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Abstract 

This  paper  describes an adjustment  procedure 
for  observer-based  linear  control systms which 
asymptotically  achieves  the  same  loop  transfer 
functions  (and  hence  the  same  relative  stability, 
robustness,  and  disturbance  rejection  properties) 
as  full-state  feedback  control  implementations. 

1. Introduction 

The trouble  with  observers  is  that  they  tempt 
us, through  the  expedient  of  state  reconstruction, 
to assign  undue  generality  to  control  results 
proven  only  for  the  full-state  feedback  case. An 
example  is  the  recent  robustness  result  of  Safonov 
and  Athans [l]. This  result  shows  that  multivari- 
able  linear-quadratic  optimal  regulators  have im- 
pressive  robustness  properties,  including  guaran- 
teed  classical  gain  margins  of - 6 db  to + - db 
and  phase  margins  of f 60 deg. in  all channels. 
The  result  is  only  valid,  however,  for  the  full 
state  case.  If  obsenrers  or K a h n  filters  are 
used  in  the  implementation,  no  guaranteed  robust- 
ness  properties  hold. In fact,  a  simple  example 
has  shown  that  legitimate LQG controller-filter 
combinations  exist  with  arbitrarily  small  gain 
margins  in  both  the  positive  and  negative db di- 
rection [2]. 

In light  of  these  observations,  the  robustness 
properties  of  control  systems  with  filters  or  ob- 
servers  need  to  be  separately  evaluated  for  each 
design.  Moreover,  because  such  evaluations  can 
come  up  with  embarassingly  small  margins,  a  "de- 
sign  adjustment  procedure"  to  improve  robustness 
would  be  very  desirable.  The  present  paper  pro- 
vides  such  a  procedure. We show  that  while  the 
comnonly  suggested  approach of "speeding-up"  ob- 
server  dynamics  will  not  work  in  general,  alter- 
nate  procedures  which  drive  some  observer  polest- 
ward  stable  plant  zeros  and  the  rest  toward  infin- 
ity  do  achieve  the  desired  objective. In effect, 
full-state  loop-transfer  properties  can  be  recov- 
ered  asymptotically  if  the  plant  is  minimum  phase. 
This  occurs  at  the  expense  of  noise  performance. 

The  principal  results  of  the  paper  are summa- 
rized  in  Section 2., where  we  introduce  and  inter- 
pret  certain  transfer  function  properties of ob- 
server-based  control  systems,  and  in  Section i?, 
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where we develop  the  "adjustment  procedure". A 
simple  example  which  illustrates  these  results  is 
given  in  Section4. 

2. Transfer  Function  Properties of 
Observer-Based  Controllers 

We  consider  the  general  multivariable  control 
loop  illustrated  in  Figure 1. The plant  is  an 
n-th  order  linear  system,  both  observable  and  con- 
trollable,  with  m  inputs,  p=m  outputs,  and  no 
transmission  zeros [3] in  the  right  half  plane. 
The  control  law  consists  of  two  transfer  function 
matrices  H ( 6 )  and  H ( 6 ) .  H is  driven  either 
with  full-state  feediack  (Fig. lA) or  with an 
n-th  order  observer [4] which  reconstructs  the 
state  in  the  usual  asymptotic  sense  (Fig. 1B). It 
is  clear  that  this  overall  control  loop  includes 
linear-quadratic-gaussian controllers as special 
cases. It also  allows  dynamic  elements  such  as 
integrators  and  lag  elements  which  may  be  required 
in  more  realistic  control  situations. 

1 2 

This  configuration  also  applies t o  nonsquare 
plants  for  which  the  number  of  controls, m, is  not 
equal  to  the  number  of  measurements, p. For  the 
case,  m < p,  simply  augment  the  original  control 
vector  with  (p-m)  more  components  hich  are  not 
driven  by  the  controllers  (i.e.,  H1 F 3H:liO]). 
Columns  of  the  B  matrix for these  add- 
ed components  must,  of  course,  be  selected  to  in- 
troduce  no  unstable  transmission  zeros.  For  the 
case,  m > p,  select  any  p-dimensional  subset  of 
controls  for  which  there  are  no  right  plane  trans- 
mission  zeros.  Then  the  loop  transfer  properties 
which  are  established  in  this  paper  apply  to  this 
p-dimensional  subset  of  control  loops,  with  the 
remaining  (m-p)  loops  closed. 

A dashed  line  is  shown  in  both  Figure IA and 
IB  in  order  to  distinguish  between  elements  of  the 
loop  which  are  part  of  the  controller  and  those 
which  are  part  of  the  plant.  Since we design  and 
implement  the  controller,  there  is  relatively  lit- 
tle  uncertainty  associated  with  it,  whereas  there 
may  be  significant  differences  between  the  actual 
plant  and  its  model.  The  loop  transfer  functions 
which we examine  for  robustness,  below,  are  then 
taken  with  respect  to  the  loop  breaking  point, X, 
at  the  control  signal  interface  between  these  two 
sets  of  elements.  Ver  misleading  robustness  re- 
sults  can  be  obtained  Tor  alternate  loop  breaking 
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poin ts ,  for exarple Point XX. This is a l s o   s h o m  
belov. 

Figure 1. Linear   Mult ivar iable   Control  Loop 
r------ 1 

r 

LA. Full-State  Feedback  Implemeatation 
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1 B .  Observer-Based  Implementation 

The fol lowing  propert ies  can be   es tab l i shed   for   the  
above two control  loop  implementations: 

Property 1 
The closed  loop  t ransfer   funct ion 
matrices  from command r t o   s t a t e  
x are iden t i ca l   i n   bo th  imple- 
mentations. 

Property 2 
The loop   t ransfer   func t ion  matrices 
from con t ro l   s igna l  u‘ t o   c o n t r o l  
signal u (loops  broken a t  Point 
X) are i d e n t i c a l   i n   b o t h  imple- 
mentations. 

Property 3 
The loop   t ransfer   func t ions  from 
con t ro l  signal u” t o   c o n t r o l   s i g n a l  
U’ (loops  broken a t  Poin t  X) are 
gene ra l ly   d i f f e ren t   In   t he  two im- 
plementations. They a r e   i d e n t i c a l  
i f   t h e   o b s e r v e r  dynamics s a t i s f y  

KII t C (sI-A)”K]-’= B [C(sI-A)-lB 3-l 
(1) 

The f i r s t  two of   these   p roper t ies  are very well 
known [ 5 , 6  3. They can   be   eas i ly   ver i f ied  by not- 
ing that the   t r ans fe r   func t ions  from  u’ t o  x  and 
from u’ t o  2 are ident ical   because the nominal 
e r r o r  dynamics  of the  observer  are not   cont ro l lab le  
from u’. Hence, t h e   e r r o r  dynamics a re   no t   exc i t ed  
by inputs  r to   t he   c losed   l oop   sys t em  o r  by inputs  
u’ to  the  system  with  loop  broken at  poin t  XX. 

The f i r s t  two prope r t i e s  are a l s o  the source 
of much of  the  temptation  surrounding  observers,  
however. We see tha t   input /output   p roper t ies  are 
t h e  same and  even  cer ta in   loop  t ransfer   funct ions 
are t h e  same. The la t ter  promise  equal   re la t ive 
s t ab i l i t y   p rope r t i e s ,   equa l   t o l e rance   t o   unce r t a in -  
ties (robustness) ,   and  equal   dis turbance  re ject ion 
p rope r t i e s .  What more could we  ask fo r?  The prob- 
lem, of course, is tha t   the   loop   t ransfer   p roper -  
ties are t h e  same at Poin t  XX, i n s ide   ou r  o m  con- 
t r o l  implementation  where  only  masochists would 
inser t   s ign i f icant   uncer ta in   e lements   o r   d i s turb-  
ances.  According  to  Property 3,  equal  loop trans- 
f e r   c h a r a c t e r i s t i c s  are not   obtained at  the con t ro l  
signal in t e r f ace   t o   t he   p l an t ,   Po in t  X, where Na- 
t u r e   g e t s   t o  insert unce r t a in t i e s  and  disturbances.  
It  is a t  th i s   po in t   tha t   robus tness   p roper t ies  must 
be  measured,  and, as seen i n  [2], i t  is h e r e   t h a t  
obsemer-based  implementations can f a l l  well sho r t  
of our   object ives .  

The f ac t   t ha t   l oop   t r ans fe r   func t ions  will in 
genera l   be   d i f fe ren t  a t  poin t  X follows by not ing  
that ,   unl ike  before ,   the   observer   error   dynamics 
do get exc i t ed   i n   r e sponse   t o   i npu t s  u” with  loops 
open at  X. The  more i n t e r e s t i n g   f a c t  is  that   such 
d i f f e rences  are avoided i f   equa t ion   (1)   ho lds .  
This la t ter  r e su lc  is apparent ly   not  as well h o m ,  
so a simple  der ivat ion is given i n  Appendix A. It 
is  important  because it  o f f e r s  a way t o   a d j u s t  ob- 
servers so that fu l l - s ta te   loop   t ransfer   charac-  
teristics are recovered a t  Poin t  X. I n   p a r t i c u l a r ,  
suppose  the  observer  gains are parameterized as a 
function  of a scalar var iab le   q .  L e t  t h i s  fune- 
t i on ,   K(q ) ,   be   s e l ec t ed   such   t ha t  as q * 00 

K(q) * q BW ( 2) 

f o r  any nonsingular matrix W. Then equation  (1) 
will be   s a t i s f i ed   a symto t i ca l ly  as q * m. The re- 
su l t i ng   obse rve r   e r ro r  dynamics will have  l imit ing 
poles  given by r o o t s  of the  polynomial 

$(s) 5 det(s1-A)det [I + ~C(SI-A)-~BW]. (3) 

P of   these   roo ts  w i l l  tend  toward  the P f i n i t e  
transmission  zeros of t h e   p l a n t ,  i.e. the  zeros  of 
polynomial 

$(s) = det(s1-A)det [C(sI-A)-lB] 

which are s t a b l e  by assumption,  and  the rest will 
t e n d   t o   i n f i n i t y .  It is c l e a r  from t h i s   t h a t   t h e  
commonly suggested  approach of  making a l l  roots of 
t h e   e r r o r  dynamics a r b i t r a r i l y   f a s t e r  is  genera l ly  
t h e  wrong t h i n g   t o  do. 

3. An Observer-Adjustment  Procedure 

Equation (2) def ines   t he   r equ i r ed   l imi t ing  
cha rac t e r i s t i c s   o f  an adjus tment   t ra jec tory ,  K ( q ) ,  
which  changes  arbi t rary  ini t ia l   nominal   observer  
ga ins ,  K(o), with  poor   robustness   propert ies   into 
bet ter   gains   asymptot ical ly .  We s t i l l  need t o  de- 
f i n e   d e t a i l s  of   such  t ra jector ies .  

A basic  requirement  for  every  point  of an ad- 
jus tment   t ra jec tory  is s t a b i l i t y  of the  observer 
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e r r o r  dynamics.  Clearly, i f  we v i o l a t e   t h i s  re- 
qui rement ,   overa l l   c losed   loop   s tab i l i ty  is a l s o  
l o s t .  (Note that this   does  not  mean that t h e   n e t  
coPpensator  within  the  dashed  l ines  of  Figure 1 B  
needs  to   be  s table) .  One  way t o   a s s u r e   s t a b l e  er- 
r o r  dynamics is t o   r e s t r i c t   t h e   o b s e r v e r   t o   b e  a 
Kalman f i l t e r   f o r  some set of noise  parameters.  
That is, let 

K(q) = E($ CT R-l 

with  E(q)  defined by the  Riccati equation 

Ac + CAT + Q(q) - ZCTR-lCE = 0 (5) 

As u ua l  we take  Q = Q 3 o and R = R > o with  
(A,Q ) and (C,A) s t a b i l i z a b l e  and observable re- 
spectively.   For Kalman f i l t e r s ,   t h e s e  matrices 
represent  given  process  noise  and measurement no i se  
i n t e n s i t i e s .  Here they are t r e a t e d  more f r e e l y  as 
design  parameters  which we can s e l e c t   t o   s u i t  
broader   purposes .   In   par t icular ,  l e t  

s: T T 

Q(q) = Q, + q2BVBT 

R = R  
0 (7 )  

where Q and R a r e   n o i s e   i n t e n s i t i e s   a p p r o p r i a t e  
f o r  the'nomina? p l an t ,  and V is any p o s i t i v e   d e f i -  
n i t e  symmetric matrix. With these   s e l ec t ions ,   t he  
observer   ga in   for  q = 0 corresponds  to  the  nominal 
Kalman f i l t e r   g a i n .  However, as q approaches in- 
f i n i t y ,   t h e   g a i n s   a r e   s e e n  from  (5) t o   s a t i s f y ,  

K R KT + q2 BVB T 

and 

K -+ q B V4 (R')-l 

where V denotes some square  root  of V, i .e.  + 
4 T 4  (V ) V = V and,   s imilar ly ,  R i s  some square  root  

of R. Since (8) i s  a s p e c i a l  case of  (2), i t  fo l -  
lows that   the   adjustment   procedure  def ined by (4)- 
(7) will achieve  the  desired  robustness-improve- 
ment ob jec t ive .  
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Note t h a t   t h e  second term in equation ( 6 )  can 
be   in te rpre ted  as extra   process   noise   added  direct-  
ly   to   the   cont ro l   input   o f   the   p lan t .   Wi th in   the  
cons t ra in ts   o f  Kalman f i l t e r  mathematics,  such 
" f i c t i t i ous   no i se"  is a n a t u r a l  mechanism t o  rep- 
r e sen t   unce r t a in t i e s  a t  t h i s   p o i n t  of t he   con t ro l  
loop. It is  n i c e   t o  know t h a t   t h e   r e s u l t i n g   f i l -  
ter design  actual ly   responds  with a corresponding 
robustness improvement.  Note,  however, t h a t   a r b i -  

Q = ( 1  + q2) Q or   addi t ion   o f  a r b i t r a r y   f u l l  
t r a r y  increases  of t h e   e x i s t i n g  noise   mat r ix   ( i . e . ,  

rank   no ise   p roeess   ( i . e . ,  Q = Q, + q2W with 
W = UT > 0) which are often  suggested as o the r  in- 
tu i t i ve   robus tness  improvement  methods, will not 
in   genera l   p roduce   the   des i red   e f fec t .  

F ina l ly ,  we no te   t ha t   t he   u se  of Kalman f i l t e r  
equations in the  adjustment  procedure i s  not fun- 
damental. The f i l t e r s  merely  provide a convenient 
way to   de f ine  a K(q) funct ion  which  assures   s tabi l -  
i t y   a long   t he   en t i r e   ad jus tmen t   t r a j ec to ry  and  has 

the   des i red   l imi t ing   behavior  (2) .  Any o the r  pro- 
cedure  (pole  placement,  for  example)  with  the sape 
propert ies   could  be  used as vell. We emphasize, 
however, t h a t  both s t a b i l i t y   a l o n g   t h e   t r a j e c t o r y  
and  asymptotic  behavior must be  achieved.  Bence, 
such  "obvious"  choices as 

K(q) Z q BW 

w i l l  only work for   spec ia l   sys tems which a r e  sta- 
bi l izable   with  high  gain  output   feedback  a lone.  
The  Kalman f i l t e r   c h o i c e  (a), i n   c o n t r a s t ,  works 
f o r  a l l  cont ro l lab le ,   observable  minimum-phase 
p lan ts .  

4. An Example 

To i l l u s t r a t e   t h e   o b s e r v e r   p r o p e r t i e s  and ad- 
justment  procedure  above,  consider  the  folloving 
example : 

Plant :  

- =  d" lo q x + [ o 1  u 

p =  [2 1 1 x + q  

with E ( 6 )  = E (q) = 0; 

E [E( t )S ( t ) l  = E[q(t)q(T)] = 6 ( t - d  

Ccnt ro l le r :  

u = [-50 -103 2 + [50] r (11) 

The p l a n t   i n   t h i s  example is  a (harmless)   s tab le  
system  with  transfer  function. 

3 s )  = (s + l ) ( s  + 3) 
s + 2  

The contol ler   happens  to   be a l inear-quadrat ic   one,  
corresponding  to  the  performance  index 

m 

J /(xTHTHx + u 2 ) d t  

0 

with 

H = 4 5  [p 11 
It places   the   c losed   loop   regula tor   po les  a t  

s = -7.0 f j2 .0  

A Nyquist  diagram  (polar  plot of the   loop   t ransfer  
func t ion  a t  Poin t  X) f o r   t he   fu l l - s t a t e   des ign  is 
given in Figure 2.  Gain  margin is i n f i n i t e  in 
both   d i rec t ions  and the re  is over 85' phase  margin. 
The design is then  implemented  using a Kalman f i l -  
ter for   the   g iven   no ise   parameters .  The Nyquist 
p lo t   for   the   resu l t ing   observer -based   cont ro l le r  
i s  a l s o  shown in   F igu re  2. Oops.. . less than 15' 
phase  margin. 

I n  an e f f o r t   t o  improve this  margin,   one ad- 
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jus tment   to   the  filter tha t   could   be  made is t o  
speed it up. So, we can t r y  moving t h e   f i l t e r / o b -  
server p o l e s   t o   t h e   l e f t  in a second-order 
But terworth  pat tern.   For  the f i l t e r / o b s e r v e r  
po les  a t  -22 t 17.86j  one  gets  the  third  Nyquist  
p l o t  in Figure 2 .  As can   be   seen ,   the   resu l t s   a re  
less t h a n   s a t i s f a c t o r y .  Not only are the  margins 
disappearing (now less than 10 degrees)   but   the  
loop  bandwidth  has  increased  (crossover  has  gone 
from  approximately  12. t o  40. rad/sec).  

Unless we're t ry ing   to   des ign   an   explos ive  
dev ice ,   t h i s  i s  c lear ly   undes i rab le .  It ge t s  
worse as t h e   f i l t e r   g e t s   f a s t e r .  I n  f a c t ,  it can 
be  shown tha t   the   margins  go asymptot ical ly   to  ze- 
r o   f o r   l a r g e   g a i n s ,  while the  loop  bandwidth  goes 
t o   i n f i n i t y .  The present  example is not  a patho- 
log ica l   one ,   e i ther .   S imi la r ly   undes i rab le   char -  
a c t e r i s t i c s   f o r   f a s t   f i l t e r s  are obtained  with 
most systems . 

When the  observer  adjustmeht  procedure  of 
Section 3 is app l i ed   t o   t he  same example, much 
more pleasing  behavior is obtained.  Following ( 6 ) -  
(7) ,  we l e t  the  process   noise   covariance  matr ix   be 

Q =I 35) (35 

-6 1 

We then increase q 
compromise  between 
ness  is achieved. 

f rom  zero  unt i l  a reasonable 
noise  performance  and  robust- 
Some r e s u l t s  of t h i s   p rocess  

are ,s lmmarized  in   Figure 3 and Table 1. Figure 3 
shows Nyquist  diagrams  for  q2 = 100,  500,  lOo0, 
and  10,000.  Margins  improved w i t h   e s s e n t i a l l y  no 
change i n  bandwidth as the  modif ied  loop  t ransfer  
funct ion  tends  toward  ful l  state optimal.  Noise 
performance is summarized in   Tab le  1 f o r   t h e  same 
set of q values.  As expected,   the   error   covari-  
ance   o f   t he   ad jus t ed   f i l t e r   w i th   r e spec t   t o   t he  
or iginal   noise   increases   markedly  with q. How- 
ever ,   there  was n o t   t h e  same d e t e r i o r a t i o n   i n  
s ta te  covariance. 

Table 1 also  doc&nts  other  parameters as- 
sociated  with  these  design  points  - - poles   o f   the  
e r r o r  dynamics,  margins,  and f i l t e r   ga ins .   No te  
in p a r t i c u l a r   t h a t   t h e   f i l t e r   p o l e s   t e n d   t o w a r d  
the  plant   zero  and  toward  inf ini ty ,  as required by 
( 3 ) .  

This adjustment  procedure was also success- 
f u l l y   a p p l i e d   t o   r e c o n s t r u c t i o n   o f  measured  out- 

PSI 
u t s   a f t e r   s e n s o r   f a i l u r e s   f o r   t h e  A7-D a i r c r a f t .  . In this a p p l i c a t i o n   t h e  optimum  Kalman f i l -  

ter pradnced an  unstable  system when t e s t ed  in hy- 
br id   s imula t ion   over   the  A7-D f l igh t   enve lope .  
After attempts with "ad  hoc" f i c i t i t i o u s   n o i s e  ad- 
justment   procedures   fa i led  the method discussed 
here successfu l ly   s tab i l ized   the   sys tem.  Also, 
t he   r e su l t i ng   e r ro r   cova r i ance   p rope r t i e s  re- 
mained  closed t o   t h e  optimum values.  

5.  Conclusions 

T h i s   p a p e r   i l l u s t r a t e s  some o f   t h e   d i f f i c u l t i e s  

one can   ge t   i n to   by   r e ly ing  on obse rve r s   fo r  state 
recons t ruc t ion .  We have concentrated on robust- 
ness   propert ies .  I n  general ,   these will be  poorer 
for   observer-based  implementat ions  than  for   ful l -  
state implementations.  For minimum-phase systems, 
however, ful l -s ta te   robustness   can  be  recovered 
asymptotically  provided i t  is  done  correct ly .   Fast  
observers are not   in   genera l   cor rec t . ,  A " f i c t i -  
t ious  noise"  adjustment  procedure was suggested 
which is .  

The appa ren t   p rac t i ca l   va lue  of t h i s  proce- 
dure is t h a t  i t  g ives  a simple way of t rad ing   of f  
between n o i s e   r e j e c t i o n  and margin  recovery. When 
q = 0, t h e   n o i s e   f i l t e r  w i l l  be   opt imal   with re- 
spect  to  the  "true"  (as  modelled)  system  noise.  
As q i n c r e a s e s   t h e   f i l t e r  w i l l  do a poorer  job  of 
no i se   r e j ec t ion   bu t   t he   c losed - loop   s t ab i l i t y  mar- 
g ins  w i l l  improve.  Hopefully, a s a t i s f a c t o r y  com- 
promise  can  be  found  through  the  adjustment  of  the 
single  parameter  q.  We s t r e s s   t h a t  margin  recov- 
ery  occurs  a t  Poin t  X i n   F igu re  1 -- a t   t h e  con- 
t r o l   s i g n a l   i n t e r f a c e   t o   t h e   o u t s i d e   w o r l d .  As- 
ympto t ica l ly ,   the   fu l l - s ta te  and observer-based 
implementations w i l l  have  the same t o l e r a n c e   t o  
disturbances and uncertain  e lements   inser ted a t  
th i s   po in t .  While Poin t  X is c l e a r l y  a phys ica l ly  
important  one ( more inpor t an t   t ha t   Po in t  XX, cer- 
ta in ly) ,   engineers  who  may wish t o   t e s t   r o b u s t n e s s  
a t  still  o ther   po in ts   in   the   cont ro l   loop   should  
recognize  that   the   recovery  resul ts  may not  be  ap- 
p l i cab le   t he re .  

The suggested  adjustment  procedure is essen- 
t i a l l y   t h e   d u a l  of a sens i t i v i ty   r ecove ry  method 
suggested by  Kwakernaak[7]. The la t ter  provides a 
method f o r   s e l e c t i n g   t h e   w e i g h t s   i n   t h e   q u a d r a t i c  
performance  index so t h a t   f u l l - s t a t e   s e n s i t i v i t y  
p rope r t i e s  are achieved  asymptotically  as  the con- 
t ro l   weight   goes   to   zero .  I n  t h i s   c a s e ,  however, 
c losed  loop  plant   poles   instead of observer   poles  
a re   d r iven   to   the   sys tem  zeros ,   which   can   resu l t  
in   unacceptable   c losed  loop  t ransfer   funcion ma- 
trices f o r   t h e   f i n a l  system. 
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APPENDIX A: Derivation  of  Property 4 

Referr ing  to   Figure IA, t he   l oop   t r ans fe r  
func t ion  from u" t o   u t   o f   t h e   f u l l  state imple- 
mentation i s  obtained  f rom  the  re la t ionships  

x = 0 (Bu" + Fv) (A. 1)  

U '  = -H H X,  1 2  (A. 2) 

where 

0 = (SI - A j l  (A-3) 

4 



v = - G G x .  1 2  (A. 4) 

The  variables  v  above  are  not  shown  in  Figure 1 for 
the  sake  of  simplicity.  They  denote  the (m - p) 
control  components  for  which  loops  are  not  broken 
in  the  event  that  p < m. Matrices  F,  G , and G2 
are  thecontrol  input  matrix and the  feeaback  com- 
pensator  matrices  for  these  components,  respective- 
ly.  If  the  original  plant  is  square  or  can  be  made 
square  by  augmenting  (p - m)  additional  control 
variables,  then v, F  G and G  are  zero  identical- 
ly.  For  either situation, (A.l) - (A.4)  define 
the  following  full-state  loop  transfer  function: 

2 

u' = -H1H2(I + 0 FG1G2) 0 Bu" -1 
(A * 5) 

The  corresponding  relationships  for  observer-based 
implementations  are  (Fig.  1B). 

= (9 + KC)-' {But + Fv + KOP(Bu" + Fv)} 
= ( 0-l + KC)-'  {Bu' + KC@ Bu" + (@-' + KC) 

-1 

0 Fv} 

=. ( P-' + KC)-' {But + KCO Bu"} + 0 Fv 
(A * 6) 

with 

ut -B H 9 1 2  

v s -G1G28  (A.7) 

This  gives 

ut -H~H~(I + QFG~G~)-~  6-l + KC)-' 
{Bu' + KC0 Bu")  (A.8) 

Now  applying  the  Matrix  inversion  leurma [9] to  the 
( O  - 1 + KC)-l  term in  this  expression  gives 

U' -H1B2(I 
C 

= -H H (I 
C 

1 2  

+ OFG1G2) [@ - OK -1 

6 ] {BU? + K C O B U ~ ~  
+ a FG~G,)-' o B - 
OB]u' 

(I + OPK)-' 

K(I + COK)-' 

-H~H~(I + OFG,G,)-' OK (I + c 9 ~ 1 - l  

C O Butt . (A.9) 

From  (A.9)  it  follows that if (1) is  satisfied, 
then  the ut term  on  the  right  hand  side  vanishes 
and  the  ut'  term  is  identical  to (A.5). Since  ut' 
is  arbitrary,  this  establishes  the  claimed  equal- 
ity  of  loop  transfer  functions. 
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