (29) that the frequency range over which power can 

flow unreflected through the fixed section of this iterative circuit is

the frequency range over which the image or characteristic impedance of

the network is real. The characteristic impedance of a basic L,C section

is
(3.43)

and is real between angular frequencies + 2∕√LC and -2/√LC. In
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terms of this, characteristic bandwidth limits may be written for the 

fixed sections of Figures 3.8 and 3.9

(3.44)

(3.45)

How fundamental the above bandwidth limitation is, is open to some 

question. Even if it is basic, it is not clear how to approach it with

the least number of elements. This leaves us with little alternative

but to synthesize the networks shown in Figures 3.0 and 3.9 for various 

transmission responses to see whether any of them approach or exceed the 

bandwidths expressed in equations 3.44 and 3.45. Table 3.1 shows the 

results of synthesis based on Tchebysheff transmission

. The actual gain is of course higher than this

by the frequency ratio Ω+1∕Ωo. The three decibel down bandwidth is

shown normalized to the bandwidth factors in equations 3.44 or 3.45.

N represents here the total number of reactances in the equivalent cir-

cuits, and r represents the position of the first fixed reactance, Clo

or Llo, relative to the Ωo termination. For r = N/2 the bandwidth 

does indeed approach that calculated on the image impedance argument.

The Butterworth bandwidth is 71% of its maximum value at N = 2 and 

jumps to 93% at N = 4 .

The even ordered ladder network equivalents synthesized on this
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TABLE 3.1

or

e
Ripple 
in DB N r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

0 0 .707

.5 1 2 .675
1 3 .64

0 0 .707 .707

.5 1 3 .775 .775
1 3 .77 .77

0 0 .595 .925 .595
.5 1 4 .76 .915 .76
1 3 .8 .9 .8

0 0 .50 .9 .9 .50

.5 1 5 .79 .935 .935 .79
1 3 .815 .93 .93 .815

0 0 .4275 .825 .965 .825 .4275
.5 1 6 .79 .94 .98 .94 .79
1 3 .82 .86 .955 .86 .82

0 0 .3475 .75 .945 .945 .75 .3475
.5 1 7 .79 .94 .965 .965 .94 .79
1 3 .825 .945 .965 .965 .945 .825
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basis have an interesting symmetry property; one half is the dual of

the other half. In terms of an upconverter with equal order of signal 

and idler tuning, this means Yo(s) is proportional to Y+1(s). The

reflection coefficient as defined in equation 3.10 is

and is zero when Y*oY+1 =Yc+12. Since for the above mentioned cases 

Yo is proportional to Y+1, we have actually synthesized networks for 

which |Yo|2 is approximately constant in the passband.

Green's (15) closed form expressions for Tchebysheff and Butter-

worth ladder network elements can be used to calculate the bandwidth

capabilities of the mismatched upconverter in which the gain is always 

less than Ω+1∕Ωo. The bandwidth is found to increase very slowly as 

a function of reflection coefficient for certain values of r , but the

results are not inportant enough to include here.

For lossless upconverters two types of bandwidth limitation have

thus been found. One is the physical limitation on the product of the

first reactance slopes at Ωo and Ω+1. The second is the mathemati- 

cal limitation on the bandwidth of power transmission through an L,C

section. Neither of these limitations is actually a consequence of

choosing the low pass ladder network formalism, but both depend on the 

requirement of complex conjugate symmetry on Yo and Y+1 or Zo and

z+1.

The technique of synthesizing upconverters when the loss
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conductances associated with the time varying reactance are not negli-

gible must deviate from the line established here. Maximum gain and

minimum noise considerations and compromises will usually predetermine

the impedance levels of the ωo and ω+1 terminations. This removes

from the bandwidth optimization problem the flexibility of choosing

Llo and Lli or Clo and Cli so as to minimize their product  
without delineating any other properties of the equivalent circuit. It 

appears likely that a four reactance equivalent circuit will still be 

sufficient to approach the ultimate bandwidth capability of the lossy 

upconverter, and it is quite possible that a "cut and try" technique 

will give the fastest results for this case.
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3.5 Fundamental Parametric Bandwidth Limitations

The essential difference between the parametric amplifier and the

non-inverting upconverter is that the impedance inverter shown in

Figure 3.7 is also a negator. This leads to effective negative ter-

minations and reactances in the equivalent circuits of Figures 3.8 and 

3.9, in which Yc-12 and Zc-12 are negative. The negative termination 

leads to a larger than unity reflection coefficient in the circuit. The 

negative reactances prevent the zeros of the reflection coefficient 

from being in one plane only. To show this, let us consider the experi- 

ment shown in Figure 3.15 in which a network N1 with a single negative 

reactance (here taken as series inductance) is joined to an arbitrary 

but physically realizable and linear passive network, N2. The reflec- 

tion coefficients at both ends of each network, and the transmission

coefficients are measured with the networks terminated in arbitrary

resistances Ro. No generality is lost here since N2 may contain

ideal transformers. The transmission T12 of the composite network

with terminations Ro is then calculable in terms of the characteristics 

of the separate networks (9).

(3.47)

The magnitude of ρ1 is always less than unity when evaluated on the 

s = iω axis. It has a single pole which must lie in the RHP. ρ2 has

poles only in the LHP because it is physically realizable; its magnitude 

is also less than one on the s = jω axis. The response poles of the 

composite network are seen from equation 3.47 to be the zeros of
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3.15 Illustrating the definitions of the response functions of the 
partial sections of a composite network
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1 - . We apply the Nyquist (23) criterion to this function. 

The number of clockwise encirclements which the complex plane plot of 

ρ1(s)ρ2(s) evaluated for the closed contour s = iω and the infinite 

circle enclosing the RHP, makes about the point +1 is equal to the

difference between the number of RHP poles and RHP zeros of

1 - ρ1(s)ρ2(s). The function ρ1(iω)ρ2(iω) is physically restricted 

to be less than unity. The asymptotic value of ρ1(s)ρ2(s) for in- 

finite s can equal +1 if the asymptotic behavior of ρ1(s) and 

ρ2(s) is the same. This corresponds to having the input reactances 

of both N1 and N2 approach the same value (both inductive or capa- 

citive), and the number of poles of T12 is one less than that of 

ρ1ρ2. For our purposes in dealing with ladder networks the asymp- 

totic input reactances are not of the same kind, and ρ1(s)ρ2(s) is

asymptotic to -1. The Nyquist contour cannot encircle +1; therefore, 

the number of RHP poles of T12, ρ12, or ρ'12 is equal to the number of 

RHP poles of ρ1(s), namely one for the simple N1 taken.

This theory may be applied to successively larger segments N1 

of a ladder network until N1 represents the whole network. The 

result is that the number of RHP response poles of a passively term-

inated ladder network is equal to the number of negative reactive

elements in it. In Chapter II we have seen that the poles and zeros

of a reflection coefficient defined at a termination invert when the

sign of the termination is reversed. Thus the number of RHP zeros in

the reflection coefficient at a negative termination of a ladder net- 

work is equal to the number of negative reactances in the ladder net-

work.
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In Chapter II formulas such as equation 2.23 were developed 

to give the inverse time constants

of the end sections of lossless ladder networks in terms of the posi-

tions of the poles and zeros of the reflection coefficlent. In that 

chapter τ was negative at one end of the ladder and positive at the 

other. In the lossless equivalent circuits of the parametric ampli- 

fier, Figures 3.8 and 3.9, both of the terminating time constants are 

positive even though some of the elements are negative. In terms of 

the zeros and poles of the reflection at the negative termination in

these figures, we may write

(3.48)

The poles must all be in the left half plane from stability considera-

tions.

(3.49)

Equation 3.48 places an upper limit directly on ∑som if both τ-1

and τo are to be positive. 

(3.50)
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Equations similar to 3.50 can be found to relate the time constants 

of any adjacent pairs of elements to summations of the pole and zero 

positions and summations of odd powers of the pole and zero positions 

(9). These equations would further delineate the pole zero restric­

tions in terms of the positive and negative element positions in the 

equivalent circuit. These restrictions are all in a sense nonholonomic 

boundary conditions and are difficult to apply in a synthesis procedure. 

Considerable difficulty is experienced if one tries to write down the

general relations, and they will not be given here. One interesting 

case should be mentioned, however. If it be required that a reflection

response function have equal but unspecified numbers of RHP and LHP

zeros, the choice of these zeros in positive and negative pairs will

make all the and equal to zero. This choice of

zeros makes equations 3.50 and the like compatible with a configuration

in which all the elements to one side of center are positive and all to

the other side are negative. This choice is otherwise somewhat

restrictive, however. It demands that one half be the negative dual

of the other half. It is suspected that for an infinite network with 

equal numbers of negative and positive elements grouped by sign to be 

stable, the choice of real conjugate zeros is not only sufficient but

also necessary.

It is the essential presence of these RHP reflection zeros in

parametric amplifiers which makes difficult the production of a funda-

mental bandwidth theorem in integral form. The reflection coefficient 

ρo may, however, be factored into a part ρ1o which contains all the 

zeros and a part ρ20 which is more in the form of the reflection
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coefficient from a pure negative conductance and does not have RHP

singularities.

(3.51)

We can show that ρ10 is not highly dependent on the form of Yo(iω) 

and Y-1(iω) when ρ20 is large and that the frequency range over which 

ℓn ρ20 is large is limited.

For reasonably high ρ20, √Yo√Y_1 must be approximately

and ρ10 can be written as

(3.52)

in which α = arg Y*oY-1 and β = arg ρ20. The factor ρ10 is thus 

seen to be maximized at a value near l∕2 for α = arg Y*o(iω)Y-1(iω) = 0

This relation holds only in the region where ρo is high. The error at 

midband where Yo and Y-1, are expected to be real is about ± 1∕2ρ2o 
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The error is always less than in the passband if

arg Yo(iω) = arg Y-1(iω). Thus the factor ρ10 contributes a factor 

of 1/2 to ρo if the optimum choice arg Yo = arg Y-1 is made. For 

other choices ρ10 is less but can be expected to vary slowly.

The factor ρ20 then contributes the large amplitude factor and

shaping to po · ρ20 has been written so that all its singularities

are poles of po. It therefore has no RHP singularities, ρ20 is in

almost the same form as the reflection coefficient from a tunnel diode.

The asymptotic dependence of √Yo(s)√Y-1(s) is s √C10C1-1.

√|ωoω-1|, however, is neither constant nor analytic in the s plane.

When √Yo(s) Y-1(s) approaches reasonably close to its asymptotic value

at frequencies Ωo ± ωa and Ω-1 ± ωa which are not very different from  
Ωo and Ω-1, we are justified in taking √|ωoω-1| = √|ΩoΩ-1| over 

the frequency range Ωo ± ωa. Then by analogy with equations 2.20 and 

2.21

(3.53)

Presumably by proper choice of Yo(s) and Y1(s), ℓn |ρ20| can be

made constant over a bandwidth ωc and zero elsewhere giving rise to 

the bandwidth limitation for flat gain.

(3.54)

A similar result based on the series circuit with So(1 + η cos Ωpt) 

gives
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(3.55)

Inserting the minimum values of C10C1-1 and L10L1-1 for the 

nondegenerate case, one finds

(3.56)

For the degenerate case, the bandwidth is twice as large.
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3.6 Degenerate and Pseudo-Degenerate Cases

There are four reasons one can find for assuming that the choice 

Y-1(s) = B Yo(s) will lead to an ultimate bandwidth synthesis of a 

parametric amplifier. First of all, Yo and Y-1 share completely 

equal value in the reflection coefficient. It is most frequent in 

physical problems that the maximum of a quantity with respect to two 

variables of equal value occurs when these variables are set equal. This 

very weak argument is bolstered by the fact that it is preferable to 

have arg Yo(iω) = arg Y1(iω) as shown in the previous section. The 

choice Y-1(s) = B Yo(s) gives the equivalent circuit of Figure 3.8 

negative dual symmetry about the middle and gives ρo positive and 

negative pairs of zeros. To show this directly, it is necessary to 

restore the analytic properties of ρo as written in equation 3.51 by 

writing Yo(iω) = Ρo(iω)/ Qo(iω)

(3.57)

The removal of the phase rotation factor Qo(iω)∕Q*o(iω) puts ρo in 

proper form for the association of s with iω and -s with (iω)*. 

Then it is seen that ρo has real conjugate zeros. Thus, as has been 

mentioned in the previous section, there is no incompatibility between 

an equivalent circuit with equal numbers of positive and negative reac­

tances and the choice Y-1(s) = B Yo(s). None of these arguments, how- 

ever, can be used to prove that the choice Y-1 = B Yo will give a 

synthesis which approaches the ultimate bandwidth most rapidly as a
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function of circuit complexity. The fourth argument in favor of this 

choice is that it is the only basis on which we can presently synthe- 

size the admittance function √Yo(s) √Y-1(s) from the reflection 

factor

In this section, therefore, we consider lossless ladder equivalent

networks for which Y-1(s) = B Yo(s) or Z-1(s) = B Zo(s) . We call

this the pseudo-degenerate case unless Ωo = -Ω-1. Then B = 1 and

we have the degenerate case.

When Y-1 = BYoΩ, the Ωo reflection coefficient 

may be equivalently written as

(3.58)

The two quantities ρo and ρo+ represent respectively the reflection 

coefficients between Yo and negative or positive conductance 

± |Yc-1|/√B. The minus sign is used here to indicate gain. It is 

clear that ρo+ will contribute very little to the gain of the ampli­

fier and may be neglected in the synthesis. Then since Yo(s) is in

ladder network form with first element sC10, the synthesis of Yo(s)

from ρo- may be carried out in a manner identical to that used in

Chapter II. In order that Y-1(s) = BYo(s), C1-1 must equal BC10.

ρo- can be treated as the reflection from a termination with
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(3.59)

Similarly for the series derived circuit

(3.60)

We have also the relation . Equations 2.24 and 2.25, or

Figures 2.7 and 2.8 may be used to calculate the Butterworth and 

Tchebysheff reflection bandwidths with the substitutions

(3.61)

and

(3.62)

The Butterworth bandwidth

(3.63)

is asymptotic to the ultimate bandwidths calculated in the previous sec-

tion.

Having synthesized the parametric amplifier on this approximate 

basis, one may well inquire as to the exact response functions to be 

expected. Where are the RHP zeros of ρo caused by the negative
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reactances in the equivalent circuit? From equation 3.58 we can see

that the synthesis of ρo establishes all of the poles of ρo. Half

of these poles are zeros of ρo- and half are the poles of ρo-. It

has already been demonstrated that the zeros of ρo must be in real

conjugate pairs. This condition implies that the numerator of the

exact response function ρo(s)ρo(-s)|iω is a perfect square. Let us 

suppose we have synthesized |ρo-|2 to have Butterworth response

in which N is the number of elements in the equivalent

ladder for Y or one-half the total number of reactances in the total 

equivalent circuit. Then the actual transmission response must be

(3.64)

with |T'oB| not yet known. From the conservation of energy formula 

ρ(s) ρ(-s) + T(s) T(-s) = 1, we have

(3.65)

The demand that the numerator is a perfect square determines

(3.66)

and the true response is found to be
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(3.67)

A similar form can be established if ρo- is synthesized to have 

Tchebysheff response.

(3.68)

Some physical significance can be attached to the writing of ρo

as and to the factor of two in general which has crept into

bandwidth relations for the parametric amplifier. The Manley-Rowe rela­

tions demand that the ratio of power into or out of the time varying 

reactance at Ωo to power in or out at Ω-1 is |Ωo∕Ω-1|. The Manley- 

Rowe relation does not predict the direction of power flow and one might

suspect that there should be two normal modes in every circuit, each

characterized by the Manley-Rowe power relations but differing in the

direction of power flow. Two modes have already been found; reflection 

of a signal from a generator at Ωo, and reflection of a signal from a 

generator at Ω-1. The two new modes we seek must be a linear combina­

tion of these two or vice versa. The two new normal modes, therefore,
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require generators at both Ωo and Ω-1. It is instructive to find 

these modes for the degenerate case and the results will also be useful

in Chapter IV.

We consider the time varying capacitance (Co η cos ωpt + θp) in 

the presence of two voltages Voeiωot + θo and

V-1 e+iω-1t - θ-1 and calculate the current

neglecting all frequencies but ωo and ω-1.

(3.69)

We define admittances and

. In the parametric

amplifier these admittances ΔYo and ΔY-1 essentially terminate the

ωo and ω-1 networks as shown in Figure 3.16. The power flows out of 

ΔYo and ΔY-1 always satisfy the Manley-Rowe relation directly. We 

are therefore free to choose V-1 and Vo and search for the corres- 

ponding values of Eo and E-1. For this pseudo-degenerate case in

which Yo =BY-1 we first choose V-1∕Vo such that ΔYo and ΔY-1 

are negative real and in the ratio ΔYo∕ΔY-1 = 1/B. We assume some

values E- and E--1, are found which are compatible with the required 

and go on to try ΔY+o and ΔY+-1, positive real and in the same
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Figure 3.16 Illustrating the isolation of two modes in the 
degenerate or pseudo-degenerate parametric 
amplifier.
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ratio, 1/B . This requires a 180º phase shift of with respect

. New values E+o and E+-1. will be found. The ratios of 

|Eo| to |E-1| in the two experiments must be the same since under

conditions of equal reflection coefficient at Ωo and Ω-1, the

available power from the two generators must also satisfy the Manley

Rowe relations. The transmission coefficients which relate Eo to 

Vo and E-1 to V-1, in the two circuits must be identical in each

case because of the circuit degeneracy. In the second experiment

V-1∕vo is shifted 180º with respect to its phase in the first experi-

ment and E--1/E-o must be similarly related to E+-1/E+o,

We have thus found two normal modes characterized by a change in sign

of Eo/E-1 and a change in sign of ΔYo and ∆Y-1. The reflection 

coefficients in the two modes are reciprocals because of the change in

sign of ΔY . These appear to be the fundamental normal modes of the 

degenerate amplifier. A generator Eoe alone couples to both of

these modes equally giving rise to the representation

When unsymmetrical losses G10 and G1-1 spoil the degeneracy es­

tablished by Y-1(s) = B Yo(s), the parametric amplifier reflection 

coefficient may still be separated approximately into passive and 

active parts. The reflection gain in the ωo filter is
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(3.70)

The first factor can again be thought of as a coupling factor dividing 

the voltage of a generator into two modes, one of which gives active 

reflection and the other passive. For G1-1 = BG10, that is when 

G1-1 and G10 are in the same ratio as Y-1 and Y10, this factor 

has magnitude one-half. For small G1-1 and G10 not in this ratio
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(3.71)

in the passband. For the reflection coefficient in the idler or Ω-1 

network, everything is the same except G10 and G1-1 must be inter- 

changed in ρco to produce ρci. For small G1_1 and G10

(3.72)

The reflection coefficient at the ideal time varying reactance

terminals can also be written simply by changing the sign of G10 in

the numerator of ρco. All these equations can be corrected for the 

series case with Z-1 = BZo by changing all admittances to their cor-

responding impedances.

The use of equation 3.70 to synthesize approximate Butterworth or

Tchebysheff reflection coefficients is straightforward. One neglects 

the passive reflection part and synthesizes Yo from ρo as with 

tunnel diode amplifiers. With Yo asymptotic to sC10 and 

B = C1-1∕C10, the effective

(3.73)

The reflection bandwidth capability as a function of circuit complexity 

N can be obtained from equations 2.24 and 2.25 or Figures 2.7 and 2.8
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by associating -G1∕C1 in these with twice the -G∕C given in equation 

3.73 and requiring that

The nondegenerate parametric amplifier can also be used as a trans- 

mission amplifier between a signal source at ωo and a load at ω_1.

In the lossless case this transmission gain is given simply by the Manley- 

Rowe frequency ratio ω-1∕ωo times the transmission gain in the equivalent 

circuit.

(3.74)

In the lossy case the transmission will still be approximately Butterworth 

or Tchebysheff because the synthesis technique fixes the critical trans- 

mission pole positions exactly. The magnitude of this transmission at 

midband as a function of ρo is best evaluated in the lossy case by 

using Figure 3.8 or 3.9 directly.
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3.7 Some Nondegenerate Cases

In the previous section we found a synthesis procedure which 

yielded gain bandwidth relations which were asymptotic to the apparent 

ultimate limitation of the parametric amplifier. This synthesis, how­

ever, was restricted to situations in which the number of tuning 

elements in the idler circuit equalled the number of tuning elements 

in the signal circuit. Moreover, it required that the ratio of signal 

terminating admittance to idler terminating admittance GNO∕GN-1 be 

equal to the ratio of the reactance slope parameters C10∕C1-1 , or for 

the series circuit, RNO∕RN-1 = L10∕L1-1. The noise figure optimiza- 

tion problem for the lossy case usually results in an optimum choice 

for the GNO∕GN-1 or RNO∕RN-1 (see section 3.8). If this does not 

correspond to an optimum choice of C10∕C1-1 or L10∕L1-1 with res-

pect to minimizing the products C10C1-1 or L10L1-1, then some 

"other" synthesis technique which does not require GNO∕GN-1 = C10∕C1-1 

may give a wider bandwidth. It has not been shown that this synthesis 

gives greatest bandwidth for a given total network complexity. No more 

general synthesis technique has yet been found, however, and it is pos-

sible that no synthesis techniques can be found which will allow the 

independent specification of C10∕C1-1 and GNO∕GN-1 and approach the 

ultimate bandwidth limitation at the same time.

Two special case synthesis techniques which result in Butterworth

or Tchebysheff response will be given here. Let us consider the general

symmetric matched ladder network with N odd and its perturbation as 

shown in Figure 3.17. In the perturbed network, half the ladder has been

shifted in impedance level by the factor A . The reflection coefficients
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Figure 3.17 A perturbation of a symmetric network leads to a
parametric amplifier configuration for negative A
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of the two ladders may be written in terms of the input impedance 

Z = P(s)∕Q(s) of the half ladder as

(3.75)

It is noticed that the poles of ρ' and ρ are the same for any value

of A even if it is negative, Therefore, if the transmission response

of the symmetric ladder is Butterworth, the response of the new ladder

is also Butterworth and stable. Weinberg (24) has shown that the reflec-

tion coefficient zeros produced by this method of designing a mismatched

filter from a matched symmetrical network always alternate from the left

to right half plane in order of the magnitudes of the real parts such

that Σsom = 0. Thus equation 3.50 is satisfied for all ρo. 

The configuration for negative A is that of a parametric amplifier

equivalent circuit with one tuning element or reactance more or less in 

the Ωo network than in the Ω-1 network. The product LoC1ω2B or 

LoCoω2T can be obtained from Green's (15) formulas for ladder networks, 

and by associating the elements of Figure 3.17b with Figure 3.8 or 3.9, 

the bandwidth capability of this synthesis can be evaluated in terms of

the reflection coefficient . The results in which N is

now the total number of reactances in the equivalent circuit are:
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or

(3.76)

The quantities C10∕GNO) (GN-1/C1-1) and (L10∕RNO)(RN-1/L1-1) which 

were required to be unity in the pseudo-degenerate synthesis have been

evaluated approximately and are on the order of or 1 + |ρo|

depending on whether the Ωo network has one less or one more tuning 

element than the Ω-1 network. This ratio is thus again fixed by the 

configuration but at a different value than for the pseudo-degenerate

case.

One last situation which we may consider is that in which either 

the signal or idler is single tuned and the other frequency has N tuning

elements. We attempt a synthesis based on the approximation

(3.78)

ρo can now be written as 
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(3.79)

The effective -G∕C of this reflection is

(3.80)

which has a broad maximum for

(3.81)

of

(3.82)

The maximum is wide enough so that except at very high gain with very 

high N , the approximation in 3.78 does not affect the response. The 

Butterworth bandwidth based on equation 3.82 is

(3.83)

in which N is one less than the total number of reactive elements in 

the equivalent circuit. The quantity (C10/GNO) (GN-1∕C1-1) or its equi­

valent for a series derived result is required by this synthesis to be 

nearly unity except at very low ρo.
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3.8 Comparison of Nondegenerate and Pseudo-Degenerate Results

Figure 3.18 shows the normalized parametric amplifier Butterworth 

derived bandwidth plotted against NT, the total number of reactive 

elements in the equivalent circuit, for ρBo = 4, 8, and 16. It can 

be seen that both of the nondegenerate syntheses yield comparable or 

higher bandwidths than the pseudo-degenerate for NT under six. This 

figure indicates that while the pseudo-degenerate synthesis is the only 

one found which is asymptotic to the ultimate bandwidth limitation, it 

is not optimum in the sense of giving the greatest possible bandwidth 

for a given circuit complexity. Neither are the syntheses in section 3.7.

There seems to be a fundamental difference between the wide banding

achieved by the method based on Figure 3.17 and the other procedures. The

pseudo-degenerate synthesis and the synthesis based on the approximation 

in equation 3.78 both place equal emphasis on the bandwidth limitations 

due to C10 and C1-1. All other elements in the circuit are used to 

tune out the combined effects of these two elements. The essential dif-

ference in the third synthesis technique can be seen from Figure 3.17b.

Let us say that Lo∕2 (1 + A) represents the effects of C1-1, and C1/A 

the effects of C . For high gain, A ≅ -1, Lo∕2 (1+A) is almost 

negligible. The method of broadbanding is not so much tuning as

it is one of direct cancellation. The effects of C1-1 are minimized 

with respect to and at the expense of those due to C10. A third reac- 

tance is then inserted in an attempt to cancel the effects of C10.

The choice of Butterworth or Tchebysheff response in this cancella-

tion scheme are incidental. It is unlikely that they are optimum. No

method of constructing general realizable response polynomials which
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Figure 3.18 Comparison of pseudo-degenerate and non-degenerate
bandwidths for ρBo = 4, 8, 16 
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result in this cancellation type phenomena for an arbitrary splitting 

of the number of negative and positive elements has been found. Several 

other Butterworth zero distributions have been tried. In general they 

fail to satisfy equations 3.50 and the like and at low gain result in

configurations in which the positive and negative elements alternate.

3.9 Configurations and Noise Figure

The nondegenerate parametric amplifier can be used either as a

reflection amplifier with or without a circulator or as a transmission 

amplifier operating between a source generator at Ωo and a load at Ω-1. 

The single element reflection amplifier configurations of Figure 2.1 in

Chapter II and the subsequent analysis of the relation between actual

gain and reflection gain in that chapter, can be applied straightfor-

wardly to the reflection parametric amplifiers. The noise figure

equations in Chapter II can also be applied directly if we can write an

effective temperature for the effective negative conductance. At midband 

this can be done by inserting noise generators in Figure 3.8 or 3.9 which 

results in Figure 3.19. The effective temperature of each element is 

given the same subscript as the element. The line MR shown in these

figures illustrates a hypothetical plane at which Manley Rowe amplifica-

tion takes place. Power flowing from right to left across this line is

multiplied by Ωo∕Ω-1 while power flowing in the other direction is mul

tiplied by Ω-1∕Ωo. Thus in evaluating the effective temperature of

-Geff, the temperatures of Ω-1 elements will become multiplied by

Ωo∕Ω-1. The effective input conductance for Figure 3.19a is
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Figure 3.19 Midband equivalent circuits with noise generators 
derived from Figures 3.8 and 3.9
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(3.84)

This conductance has an effective temperature

(3.85)

The results for the series derived circuit can be obtained by replacing 
all the above conductances with the comparable resistances.

The degenerate case needs separate consideration. Here GNO and

GN-1 represent the same elements physically, as do G10 and G1-1. We

hold to the equivalent circuit of Figure 3.19, however, and consider ωo

to represent frequencies below Ωp/2 and ω-1 to represent frequencies

above Ωp∕2. Since the actual physical output response of the amplifier

to a signal at ωo is the amplified signal plus the idler contribution

at ω-1 = ωo - Ωp∕2, the power gain between any element and the load is 

double that predicted from the equivalent circuit. This does not change 

the ratio of power out due to G10 and G1-1 to amplified thermal

power from the source in GNO. The main thing to be decided is how to 

treat the noise from GN-1. When it is not known whether the signal to 

be amplified is above or below Ωp∕2, GN-1 represents increased signal 

gathering capability. In noise figure calculations, therefore, τ1-1 

of equation 3.85 should be set to zero. The noise figure may then be
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calculated assuming that the noise power available from the source is 

2KτB rather than lKτB, effectively decreasing the noise figure of the 

degenerate amplifier compared to a comparable nondegenerate amplifier 

with τ1-1 = 0. When, however, it is known that the signal presented 

to the amplifier is definitely below Ωp∕2, GN-1 represents a noise 

source without signal gathering capability and must be treated as such.

Figure 3.19 may be used equally well to calculate the noise

figure of transmission amplifiers at midband. One calculates the trans-

mission gain between GNO, G10, and -G1-1∕|Yc-1|2 as well as the

reflection gain between -GN-1/|Yc-1|2 and itself. Using the power 

available from each element and the gain from the element to 

-GN-1/|Yc-1|2, one may readily construct the noise figure. The proce- 

dure is equally useful for the non-inverting upconverter if the negative 

signs are removed. The full equations will not be given here.

For the parametric amplifier synthesis techniques given in previous 

sections in which the elements G1-1 and G10 were included, the 

midband noise figure calculation is nearly correct over the whole pass- 

band. For those synthesis techniques which do not so readily adjust 

themselves to the inclusion of the losses in the nonlinear reactance, the

midband result must be used cautiously.

Without going into any more detail, one may still say from Figure 

3.19 or equation 3.85 that for the production of a minimum noise ampli- 

fier, there is an optimum choice for GN-1. This choice will depend 

very much on the temperature of GN-1 relative to G1-1. If τN-1 

is higher than τ1-1, the minimum noise will be obtained for rather
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small GN-1. If, however, τN-1 is lower than τ1-1, a larger value 

of GN-1 will be chosen. Thus the problem of simultaneous optimization 

of bandwidth and noise figure is a complicated one. The problem is best

approached by trying to find optimum bandwidth syntheses under the 

assumption that GN-1 is predetermined. It is hoped that the fundamental 

information about parametric amplifiers given in this chapter will in the 

future be an aid to finding solutions to this very general but also very 

complicated problem.
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CHAPTER IV

SYNTHESIS OF NEGATIVE RESISTANCE AMPLIFIERS WITH 
SEVERAL ACTIVE ELEMENTS BY PREDISTORTION

When amplifier bandwidth greater than that obtainable with a

single active element is desired, it is necessary to find methods of 

cascading active elements in such a way that the net gain bandwidth 

capability increases. It has already been mentioned that amplifiers 

with circulators can be directly cascaded and that bilateral constant 

resistance stages are being considered by Carlin (6). An interesting 

approximate approach to the design of such stages is synthesis based on 

insertion of negative conductance elements in the arms of a quarter-wave 

coupled hybrid. This was proposed by Autler (25) and has been success- 

fully used by Sie (26, 27). An idealized equivalent circuit of such an 

amplifier stage is shown in Figure 4.1. Each stage requires two 

matched active elements. The power gain is equal to the reflection gain 

at either of the negative conductances, and therefore the gain per tunnel

diode has the integral limitation

(4.1)

Such stages may be individually widebanded in a way very similar to that

given in Chapter II or they may be used in a stagger tuned cascade. The

extent to which the circuit approximates a constant resistance section, 

however, does depend on the approximation with which a quarter wave hybrid

can be built and widebanded.

This chapter will deal with amplifiers whose effective active
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Figure 4.1 Quarter wave coupled hybrid network for approximating 
a constant resistance amplifier stage, PG = |ρ1∣|2
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elements are negative conductances in parallel with capacitors and 

negative resistances in series with inductances. Only configurations

which are analyzable on the basis of the negative uniform loss low pass 

ladder with resistive terminations as shown in Figure 4.2 will be con- 

sidered explicitly for synthesis. Recognizing that the immittance of 

each lossy element iωLi + Ri or iωCi + Gi can be written as

(4.2)

it can easily be seen that when all the reactances have the same loss or 

dissipation factor, G∕C, analytic response functions of s are simply

related to the lossless response functions by the transformation

The technique of precompensating lossless response functions so that this

transformation yields a desired lossy response is called predistortion.

Its use in negative resistance amplifier synthesis was suggested by 

Weinberg (7). Figure 4.3 shows predistorted Butterworth poles for an 

N = 3 network with negative loss elements.

Weinberg has also suggested synthesis using the Darlington (28) pro- 

cedure for relating lossless to lossy response when the inductors do not 

have the same dissipation factor as the capacitors. The method is only 

applicable to analytic network functions which do not depend on termina­

tions . Two transformations of s are required; one shifting s by the

average loss factor of the two kinds of elements; the second shifting s2

by the square of half the difference in loss factors. The complexity of

the double transformation and the fact that it cannot be used on transmis-

sion gain response functions make it rather difficult to apply in amplifier
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Figure 4.2 A lossy resistance terminated, low pass ladder network
Lossless ; Gi = Ri = 0 

Uniform Loss ; All Gi∕Ci = Ri∕Li = G/C
Darlington . .

Non-uniform Loss:; All Gi∕Ci = G/C , all Ri/Li = R/L

Iterative with lossless and matching sections; all Li, Ci, Gi,
and Ri from m to p are equal, all other Gi and Ri 
are zero.

Figure 4.3 Illustrating N = 3 Butterworth poles predistorted for 
uniform negative loss, -G/C = -qoωB



-143-

synthesis.

A third synthesis method for multi-element amplifiers is to imbed 

identical reactance limited active elements in an iterative or periodic

network. The characteristic impedance and transfer constant of such a

network are easily calculated from image parameter theory. The transfer 

constant is not generally well behaved, becoming large at the band 

edges. The characteristic impedance is also badly behaved at the band 

edges. It becomes passively unrealizable and cannot be approximated in 

these regions. The problem of designing passive terminations to limit 

band edge gain peaks and guarantee stability is a difficult one. It 

must be solved by trial and error.
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4.1 Integral Limitations and Noise Figure

An interesting integral limitation will be developed below for 

cascade two-port networks. It will show, in a sense, that the bandwidth

limitation of transmission amplifiers designed by any of the above

methods is the sum of the bandwidth limitations of the active elements.

We consider a resistance terminated two-port network made up of lossy 

two-port stages of the general types shown in Figure 4.4. The divisions 

are made so that each stage is as simple as possible but with the res-

triction that for infinite s the two admittances seen by breaking the 

network at a junction are not both zero or both infinity. We will con- 

sider the ratio of the lossy transmission gain T'(s) to the lossless 

transmission gain T(s). The latter may have zeros on the s = iω axis 

and poles in the LHP. We restrict T'(s) also to have LHP poles. Each 

zero of T'(s) and T(s) can be causally related to a single stage such 

as a shunt inductance, series capacitance, parallel resonant series

branch or series resonant shunt branch. The difference in the real parts 

of corresponding zeros of T'(s) and T(s) is always equal to the sum 

of loss factors of the elements causing the zero. Thus for a section 

with shunt inductance Li in series with -Ri, T(s) has a zero at 

s = 0 and T'(s) has a zero at s = + Ri∕Li.

The ratio of lossy transmission to lossless transmission can be

written as

(4.3)
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4.4 General low pass and bandpass lossy filter sections
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Integrating on the s = iω axis and closing the con-

tour about the RHP, we have

(4.4)

The first two summations can be calculated with the successive use of

the transmission formula for cascade two ports

in which T12, T1, T2, ρ1, and ρ2 are defined

in Chapter III, Figure 3.15.

Writing one

may equate the asymptotic dependence of the two sides of the equation for

large s . Because of the division of sections made on the network in 

Figure 4.4, the asymptotic values of ρ'1ρ'2, and ρ1ρ2 are never -1; 

in addition, it can be directly shown that

is of the form . The asymptotic

dependences of the other terms above have non-zero coefficients for the 

1/s terms. These coefficients are equal to the summation of zero minus 

pole shifts and, equating them, one has

(4.5)
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The successive application of equation 4.5 in analyzing a network such 

as in Figure 4.4 can directly prove that the first two summations in 

equation 4.4 are equal to the total of the corresponding summations for 

the simple two-port sections. These latter are easy to calculate. For 

example, in the low pass network of Figure 4.2 for which there are no 

transmission zeros, the pole shifts of the individual sections are equal

to the loss factors of the individual elements. For this network

(4.6)

It can be shown that loss in elements which cause transmission zeros 

contributes nothing to the first two summations in equation 4.4. Those

zero-causing elements which have negative loss factors

do, however, contribute to the third summation.

(4.7

In general, half of the integral of due to these loss

elements falls in the frequency range where T(ω) is very small, i.e., 

the region of a zero of T(ω). The actual contribution of these ele­

ments to the gain in the region where T(ω) is not small is thus essen- 

tially the same as given in equation 4.6 for pole producing elements. 

There is no term in equation 4.7 for positive losses which shift real 

axis zeros into the LHP. Such elements make ∣T'(ω)∕T(ω)∣ > 1 near 

zeros of T(ω) and ∣T'(ω)∕T(ω) ∣ < 1 near poles of T(ω) . The net 

effect on the integral is zero. Sections which have three reactances

of the same kind such as the Li, Lj, Lij section in Figure 4.4, arise 
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in the coupled resonator configuration. The contribution to

from the zero shift in this section falls in the frequency

range of the zero of T(ω) and is generally not useful for gain. The

contribution elsewhere due to losses Ri, Rj, and Rij can be evaluated 

in terms of an effective loss factor for the section.

(4.8)

In most cases Lij is much less than Li and Lj, and Rij has only 

a small contribution to

From the above theory one can write an exact integral limitation

on in terms of the loss factors of the network elements. A

simpler but slightly approximate integral relation which takes into ac- 

count only contributions of losses to the passband gain and not to the 

gain near the zeros of T(ω) can also be written from the above theory. 

This limitation has more meaning in the synthesis problem.

(4.9)

not including re­
gions near zeros of

T(ω)

including zero- 
causing elements

contributions 
from coupling

sections

The various methods of synthesis, uniform predistortion, non-uniform 

predistortion, and iterative design, differ in the number of passive 

elements required for a fixed number of active elements. They differ in 

how near unity T(ω) can be maintained over the amplification band.
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They may differ in the possibility that may change sign over

the range of ω . For instance, networks with uniform negative loss

have for all ω . The maximum bandwidth for flat gain

T'o is obtained if T(ω) = 1 in the passband and has a limitation on 

the characteristic bandwidth ωc, . On the other

hand, the one and two active element transmission amplifiers considered

in Chapter II may definitely have outside the passband.

The above limitation on ωc does not hold for these amplifiers. The 

situation for non-uniform loss and iterative design is not yet known.

It is expected, however, that in these we will in general have

for all ω . Thus while in the sense of equation 4.9 the

integral bandwidth capability of active networks designed by the three

methods mentioned is the sum of the loss factors of the active elements,

the above differences make a detailed comparison difficult.

For the uniformly negative lossy low pass ladder network, integral

limitations can also be found on the reflection coefficients at the ter­

minations. For equal loss factors

(4.10)

where the som are the zeros of ρL. The logarithms of these functions  
are to be integrated around the RHP. Only the RHP singularities will

contribute and these must be identified. Positive som will lead to 

RHP poles and zeros of ρ'L/ρL. Negative som give RHP poles and zeros 

of ρ's/ρs. RHP singularities are also possible for ρ'L/ρL when -G/C

is less than negative som, and for ρ's/ρs when G/C is greater than 
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positive som. For stability spm and cannot be in the

RHP. We find that

(4.11)

NL = number of RHP zeros of ρL

Ns = number of RHP zeros of ρs 

Ns + NL = No = number of network reactive elements 

, where soxl are LHP zeros of ρL 

located between the s = iω and

If one of the network terminations, say RL, is infinite or zero,

making T = 0, T' = 0, ρL = 1, ρ'L = 1 and ρs = 1, equations 4.11  
give an integral limitation of the uniform negative loss ladder as a

reflection amplifier.

(4.12)

If a transmission amplifier such as the general configuration in 

Figure 4.2 contains only negative resistance or conductance elements 

and these all have the same negative effective temperature, -τT, the 

noise figure can be calculated directly from a knowledge of the load 

reflection coefficients, p'L, and the transmission gain T' by using
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the reciproclty theorem. The ratio of noise power out due to the ith 

element to noise power available from the ith element is equal to the 

transmission gain between the load and the ith element.

Therefore, for all elements at the same temperature -τT,

Applying conservation of energy to the circuit, one sees that the power 

dissipated in all negative elements is negative and equal to the negative 

of the power dissipated in RS plus the power reflected back into RL 

minus the original power available from RL. Inserting this into the 

usual definition of noise figure and including the reflected load noise

we have

(4.13)

This discussion of noise figure has been placed before a detailed 

consideration of the synthesis technique to illustrate the following 

important point: The noise figure of the unilateral amplifier in which

all active elements have the same noise temperature depends critically

on the reflection coefficient at the load end. It does not depend at

all on the reflection coefficient at the signal generator. In the syn­

thesis of a multi-element amplifier by the predistortion technique, the

zeros of the two reflection coefficients can be chosen rather arbitrarily.
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The choice which minimizes ρ'L also minimizes the noise figure, but

will simultaneously maximize ρ's.

4.2 Uniform Predistortion Synthesis of Tunnel Diode Bandpass Amplifiers

The tunnel diode is not directly compatible with the circuit of 

Figure 4.2. The coupled resonator bandpass equivalents of Figure 4.2, 

however, do accommodate active elements which are all of the same kind. 

The resonators may be drawn as parallel capacitance, inductance and 

negative conductance when the tunnel diode inductance is itself negli- 

gible. Otherwise, series equivalents of the tunnel diode as given in 

section 2.8 can be fitted into a coupled resonator configuration with 

series resonators. The coupled resonator with negative uniform loss

resonators can probably be synthesized by direct predistortion of the

poles of a coupled resonator configuration. In this section, however,

we will rely on the equivalence between low pass ladders and the coupled

resonator bandpass configuration which was established in Chapter II.

We consider, then, as an equivalent representation of a physically 

realizable bandpass configuration, the circuit of Figure 4.2. Both the 

capacitance negative conductance branches and the inductance negative 

resistance branches represent tunnel diodes with all Ri∕Li and 

Gi∕Ci equal to -GT/CT. GT may also include any extraneous positive

losses in the physical circuit and has a negative effective temperature 

-τT as shown in the introduction to Chapter II.

The uniform negative predistortion technique will now be applied 

to the low pass equivalent circuit in Figure 4.2 with uniform negative 

loss. Butterworth and Tchebysheff response with ε = 1 are explicitly
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chosen in this work, but the method is quite general and linear phase 

or any other response whose poles are known can be used. The poles of 

the response function of a lossless ladder network are chosen to be the 

pole configuration of the desired gain response but shifted to the left 

by an amount GT/CT. By equation 4.2 the subsequent evaluation of the 

real frequency performance of the uniform loss network is made on the

axis giving the desired response. Figure 4.3 shows a

typical predistorted Butterworth pole configuration and the distorted 

real frequency axis. The diagram is normalized to ωB and the normalized

pole shift is . A similar normalization, , will

be used for the Tchebysheff response.

The lossless transmission response may be evaluated on the

axis asor

(4.14)

in which the spm are now the normalized LHP pole locations given by 

equations 2.15 through 2.18. The gain with negative loss is evaluated

on the axis as

(4.15)

The normalization factor To2 controls the realizability of the lossless 

network with passive components and terminations. For the completely
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passive network to exist, the lossless transmission gain must be less 

than unity, |T(ω)|2 ≤ 1, all ω. For the Butterworth and odd N

Tchebysheff response, the maximum of |T(ω)|2 occurs at ω = 0 and 

T2o max = 1. For even Tchebysheff response this is not true for very

small q , but has been found to apply in all cases in which the 

average gain |T|2 is greater than 4ε2. For our purposes such is 

always the case, and we take T2o ≤ 1.

The actual transmission gain |T '|2 can now be evaluated from 

equation 4.15. For a given qo the gain is maximum for T2o = 1. The 

reflection zero positions will vary with T2o, however, and some

T2o < 1 may make a better overall amplifier. The midband gain increase 

|T'o∕To| as a function of qo can be found approximately for the But-

terworth case. Here

(4.16)

(4.17)

(4.18)

is the summation of the Butterworth poles and is given by

. Then

(4.19)
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For large N

(4.20)

No approximation has been found for the analogous Tchebysheff rela­

tion. The average value of the Tchebysheff gain increase

and have been calculated numerically for various qo

and N . The results are shown in Figures 4.5 and 4.6. Equation 4.20 

holds fairly well for N > 2 and the Butterworth curves are asymptotic

to . The Tchebysheff curves for N > 2 are given

fairly well by

(4.21)

Figure 4.7 shows plotted against N for and

. The ultimate flat gain limitation from equation 4.6

is also shown.

It is important to compute the zeros of the reflection coefficients 

from the predistorted poles. The zero positions are required not only 

to continue the synthesis procedure to the point of calculating the ele- 

ments of the low pass equivalents but also for computing reflection gain 

which enters into the noise figure and to test the sensitivity of the

network to errors. The zeros of
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Figure 4.5 Normalized Midband power gain for predistorted N-pole 
Butterworth response versus qo = GT∕ωBCT
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Figure 4.6 Normalized average power gain for predistorted N-pole 
3 db ripple Tchebysheff response versus qo = GT∕ωTCT.
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Figure 4.7 Normalized characteristic bandwidth versus N for 
Butterworth, Tchebysheff and ideal responses giving 
20 db average gain.



-159-

(4.22)

are the full zero complement of both reflection coefflcients ρL and 

ρs. The zeros of ρL can be chosen from these in an arbitrary fashion 

as long as only one of each real conjugate pair is taken and complex con-

jugate symmetry is maintained. The remaining zeros belong to ρs. Unless

otherwise specified, ρL will be assumed here to have only LHP zeros. When 

T2o = 1, there is always a pair of roots of equation 4.22 at s = 0.

These move rapidly toward ± qo as T2o is decreased. As T2o goes to 

zero, the LHP zeros approach the poles. Figure 4.8a shows the Butterworth

LHP pole distribution predistorted so that for N = 4 . One

set of reflection zeros for T2o = 1, 1/√2, and 1∕2 are shown in the

LHP. This choice gives minimum reflection coefficient ρ'L on the 

axis. Figure 4.8b shows the reflection zeros in the RHP

corresponding to the reflection at the opposite termination. The reflec­

tion coefficient at any point s = iω - qo is the product of the dis- 

tances to the zeros divided by the product of the distances to the poles.

It can be seen that the reflection gain with zeros in the LHP |ρ'L|2, is 

on the order of unity. The reflection gain for zeros in the RHP, |ρ's|2,

is on the order or higher than . This situation has been found in

all the cases computed. Figure 4.9a,b shows the analogous case for the

Tchebysheff 3 db ripple response with N = 4 , . The ratio

of |ρ's|2 to is in general larger for Tchebysheff response.
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Figure 4.8 Butterworth predistorted pole distribution for N = 4,

and LHP and RHP reflection zeros
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Figure 4.9 Tchebysheff predistorted pole distribution for N = 4,
. LHP and RHP reflection zeros
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While the magnitudes of the reflection coefficients at the two termina- 

tions may be equalized somewhat by other choices of the zero distribu­

tions, the product of these reflection gains is invariant and when

averaged over the band is generally greater than

The sensitivity to variation of a termination may be predicted 

from equation 4.23 below.

(4.23)

where T1 is the calculated transmission for the correct termination

Go; T12 is the transmission to termination G1 which is different

from Go; 

(4.24)is the reflection between Go and G1 

and

is the transmission between Go and G1. (4.25)

As long as ρ1ρ2 remains less than unity at all frequencies, the poles 

will remain in the left half plane, and the transmission reduction factor 

is given by

(4.26)
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When ρ1(ω) is not large, T12∕T1 is rather insensitive to Go - G1. 

The reflection coefficient |ρ'L| whose zeros and poles are shown

in Figures 4.8a and 4.9a is generally less than or on the order of

unity, not only over the passband, but also outside it. Having zeros

in the LHP only, ρL obeys the integral limitation

(4.27)

is given in equation 4.11 and may be zero if T2o is chosen small

enough so that ρL has no zeros between the s = iω ± qo axes. At the

other termination ρ's, which has only RHP zeros, is generally larger 

than unity everywhere and obeys the limitation

(4.28)

The amplifier is rather sensitive to an error in this termination.

The sensitivities to variation of the terminations as well as the

respective reflection coefficients may be equalized somewhat by some

other choice of the zero distribution at the expense of the noise figure. 

In general, the sensitivities to source and load variation of these

multi-element amplifier designs seems to be about the same as for a

single active element amplifier having the same noise figure contribution 

from reflected load noise. The only great advantage of these particular

multi-element designs then is that the bandwidth increases directly with

the number of active elements specified.

It is apparent from the previous section that for minimizing the
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Product of the reflection coefficients at both terminations or for

obtaining maximum bandwidth capability per active element, predistorted

Butterworth or Tchebysheff response may not be the best choices. The

two objectives above are not completely compatible. From equation 4.9

one can see that for maximizing the amplification bandwidth, T(ω) should

be unity over the band. This would require the zeros of p(s) p(-s) to

be near the passband region of the s = iω axis. From equation 4.11 it

can be seen that this choice of zeros would give rather large KL and

KG. In general the introduction of uniform loss in a network whose 

lossless reflection zeros are near the passband region of the s = iω

axis leads to a gain response severely peaked at the band edges. While 

the reflections are low over most of the active passband, so is the gain.

A possible approach to the problem of minimizing both reflection

coefficients simultaneously is to find lossless response functions, all 

of whose zeros lie on the s = iω ± G/C axes, and whose poles lead to 

reasonably flat and stable T'(ω) on the distorted real frequency axes. 

Such response functions are not known. They may, of course, be generated 

by trial and error; that is, by choosing zeros and generating the poles 

from the relation ρ(s) ρ(-s) + T(s) T(-s) = 1. Some complexity may be 

removed by demanding that the network be even ordered with dual symmetry

about the center. The search is then limited to finding a reflection 

coefficient p(s) whose zeros lie in real conjugate pairs and whose 

poles have the desired properties. Such a reflection coefficient can be

written in terms of the properties of the half network, thus simplifying

the order of the problem.

There is no assurance that pole zero distrlbutions which give low
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ρ'L and ρ's and well behaved T' can be found nor that the resulting 

bandwidth will be reasonably close to the ultimate theoretically obtain- 

able. Nevertheless, the search for such distributions may be a good way 

of approaching an optimum synthesis of multi-element networks.

The synthesis results of this section can also be used in the con-

struction of multi-element reflection amplifiers having approximately

Tchebysheff or Butterworth reflection response. We consider the reflec- 

tion zeros obtained from equation 4.22 when T2o goes to zero. The LHP 

zeros can be seen to fall directly on the LHP poles, and the RHP zeros 

are the real conjugates of the LHP zeros. The reflection coefficient 

which has LHP zeros and poles has magnitude unity on both the s = iω

zeros, are more important in determining the actual response shape. The 

reflection response shapes for Butterworth and Tchebysheff predistorted

poles are therefore approximately Butterworth or Tchebysheff.

and axes. This means that the synthesized resistance for

this termination is either zero or infinity. The reflection coefficient 

with RHP zeros evaluated on the s = iω axis also has unity magnitude. 

This reflection coefficient is large, however, when evaluated on the

axis. Its magnitude at midband can be evaluated from Figures

4.5 and 4.6 reading the ordinate as |ρ'|o rather than . The

reflection poles, being much closer to the axis than the
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4.3 Predistortion Synthesis of Multi-element Parametric Amplifiers

The uniform predistortion synthesis technique used for tunnel diode

amplifiers in the previous section can also be applied to parametric 

amplifiers if, as in Chapter III, normal modes can be found in which the

effects of the time varying elements are describable in terms of real

admittances at two frequencies. In this section we consider requirements 

for the isolation of such normal modes in multi-element amplifiers. Only 

time varying capacitors will be used here, but the approach is easily 

generalizable to networks containing other types of time varying reac­

tances either alone or in combination. One may guess that the symmetry 

conditions for the multi-element network will be essentially the same as 

required for the degenerate and pseudo-degenerate syntheses of Chapter

III.
We consider a network containing time varying elements

Ci (1 + ηi cos(ωpt + θpi)) in parallel with effective loss conductances

Goi and G-li at the two band center frequencies Ωo and Ω-1.

Such networks are shown in Figure 4.10. Across each of these elements 
 

will appear voltages Voi eiωot and V-li e-ω-1t. Neglecting other

frequencies, the current through each of these elements is

(4.29)

Then
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Figure 4.10 Possible degenerate and non-degenerate parametric
amplifier configurations containing time varying
capacitances Ci (1 + ηi cos Ωpt + θpi)

Figure 4.11 Required ωo and ω-1 equivalent circuits for isolation
of modes with real ΔYo and ΔYi.
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(4.30)

To achieve the pseudo-degenerate symmetry requirements we demand

that two low pass equivalent circuits can be drawn whose low pass prop­

erties are analogues of the Ωo and Ω-1 centered properties of the

physical network. Such analogues of Figure 4.10 are shown in Figure 

4.11. The variable

(4.31)

is used as in Chapter III. The elements Coi and C-li are presumably 

again related to reactance slopes in the two band network and have the 

same product limitation as found in Chapter III. The circuits of Figure 

4.10 can be made identical with the equivalent circuits of Figure 4.11

in the narrow band limit.

When the Ωo and Ω-1 networks of Figure 4.11 are identical 

except for an admittance level ratio C-li = BCoi, and a possible dif­

ference in the sign of the π/2 radians phase shift in the impedance

inverters, the choice ΔY-li = BΔYoi. can be seen to be consistent  
with the choice ΔY-li and ΔYoi real if and only if θpj - θpi. is 
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equal to the sum of the phase shifts of the Ωo and Ω-1 impedance

inverters connecting the ith and jth elements. For the circuits

shown in Figure 4.10 and 4.11, θpj - θpi. must be ±π. Had the series 

coupling branch in Figure 4.10 been chosen to resonate between Ωo and 

|Ω-1| such that the effective coupling were inductive in one band and 

capacitive in the other, the required θpj - θpi would be zero.

Having found configuration conditions which lead to real ΔYi, 

one may now calculate these admittances for the two modes. The excita- 

tion of each mode by a generator at Ωo or Ω-1 can also be computed.

The effective loss factors and are required to be

equal. The factors of two were inserted in the above expressions so

that these loss factors when inserted in the theory of previous sections

give the correct Ωo or Ω-1 bandwidth for Coi and C-li. defined on  
a reactance slope basis. Neglecting the variation of ω-1 and ωo 

across the bands as in Chapter II, we have

(4.32)

(4.33)

where the minus signs refer to the mode with negative loss factors and 

consequent transmission gain.
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(4.34)

The effective terminations in Figure 4.10 and the terminations shown in 

Figures 4.11 at Ωo and Ω-1 must also be in the ratio Go∕G-1 = 1/B if 

these modes found above are to exist. A current generator at ωo couples 

to both the amplification and attenuation mode. The ratio of the excita­

tions is

(4.35)

and the fractional efficiency of input power coupling to the amplification

mode is

(4.36)

Ao+, A-1- , and A-1+ are simply obtained from equation 4.36 by change of 

subscripts.

When the as given in equation 4.34 are the same for all

sections of the parametric amplifier network, a uniform predistortion 

synthesis is possible and the results of section 4.2 are directly appli- 

cable. Equation 4.34 is, however, applicable for non-uniform loss 

synthesis also.

When it is not necessary to include the attenuating mode in noise

figure calculations, an effective temperature can be written for the 

effective negative conductance at ωo.
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(4.37)

For Goi∕Coi = G-li∕C-li, this becomes 

(4.38)

This noise temperature may be used in the noise figure calculations of 

section 4.1. The noiseless attenuations Ao- and A-1- as well as 

noise from the Ω-1 terminations must also be accounted for in the 

noise figure.

The consideration of condltions under which multi-element para­

metric amplifiers can be designed by negative loss factor synthesis

techniques appears to place very tight symmetry conditions on the 

properties of the physical circuit. These tight conditions are probably 

more necessary for the mathematics of the synthesis than for the actual 

amplifier. It is expected that in physical amplifier configurations 

such as the network of Figure 4.10 which only approximate the required 

symmetry, exact mode voltage ratios Vo∕V-1 can be found which are 

imaginary at the band centers and which are elsewhere slightly rotated 

in phase. This adds reactance of the same sign to ΔYo and ΔY-1 

tending to restore the symmetry. A small rotation of Vo∕V-1 does not 

change the effective G/C to first order. It is very difficult to cal- 

culate these effects exactly, however, or to give limits on the asym- 

metries which will not greatly alter first order predicted response.
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CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

Fundamental bandwidth limitations of the tunnel diode and

similar reactance limited negative conductances have been established

in Chapter II. The consideration of lossless ladder networks terminated

in such elements has been shown to yield syntheses of amplifiers whose

bandwidths approach these limits as rapidly as possible as the number

of passive circuit components is increased. In addition to synthesis

in terms of low pass networks, several questions of practical importance

have been raised and answered, such as: the limitations imposed by a

second essential reactance in the active element equivalent circuit;

warm up stability; and the relations between the low pass ladder and

simple bandpass networks.

There are still two large areas in the general problem of tunnel

diodes in ladder networks whose consideration may lead to useful and

interesting information. One is the general consideration of the capa-

bilities of tunnel diodes appearing elsewhere than in network termina­

tions . The problem has only been touched upon in Chapter IV, where a 

new integral theorem was derived and in which special case configura-

tions analyzable on a uniform loss basis were discussed. The general

problem and even the special case of a single tunnel diode imbedded in

a passively terminated ladder network are much more dlfficult to solve. 

The simple synthesis procedures used in this work cannot be applied.

The second problem area suggested by this work is the consideration of

the tunnel diode terminated ladder network whose elements are uniformly
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lossy. The transmission amplifiers of Chapter II can be synthesized

to give Butterworth or Tchebysheff response by predistortion under

these conditions. There is, however, no guarantee that these response

functions will be best suited to simultaneous optimization of band-

width and noise figure. The reflection amplifiers in Chapter II cannot

be synthesized to give exact Tchebysheff or Butterworth response by

predistortion. New response functions must be found which have

desirable characteristics from three possible points of view, band

shaping, bandwidth, and noise figure.

In Chapter III fundamental bandwidth limitations of three-frequency

nonlinear reactance amplifiers have been derived in a somewhat less 

general or rigorous way than for tunnel diode amplifiers. These Hmita- 

tions were found to be of two types: a limitation on the minimum product

of the two reactance slope parameters obtained in resonating the D.C. 

reactance at two frequencies, and the limitation which this product 

imposes on the bandwidth of the idealized active element with no D.C.

reactance. With the exception of the degenerate parametric amplifier

synthesis the syntheses given in Chapter III are somewhat inadequate.

They are not optimum in a sense of approaching the ultimate bandwidth

most rapidly as a function of network complexity. They do not allow the

independent specification of the ratios of signal to idler load impedance

and the first signal to idler reactance slopes. Thus, while some

progress has been made here on the general problem of nonlinear reactance

amplifier synthesis, there is still much work left to be done. Further

work in this area should attempt to remove the above difficulties. In

addition, it may be profitable to reconsider the basic symmetry assump-

tions made in Chapter III and either prove or disprove that this of all
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possible physically realizable assumptions leads to the greatest band­

width limit and the fastest approach to this limit as a function of

network complexity.

In Chapter IV multi-element tunnel diode and parametric amplifier

configurations which could be analyzed by reverse predistortion were

considered. The objects of choosing such configurations were achieved.

It was shown that amplifiers whose bandwidth increased almost linearly

with the number of components are obtainable, and syntheses giving sixty 

percent of the maximum bandwidth obtainable with uniform negative loss 

configurations were demonstrated. A significant problem with the trans­

mission amplifier synthesis as performed in Chapter IV was the resultant

high reflection coefficients. It was shown that the reflection coeffi- 

cient could be reduced to about unity at the load termination, minimizing

the noise figure, but only at the expense of raising the reflection co-

efficient at the input termination. This results in high sensitivity

to a change in the source impedance. It was proposed that this diffi­

culty might be removed by a better choice of transmission function. It

is possible that this difficulty does not arise in synthesis by the

Darlington method of non-uniform predistortion. Both of these approaches

to multi-element amplifier design need further consideration.

Throughout this work certain approximations or distortions have

been necessary to describe the simplest physical amplifier configurations

in terms of the simple low pass network. These have been mostly pointed

out already in the text. There has been no mention, however, of the 

circuitry required to provide excitation in the form of D.C. bias or

pump power to the active elements, or the effects which this circuitry
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might have on other properties of the active elements.

Ideally speaking, excitation can be applied through extremely 

narrow band, high Q filters whose presence should not affect the

properties of the signal circuit. In practice, the exciting circuitry

can usually be designed so that its effects can be treated as pertur- 

bations to elements already required by the signal circuit. In a good

design these perturbations should not occur as changes in the essential

reactance of the active elements, since this may reduce bandwidth capa­

bility, nor as lossy elements which may deteriorate noise performance.

The excitation problem, like most of the approximations made in

this work, will have to be considered on a single case basis. These 

"cases", however, need not be so restrictive as to imply the design of 

a specific special purpose amplifier. The present work has attempted 

to treat amplifiers in any frequency range. The words "wide band" and 

"narrow band" have been used here with no quantitative values attached 

to them. There is much specific synthesis information which can be 

compiled when the frequency range, and therefore the characteristics 

of available elements both active and passive, are known. There is

much still to be said about configurations and their desirability, 

expecially in relation to constructional problems. There are approxi- 

mations to be removed, many of which can be treated when the frequency

range and fractional bandwidth are known.

It appears likely that such "common denominators" can be used as

a basis for obtaining further design information for tunnel diode and

variable reactance amplifiers. It is hoped that the information given

here and the methods employed will pave the way for the future compila- 

tion of true design data for these devices.
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