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Abstract— This paper introduces, develops and discusses
an integration-inspired methodology for the simulation and
analysis of deterministic hybrid dynamical systems. When
simulating hybrid systems, and thus unavoidably introducing
some numerical error, a progressive tracking of this error can
be exploited to discern the properties of the system, i.e., it
can be used to introduce a stochastic approximation of the
original hybrid system, the simulation of which would give a
more complete representation of the possible trajectories of the
system. Moreover, the error can be controlled to check and even
guarantee (in certain special cases) the robustness of simulated
hybrid trajectories.

I. BACKGROUND

Deterministic hybrid dynamical systems are intrinsically

difficult to analyze. Unlike linear or nonlinear systems, both

in continuous time (CT) or in discrete time (DT), numerous

involved technicalities are needed to describe their dynamical

properties; their most natural characteristics—stability or

control design, for instance—are only marginally explained

if compared to those of their constituent components. Com-

putation, or verification, of their properties presents non-

trivial challenges. For the sake of explanation, we could

adduce this limitation to the presence of spacial guards that

introduce asynchronous discrete events in the continuous

flow of trajectories in each domain. We can surely claim that

this represents an “analysis bottleneck”; in fact, destroys one

of the fundamental properties of both CT and DT systems:

robustness, i.e., the fact that small changes in the initial
condition result in small changes in the final position.

Simulating trajectories of hybrid systems requires the

use of a numerical integration techniques. This undeniably

introduces approximation errors (Section III). While these

errors represent a certainly undesired burden, it is possible

to turn necessity into virtue by exploiting them—at the

expense of tracking them. This allows for simulations which,

accounting for the imprecisions they introduce, enable a more

fair assessment of the actual position of the hybrid trajectory.

The first concept that stems from these considerations

is that of stochastic approximations for the original deter-

ministic hybrid systems (Section IV). We shall show how

the information coming from the time-dependent integra-

tion error can be funneled towards approximating hybrid
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systems. The approximated system is reframed within a

known stochastic setting. Limiting behaviors of this equiv-

alent stochastic system will be established. Furthermore,

some characteristic properties of this approximation will be

highlighted. Simulations will hint at their usefulness.
The second concept, related to the idea of exploiting

numerical error for positive benefit, is that of controlling the

error bounds of the numerical integration in order to force the

actual solution of the vector fields on each domain to detect

the same discrete event that the numerical solution singles

out. We shall show how to practically do this (Section V) in

a single domain, propose an extension to the general case,

while pointing out the limitations of this process. Although

this appears to be a partially negative outcome, we shall

explain that this is related to the presence of pathological

behaviors in a hybrid system, the existence of which is

indeed important to recognize, understand and give due

consideration.

II. THE HYBRID SYSTEMS SETTING

Throughout the paper we will utilize the classical frame-

work for deterministic hybrid systems, see [7].

Definition 1: Define a hybrid system as a tuple H =
(Q,E,D,G,R, F ) where

• Q = {1, ...,m} ⊂ Z is a finite set of discrete states,

• E ⊂ Q × Q is a set of edges which define relations

between the domains,

• D = {Di}i∈Q is a set of domains where Di is a

compact subset of R
n,

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Ds(e); we

assume that there exists a collection of smooth functions

{ge : R
n → R}e∈E such that Ge = {x : ge(x) = 0}

and that ge(x) ≥ 0 for all x ∈ Ds(e),

• R = {Re}e∈E is a set of reset maps, which are

continuous maps from Ge ⊆ Ds(e) to Re(Ge) ⊆ Dt(e),

• F = {fi}i∈Q is a set of vector fields such that fi is

Lipschitz on R
n; the solution to the ODE fi with initial

condition x0 ∈ Di at time t0 is a function from R to

Di, denoted by xi(t), which verifies xi(t0) = x0.

Executions. An execution or hybrid trajectory1 of the hybrid

system H is a tuple χ = (τ, ρ, ξ) where

1Here we are considering only infinite executions; introducing the defini-
tion of a finite execution would require unnecessary complication. For the
more general definition see [7].

Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

FrA16.4

1-4244-0210-7/06/$20.00 ©2006 IEEE 4742



• τ = {τi}i∈N with τ0 = 0 ≤ τ1 ≤ · · · ≤ τj ≤ · · · is a

hybrid time sequence or a sequence of switching times,

• ρ : N → Q is a discrete evolution map,

• ξ = {ξi}i∈N with ξi ∈
⋃

i∈Q Di is a sequence of initial
conditions.

Additionally, we require that χ = (τ, ρ, ξ) must satisfy the

condition that for i ∈ N, such that (ρ(i), ρ(i + 1)) ∈ E and

ξi = xρ(i)(τi),
τi+1 = min{t ≥ τi : xρ(i)(t) ∈ G(ρ(i),ρ(i+1))},
ξi+1 = R(ρ(i),ρ(i+1))(xρ(i)(τi+1)).

We also require that xρ(i)(t) ∈ Dρ(i) for all t ∈ [τi, τi+1];
this is quite a natural assumption.

With this definition of execution, we can introduce the

notion of Zeno trajectory (for more details on this issue,

please refer to [3], [7], [2]) as follows:

Definition 2: A hybrid system H is Zeno if for some

execution χ of H there exists a finite constant τ∞ (called

the Zeno time) such that

lim
i→∞

τi =
∞∑

i=0

(τi+1 − τi) = τ∞.

The execution χ is called a Zeno execution.

III. ERROR BOUNDS OF NUMERICAL INTEGRATION

Let ẋ = f(x) be an ordinary differential equation. The

initial value problem (IVP) is the problem of finding a

solution, x(t), to the ODE on some interval [t0, tF ] subject

to an initial condition x(t0) = x0; we denote such an IVP

by I = (f, [t0, tF ], x0). Since it is in general not possible to

explicitly solve an IVP of this form—in fact, almost never

possible—in practice, the ODE is usually numerically inte-

grated. A numerical integration technique is an integration

method that associates to the IVP, I, an approximate solution

x̂(t) on [t0, tF ] such that x̂(t0) = x0. Approximate solutions

will be of central focus to this paper. We will consider global

error bounds on the distance between the numerical solution

and the actual solution. Since for most integration techniques

precise global bounds are not available, we will review local

error bounds and show how to obtain approximate2 global

bounds from local bounds (such as those given in Matlab).

We will suppose, as in [10], that the numerical integration

method produces a solution that is accurate of order M(t, h),
where M(t, h) is a function, continuous in both its argu-

ments, such that M(0, h) = 0, M(t, h) → 0 monotonically

as t → 0 and M(t, h) → 0 monotonically as h → 0 (here

h is related to the integration step size). In other words, for

the IVP I there exists a constant CI such that

‖x(t) − x̂(t)‖ ≤ CIM(t − t0, h).

The bound CIM(t− t0, h) is a global or true bound on the

error. As already mentioned, most integration techniques do

2We say “approximate” here because, although in theory we can exactly
obtain a formula relating global error bounds to local error bounds, in
practice we must approximate parts of this formula.

not control the global error, but rather the local error. Note

that in the following, for simplicity we will let B(t, h) =
CIM(t−t0, h) and assume that the IVP is clear from context.

Most numerical integrations techniques produce a discrete

set of points which approximate the actual solution; this is

the situation we will work with in this paper. Specifically, for

the IVP I = (f, [t0, tF ], x0) we assume that the numerical

integration technique produces a set of times tn and points

xn, for n = 0, . . . , k such that t0 < t1 < · · · tk = tF and

for this integration method

‖x(tn) − xn‖ ≤ B(tn, h) = CIM(tn − t0, h),

where if hn = tn+1− tn is the nth step size, h = max{hn}.

The approximate solution x̂(t) is obtained by interpolating

linearly between the points xn and xn+1 when t ∈ [tn, tn+1].
Local error bounds for integration techniques are common,

especially in Matlab. First recall the definition of a local

error bound. Let x[n](t) be the solution to the IVP I[n] =
(f, [tn, tn+1], xn), i.e., x[n](t) is the solution to ẋ = f(x)
on the interval [tn, tn+1] subject to the initial condition

x[n](tn) = xn. The nth local error is given by

errorn = x[n](tn+1) − xn+1.

We can use this local error to obtain a specific instance B̃
of the global error bound B by setting

B̃(tn, h) = ‖errorn‖ +
n−1∑
i=0

‖errori‖eL(tn−ti),

where L is the Lipschitz constant of f . It can be verified that

‖x(tn) − xn‖ ≤ B̃(tn, h).

Similarly to what we did for the approximate trajectory x̂(t),
let B̃(t, h) be the function obtained by linear interpolation

between B̃(tn, h) and B̃(tn+1, h) when t ∈ [tn, tn+1]. Note

that since ‖errorn‖ → 0 as h → 0, B̃(t, h) → 0 as h → 0,

which is one of the characteristics of the accuracy function

described above.

The relevance of the local error is that this is the quantity

that Matlab controls (and allows the user to control) when

numerically solving ODEs (cf. [9]). Specifically, in Matlab

the local error is estimated in each step and made to satisfy

‖errorn‖ ≤ Rtol‖xn‖ + Atol,

where Rtol and Atol are the relative error tolerance and

absolute error tolerance, respectively; the default value for

these quantities are 10−3 and 10−6 and can be otherwise

specified by the user. Using this bound on the local error,

we obtain a bound on the global error:

‖x(tn) − xn‖ ≤ B̃(tn, h)

≤
n−1∑
i=0

(Rtol‖xi‖ + Atol)eL(tn−ti) + Rtol‖yn‖ + Atol.

Since Rtol and Atol are related (and in fact determine) the

step size, reducing these quantities to zero is equivalent to

reducing the maximum step size to zero; in both cases the
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global bound on the error obtained from this local bound

goes to zero. For this reason, this is the global error bound

that we will use in the Simulations. To this end we need the

Lipschitz constant of the ODE ẋ = f(x). We do not assume

that this is known; instead, we approximate L with Lapprox

by setting

Lapprox = max
0≤n≤k

(σmax(Df(xn))) ,

where σmax is the maximum singular value of the Jacobian

matrix Df(xn).

IV. STOCHASTIC APPROXIMATIONS

A. Stochastic Hybrid Systems

There are essentially four ways to introduce probability in

the setting of deterministic hybrid systems: in the edges, in

the guards, in the reset maps and in the vector fields. In this

paper, we shall focus on uncertainty introduced in the second

(and, implicitly, in the first) of these entities, and introduce

the following definition:

Definition 3: Define a stochastic hybrid system as a tuple

S = (Q,E,D,G, R, F ) where the elements in the tuple are

those of H , except for

• D = {Di}i∈Q is a set of domains where Di = R
n (we

need to relax the restriction on the compactness, which

comes from the presence of the guards). We define S =⋃
i∈Q{i} × R

n to be the hybrid state space, and we

assume a Borel space (S,B(S)) is properly defined, as

in [5].

• G = {Ge}e∈E , formerly a set of sets (the spatial

guards), and now a set of functions, Ge(x) = λ(i,j)(x);
here λ(i,j) : Di → R

+ is the transition (or jumping)
intensity.

Assumption 1: We assume the measurability of λ(i,j) on

Di, and that the composed function λ(i,j) ◦ xi : t →
λ(i,j)(xi(t)), where xi(t0) = x0 ∈ Di, is integrable on every

bounded set [t0, t0 + ε), ε > 0.

Remark 1: The definition is a special case of the PDMP

by Davis, [5], where no forced jumps are allowed. Fur-

thermore, we disallow probabilistic resets or the presence

of diffusion terms in the vector fields. The fundamental

assumption in [5] on the finiteness of the discrete events

on bounded time intervals is implied here by construction,

i.e., by the absence of the spacial guards and the continuity

conditions on vector fields and reset maps.

The jumping intensity λ(i,j)(xi(t)) on Di induces a jump-

ing probability P
i
j(t), for all j ∈ Q such that (i, j) ∈ E

and t ≥ t0; for j such that (i, j) /∈ E, P
i
j(t) = 0.

This allows us to define a discrete kernel over the set Q,

Pi(t) =
(

P
i
j(t)

)
j∈Q

for each domain Di (when t ≥ t0).

A stochastic execution is defined, similarly to the deter-

ministic case, as follows:

Definition 4: An execution of S is defined through a

tuple χS = (τ, ρ, ξ), where

• τ = {τi}i∈N with τ0 = 0 < τ1 < · · · < τj < · · · is a

sequence of stopping times,

• ρ : N → Q is a discrete evolution map,

• ξ = {ξi}i∈N with ξi ∈
⋃

i∈Q Di is a sequence of initial
conditions.

Additionally, we require that χS = (ρ, τ, ξ) must satisfy the

condition that for i ∈ N,

• xρ(i)(τi) = ξi,

• τi+1 is a stopping time associated with the following

survivor function:

S(t) = exp

⎛⎝−
∫ t−τi

τi

∑
j∈Q, (ρ(i),j)∈E

λ(ρ(i),j)(s)ds

⎞⎠ ,

• ρ(i+1) is chosen via the transition kernel Pρ(i)(t), and

more precisely via P
ρ(i)
( · )(τi+1),

• ξi+1 = R(ρ(i),ρ(i+1))(xρ(i)(τi+1)).
Because we are assuming that τi < τi+1, we can define

a function q :
⋃

i∈N
[τi, τi+1) → Q, where q(t) = ρ(i)

for t ∈ [τi, τi+1). Moreover, it is possible to introduce a

x :
⋃

i∈N
[τi, τi+1) → R

n, where x(t) = xρ(i)(t), if t ∈
[τi, τi+1). Finally, we state that an execution of S , given

a tuple χS = (τ, ρ, ξ) verifying the properties above, is a

stochastic process (q(t), x(t)) ∈ S based on the tuple χS .

The following holds (the proof is a modification of that in

[5], as discussed in Remark 1):

Proposition 1: The stochastic hybrid system S intro-
duced in Def. 3 and with executions constructed as in Def. 4
is endowed with the Markov property and admits an explicit
process generator.

B. Introducing Stochastic Approximations

In this section, we shall focus on the original hybrid

system H and describe how to approximate it with a

stochastic counterpart Sh, where h relates to the integration

step size.

1) Transforming Guards: Suppose that for the ith domain,

Di, there are Ki guard functions, i.e. Ki = |{e ∈ E :
e = (i, ·)}|. In this case, the set guard functions on Di can

be ordered as {g(i,j)}Ki
j=1. We can assume without loss of

generality that these functions are of the form g(i,j)(x) = xj

where xj is the jth element of x. Let fi be the vector field

of the hybrid system on domain Di ⊆ R
n; this claim is

justified by the observation (see Shampine in [8]) that it

is possible to transform a system into a form so that the

above assumption is satisfied. This is achieved by defining

new variables zj = g(i,j)(x),∀j = 1, . . . ,Ki. A new domain

D̃i, a new vector field f̃i and a new set of guard functions

on this domain {g̃(i,j)}Ki
j=1 is then defined as follows: let

D̃i = R
Ki×Di and for an element (z, x) in this new domain

then f̃i is defined by

(f̃i(z, x))j =
{

∂g(i,j)(x)

∂x · fi(x), if 1 ≤ j ≤ Ki

(fi(x))j−Ki
, if Ki + 1 ≤ j ≤ Ki + n

Finally, the guard functions on this domain are given by

g̃(i,j)(z, x) = zj . It is clear that the behavior of the solution,

especially with respect to its discrete events, is the same for

the transformed system and the original system.
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2) Forming Transition Functions: With a set of guard

functions satisfying the above assumption, i.e., g(i,j)(x) =
xj , we can define the transition functions. First, we need

some definitions. Let x̂i(t) be the approximate solution to

xi(t) on the domain Di. We will use this approximate

solution to define a set of transition functions πij(t). Let

S
n(r, x) denote an n-dimensional sphere of radius r centered

at x and suppose that this sphere intersects the hyperplane

H = {x1 = 0}. Then if

σ = min (dist(Sn(r, x) ∩ H, ∂S
n(r, x))) ,

the volume of the sphere lying ”below” the plane H is given

by

V(r, σ) =
∫ σ

0

Vn−1(
√

r2 − (z2 − r2))dz,

where Vn−1(r) is the volume of an (n − 1)-dimensional

sphere of radius r. Now let

G+
(i,j) = {x : g(i,j)(x) > 0},

G−
(i,j) = {x : g(i,j)(x) < 0},

G0
(i,j) = {x : g(i,j)(x) = 0}.

Using this, define the transition function πij for the guard

g(i,j) and error bound B(t, h) on the numerical integration

technique as

πij(t, h) =

⎧⎪⎪⎨⎪⎪⎩
1 if S

n(B(t, h), x̂i(t)) ⊂ G+
(i,j)

0 if S
n(B(t, h), x̂i(t)) ⊂ G−

(i,j)

V(B(t,h),σ(i,j)(t,h))

Vn(B(t,h)) if
S

n(B(t, h), x̂i(t))
∩G0

(i,j) �= ∅
where here

σ(i,j)(t, h) = min
(

dist{S
n(B(t, h), x̂(t)) ∩ G0

(i,j),

∂S
n(B(t, h), x̂(t))}

)
= |x̂i(t) − B(t, h)|.

This completes the construction of the transition functions.

In the case when we fix h, we will denote the transition

functions by πij(t) := πij(t, h).
3) Defining Transition Probabilities: With reference to

the setting of hybrid systems, given a numerical integration

method (which we assume to have fixed integration step),

a starting time τi and with an initial condition x0 ∈ Dρ(i)

on a domain ρ(i) ∈ Q, we can explicitly derive through

time an error bound around the numerical solution. At any

point in time τi ≥ t ≥ τi+1 the real solution of the ODE

lies somewhere inside a sphere centered around x̂ρ(i)(t). If

the numerical solution approaches one of the boundaries of

our domain, then this sphere may intersect it. We give a

special interpretation to this occurrence: at every point in
time, the probability that the actual solution switches from
the current domain to that identified by a guard is given
by the proportion of the volume sphere centered around the
numerical solution at that time that is beyond the guard
itself. More precisely, we claim the following: given the

initial conditions τi, x0 and ρ(i), and obtaining a numerical

solution by application of an integration method, we have

the following knowledge on the actual discrete portion of

the hybrid trajectory, for t ≥ τi:

P
ρ(i)
j (t) = Pr(τi+1 = t, q(τi+1) = j|q(τi) = ρ(i)) = πij(t).

Remark 2: The reader should ponder over the probabilis-

tic interpretation of the actual trajectory through the error

bounds: clearly, it implicitly assigns a uniform distribution

over the entire volume of the sphere. This is certainly an

arbitrary choice, but arguably the most general and the most

intuitively natural one given the shape of the error bounds

and our knowledge of the actual position of the trajectory.

4) From Probabilities to Intensities: Considering the

time-varying transition kernel P
ρ(i)
j (t), t ≥ τi. With some

calculation it can be shown that it is right continuous along

time; it thus appears natural to take its right derivative and

reason in terms of transition intensities, as introduced in Def.

3. These new entities are introduced by:

λ(ρ(i),j)(t) = lim
s↓t

P
ρ(i)
j (s) − P

ρ(i)
j (t)

s − t
, s ≥ t ≥ τi.

It should be clear that the framework is easily prone to

work in the case of numerous guards per each domain,

addressing the fundamental intricacy underlying the relative

spacial position of the guards in the deterministic setting.

C. Properties

We are now in a position to discuss some of the properties

of the stochastic approximation of the deterministic hybrid

system.

1) Limiting Equivalence: The first important property, is

that in the limit H and Sh agree as follows.

Theorem 1: Given a hybrid system H , the non-trivial
stochastic hybrid system Sh, dependent on a parameter h
(the integration step), verifies the following:

lim
h→0

Sh = H .

In other words, the stochastic hybrid trajectory will be, at
the limit, equivalent to the deterministic one.

Remark 3: The reader should notice that Assumption 1 is

always verified if h > 0. It is indeed implied that the value

of the intensities is bounded, h > 0 ⇒ λ(i,j)(x) < ∞,∀x ∈
Di, j ∈ Q, (i, j) ∈ E.

2) Excluding Zeno: Another important property of Sh is

that it is not Zeno, even if the original hybrid system was.

Theorem 2: Given a hybrid system H , the non trivial
stochastic hybrid system Sh admits no Zeno behavior, for
all h > 0.

D. Simulations

Despite the sophistication of the available numerical in-

tegration tools, it should be clear that the presence of

pathological behaviors in a hybrid system due to the inter-

connections of its domains may lead to faulty simulations;

that unless we can solve analytically for the vector fields in

each domain. Introducing numerical error bounds, of which
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we have exact knowledge, and interpreting them through

distributions describing probabilistically the position of the

exact trajectory, allows us to execute multiple simulations

and extrapolate the behavior of the actual solution from

the outputs. This section presents simulations that display

how the stochastic hybrid systems obtained from the original

deterministic one handle some pathological conditions.

1) Grazing: Let us define “grazing” as the situation where

a hybrid trajectory osculates a guard. The essential question

related to this kind of dynamics is what the behavior of the

real solution is; the answer can be given probabilistically.

Fig. 1 shows a trajectory from a clockwise circular vector

field in two dimensions, which grazes the x1 = 1 surface.

Propagating the hypercone, we check the transition proba-

bility through time: it tends to the value 1/2 the closer the

trajectory gets to the surface, while being smaller at points

in space further away from it.
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Fig. 1. Variation in time of the Transition Probabilities, for a trajectory
grazing the surface x1 = 1.

2) Handling Zeno: As also discussed in [1], the trajecto-

ries of the stochastic hybrid system Sh will be defined for

all the time, despite the presence of Zeno behavior in the

original hybrid system. The well known two-tanks example
(refer to [11] for a model description) is one classical

instance of this phenomenon. The plots in Fig. 2 show how,

by decreasing the step size in the simulation, the switching

events are increasingly better approximated. In Fig. 3 we plot

the cone along which the probability sphere is obtained.
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Fig. 2. Crossing detection and Zeno handling via stochastic approximations
(red trajectories); the smaller the step size in the simulations, the closer the
approximation to the numerical solution (blue trajectory).

V. GUARANTEEING SIMULATIONS OF HYBRID SYSTEMS

A. Exact Event Detection through Global Numerical Inte-
gration Bounds

Consider a hybrid system H , as introduced in Sec. III,

with the additional assumption that each domain is delimited
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Fig. 3. The two tanks system: propagation of the error cone defined through
global bounds.

by its guards; this fact can be encompassed by the following

condition:

∀ i ∈ Q, Di = {x : g(i,j)(x) ≥ 0, j ∈ Q, (i, j) ∈ E}.
For the IVP I = (f, [t0, tF ], x0) on domain Di, an event

occurs whenever the trajectory, starting at time t0 and

position x0, intersects any of the G(i,j). Ideally, we can say

that this happens at time te if te = minj∈Q{t > t0 : ∃j ∈ Q :
g(i,j)(xi(t)) = 0}3 and at the point xe = xi(te) ∈ G(i,j).

Unfortunately, oftentimes we are only able to calculate an

event-time t̂e based on the outcome of the IVP above,

t̂e = minj∈Q{t > t0 : g(i,j)(x̂i(t)) = 0}; we also introduce

the point x̂e = x̂(t̂ei ).
Based on a solution x̂i(t) of the IVP I, parameterized

by the integration step h, and its corresponding global error

B(t, h), we can propagate forward an error cone Ch(t), t ≥
t0:

Ch(t) =
⋃

t0≤s≤t

{x ∈ Di : ‖x − x̂i(s)‖ ≤ B(s, h)}

This subset of Di has the property of containing the actual

solution of the vector field, xi(t) ∈ Ch(t), t ≥ t0. Similar to

the idea developed in Section IV, it is interesting to look

at the possible intersection of Ch with the set of guards

{G(i,j) : j ∈ Q, (i, j) ∈ E}. In particular, utilizing the

quantity S
n(B(t, h), x̂i(t)), we shall focus on the set

Jh = {j ∈ Q : Ch(t) ∩ G(i,j) �= ∅, t0 ≤ t ≤ t̂g, (i, j) ∈ E},
where

t̂g = min{t > t0 : S
n(B(t, h), x̂i(t)) ∩ Di = ∅} > t̂e.

The introduction of the quantities above allows us to claim

the following:

Proposition 2: For the IVP I on domain Di with an
integration step h > 0, the actual trajectory x(t) will
detect the same event as the approximate trajectory x̂(t)
(the approximate solution of I) if there exists an h such that
t̂e < ∞, t̂g < ∞ and Jh is a singleton.

Remark 4: The condition on t̂e refers to the actual exis-

tence of an event, that on t̂g forces the whole error cone to

3For the sake of precision, we assume the quantity tF in I is large enough
to make sense of the event, i.e. tF > te.
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exit the domain of interest, while the last on Jh tallies the

number of intersections with possibly different guards. The

second condition can be overridden by considering a small

enough h.

Clearly, much cannot be said about the exact value of te

or xe, except that the difference |te − t̂e| will be finite and

that a bound can be established on the distance ‖xe − x̂e‖.

Propagating forward the idea to the subsequent domain, we

observe that the actual solution will be contained in the union

of the cones starting from the intersection of Ch and the

guard G(i,Jh).

The concept of metrics on trajectories, [6], has been

introduced in the literature of discrete events systems to

describe the (finite) difference between the evolution of two

hybrid trajectories. Our concept goes is much in the same

vain, deriving conditions for computing this difference.

B. Controlling the Error

As discussed, the quantities B(·, h), Ch(·) and Jh depend

on the choice of the integration step h. It can be checked that

Ch(·), similarly to the global error B(·, h), verifies the same

property. It is intuitive then that by controlling the integration

error h it is possible to force the numerical approximation

to display the same discrete behavior of the actual hybrid

trajectory. In other words, we can “guarantee” that the

evolution of the real hybrid trajectory will be described

“closely enough” by that of the numerical hybrid solution.

The following algorithm implements the idea:

Algorithm 1: Given a HS H , with domains delimited by

guards, and a hybrid initial condition (q0, x0) at time t0 = 0,

Init := x0; i := 0;

Repeat

- For all ξ ∈ Init,
– Set up the IVP Iξ = (fi, [t0, τ ], ξ);
– Solve it and, under the assumptions of Prop. 2,

compute C
ξ
h(t̂g) and J

ξ
h.

- End (For).

- If
⋃

ξ∈Init Jξ
h is a singleton (call it ν),

– Init := ∂
(⋃

ξ∈Init{Cξ
h(t̂g) ∩ G(i,ν)}

)
;

– i := ν.

- Else

– Decrease h := h′, where h′ = h/α, α > 1;

– Restart.

- End (If).

Until True.

Despite the theoretical correctness of the algorithm (it can

be possibly modified to terminate in order to accomodate

for finite horizon simulations), it is not a computationally

tractable one; for instance, propagating forward sets of initial

conditions is a tricky issue, with the notable exception of two

dimensional systems.

This procedure, which introduces a notion of robustness

for the HS setting over a finite time horizon, is sound, but

not complete. In particular, it cannot be implemented if the

HS undergoes some pathological condition. For instance, a

deadlock would arise in the presence of a Zeno trajectory,

which is infinite in the number of discrete events and requires

increasingly infinite precision in simulation (and characteri-

zation) along the finite time interval. Furthermore, if it ever

happens that the actual trajectory hits an intersection between

two guards, decreasing the integration step will never prevent

the error cone from crossing both guards. Similarly, if the

trajectory osculates a guard, further refinement would not

prevent the cone from intersecting the guard only on one

side.

VI. FUTURE DIRECTIONS

The authors are currently investigating ways of improv-

ing the idea of stochastic approximations, and generalizing

the concept of guaranteed simulations. On both levels, it

would be interesting to obtain tighter precise bounds on

the currently rather conservative global error; employing

a tighter but approximate bound would be feasible in the

case of stochastic approximations. Focusing on the simu-

lation aspects of the stochastic hybrid system obtained via

approximation, the authors are looking into algorithms for

special classes of SHS (cf. for instance [4]). Another research

effort is being directed towards finding conditions that ensure

some precise notion of “robustness” for hybrid trajectories;

this requires the generalization of the concept of IVP’s to

a hybrid setting. This notion can be interpreted as finding

a “condition number” for a specific hybrid system, i.e.,

a function expressing enough to quantify the presence of

pathological interconnections in the hybrid system (refer to

[1] for more details).
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