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Abstract

This paper describes an adjustment procedure
for observer-based linear control systems which
asymptotically achieves the same loop transfer
functions (and hence the same relative stability,
robustness, and disturbance rejection properties)
as full-state feedback control implementations.

1. Introduction

The trouble with observers is that they tempt
us, through the expedient of state reconstruction,
to assign undue generality to control results
proven only for the full-state feedback case. An
example is the recent robustness result of Safonov
and Athans [1]. This result shows that multivari-
able linear-quadratic optimal regulators have im-
pressive robustness properties, including guaran-
teed classical gain margins of - 6 db to + = db
and phase margins of * 60 deg. in all channels.
The result is only valid, however, for the full
state case. If observers or Kalman filters are
used in the implementation, no guaranteed robust-
ness properties hold. 1In fact, a simple example
has shown that legitimate LQG controller-filter
combinations exist with arbitrarily small gain
margins in both the positive and negative db di-
rection [2].

In light of these observations, the robustness
properties of control systems with filters or ob-
servers need to be separately evaluated for each
design. Moreover, because such evaluations can
come up with embarassingly small margins, a "de-
sign adjustment procedure’ to improve robustness
would be very desirable. The present paper pro-
vides such a procedure. We show that while the
commonly suggested approach of "speeding-up" ob-
server dynamics will not work in genmeral, alter-
nate procedures which drive some observer poles to-
ward stable plant zeros and the rest toward infin-
ity do achieve the desired objective. 1In effect,
full-state loop-transfer properties can be recov-
ered asymptotically if the plant is minimum phase.
This occurs at the expense of noise performance.

The principal results of the paper are summa-
rized in Section 2., where we introduce and inter-
pret certain transfer function properties of ob-
server-based control systems, and in Section 3,

1

G. Stein

Honeywell SRC

2600 Ridgway Rd

Minneapolis, MN, and

Massachusetts Institute of Technology
Cambridge, MA

where we develop the "adjustment procedure". A
simple example which illustrates these results is
given in Section4,

2. Transfer Function Properties of
Observer-Based Controllers

We consider the general multivariable control
loop illustrated in Figure 1. The plant is an
n-th order linear system, both observable and con-
trollable, with m inputs, p=m outputs, and no
transmission zeros [3] in the right half plane.
The control law consists of two transfer function
matrices H (s) and H_(s). H is driven either
with full—state feedgack (Fig 1A) or with an
n-th order observer [4] which reconstructs the
state in the usual asymptotic sense (Fig. 1B). It
is clear that this overall control loop includes
linear-quadratic-gaussian controllers as special
cases. It also allows dynamic elements such as
integrators and lag elements which may be required
in more realistic control situations.

This configuration also applies to nonsquare
plants for which the number of controls, m, is not
equal to the number of measurements, p. For the
case, m < p, simply augment the original control
vector with (p-m) more components which are not
driven by the controllers (i.e., H =[H11,0])
Columns of the B matrix for these
ed components must, of course, be selected to in—
troduce no unstable transmission zeros. For the
case, m > p, select any p-dimensional subset of
controls for which there are no right plane trans-
mission zeros. Then the loop transfer properties
which are established in this paper apply to this
p-dimensional subset of control loops, with the
remaining (m-p) loops closed.

A dashed line is shown in both Figure IA and
IB in order to distinguish between elements of the
loop which are part of the controller and those
which are part of the plant. Since we design and
implement the controller, there is relatively lit-
tle uncertainty associated with it, whereas there
may be significant differences between the actual
plant and its model. The loop transfer functions
which we examine for robustness, below, are then
taken with respect to the loop breaking point, X,
at the control signal interface between these two

sets of elements. Ver¥ misleading robustness re-
sults can be obtained ¥or alternate loop breaking
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points, for example Point XX. This is also shown
below.

Figure 1. Linear Multivariable Control Loop
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1A. Full-State Feedback Implementation
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1B. Observer-Based Implementation

The following properties can be established for the
above two control loop implementations:

Property 1
The closed loop transfer function
matrices from command r to state
x are identical in both imple-
mentations.

Property 2
The loop transfer function matrices
from control signal u' to control
signal u (loops broken at Faint
XX) are identical in both imple-
mentations.

Property 3
The loop transfer functions from
control signal u" to control signal
u' (loops broken at Point X) are
generally different in the two im-
plementations. They are identical
if the observer dynamics satisfy

K[I + C (sI-A)"'KJ™'= B [c(s1-a) "1 ]’l(
1)

The first two of these properties are very well
known [ 5,6 ]. They can be easily verified by not-
ing that the transfer functions from u' to x and
from u' to % are identical because the nominal
error dynamics of the observer are not controllable
from u'. Hence, the error dynamics are not excited
by inputs r to the closed loop system or by inputs
u' to the system with loop broken at point XX.

The first two properties are also the source
of much of the temptation surrounding observers,
however. We see that input/output properties are
the same and even certain loop transfer functions
are the same. The latter promise equal relative
stability properties, equal tolerance to uncertain-
ties (robustness), and equal disturbance rejection
properties. What more could we ask for? The prob-
lem, of course, is that the loop transfer proper-
ties are the same at Point XX, inside our own con-
trol implementation where only masochists would
insert significant uncertain elements or disturb-
ances. According to Property 3, equal loop trams-
fer characteristics are not obtained at the control
signal interface to the plant, Point X, where Na-
ture gets to insert uncertainties and disturbances.
It is at this point that robustness properties must
be measured, and, as seen in [2], it is here that
observer-based implementations can fall well short
of our objectives.

The fact that loop transfer functions will in
general be different at point X follows by noting
that, unlike before, the observer error dynamics
do get excited in response to inputs u" with loops
open at X. The more interesting fact is that such
differences are avoided if equation (1) holds.

This latter result is apparently not as well known,
so a simple derivation is given in Appendix A. It
is important because it offers a way to adjust ob-
servers so that full-state loop transfer charac-
teristics are recovered at Point X. In particular,
suppose the observer gains are parameterized as a
function of a scalar variable q. Let this func-
tion, K(q), be selected such that as q > ®

K(q) =+ qBW ()]

for any nonsingular matrix W. Then equation (1)
will be satisfied asymtotically as q + », The re-
sulting observer error dynamics will have limiting
poles given by roots of the polynomial

¥(s) = det(sI-A)det [I + qC(sI-A)"'BW]. (3)

P of these roots will tend toward the P finite
transmission zeros of the plant, i.e. the zeros of
polynomial

¥(s) = det(sI-A)det [C(sI-A) 5]

which are stable by assumption, and the rest will
tend to infinity., It is clear from this that the
commonly suggested approach of making all roots of
the error dynamics arbitrarily faster is generally
the wrong thing to do.

3. An Observer-Adjustment Procedure

Equation (2) defines the required limiting
characteristics of an adjustment trajectory, K(q),
which changes arbitrary initial nominal observer
gains, K(0), with poor robustness properties into
better gains asymptotically. We still need to de-
fine details of such trajectories.

A basic requirement for every point of an ad-
justment trajectory is stability of the observer



error dynamics. Clearly, if we violate this re-
quirement, overall closed loop stability is also
lost. (Note that this does not mean that the net
compensator within the dashed lines of Figure 1B
needs to be stable). One way to assure stable er-
ror dynamics is to restrict the observer to be a
Kalman filter for some set of noise parameters.
That is, let

’ -
K(q) = Z(@) ¢’ &7 ()
with Z(q) defined by the Riccati equation

Az + 3AT + Qo) - z¢R ez = 0 5)
AsugualwetakeQ=QT>oandR=RT>owith
(A,Q% and (C,A) stabilizable and observable re-
spectively. For Kalman filters, these matrices
represent given process noise and measurement noise
intensities. Here they are treated more freely as
design parameters which we can select to suit
broader purposes. In particular, let
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Q) = Q_ + q°BvB" (6)

R = RO @)

where Q and R are noise intensities appropriate
for the nominag plant, and V is any positive defi-
nite symmetric matrix. With these selections, the
observer gain for q = 0 corresponds to the nominal
Kalman filter gain. However, as q approaches in-
finity, the gains are seen from (5) to satisfy,

T 2 T

KRK + q° BVB

and

»

K +qBV &

-1

(R (8

where V;5 denotes some square root of V, i.e.

(V‘;E)TVL5 = V and, similarly, R% is some square root
of R. Since (8) is a special case of (2), it fol-
lows that the adjustment procedure defined by (4)-
(7) will achieve the desired robustness—improve-
ment objective.

Note that the second term in equation (6) can
be interpreted as extra process noise added direct-
ly to the control input of the plant. Within the
constraints of Kalman filter mathematiecs, such
"fictitious noise" is a natural mechanism to rep-
resent uncertainties at this point of the control
loop. It is nice to know that the resulting fil-
ter design actually responds with a corresponding
robustness improvement. Note, however, that arbi-
trary increases of the existing noise matrix (i.e.,
Q=(1+ qz) Q or addition of arbitrary full
rank noise process (i.e., Q = Q_ + q2W with
W=wu > 0) which are often suggested as other in-
tuitive robustness improvement methods, will not
in general produce the desired effect.

Finally, we note that the use of Ralman filter
equations in the adjustment procedure is mot fun-
damental. The filters merely provide a convenient
way to define a K(q) function which assures stabil-
ity along the entire adjustment trajectory and has

the desired limiting behavior (2). Any other pro-
cedure (pole placement, for example) with the same
properties could be used as well. We emphasize,
however, that both stability along the trajectory
and asymptotic behavior must be achieved. Hence,
such "obvious" choices as

K(q) = q BW

will only work for special systems which are sta-
bilizable with high gain output feedback alone.
The Kalman filter choice (8), in contrast, works
for all controllable, observable minimum-phase
plants.

4., An Example

To illustrate the observer properties and ad-
justment procedure above, consider the following
example:

Plant:
0 1 0 35
%% = x + u+ £ 9)
-3 =4 1 -61
v=[2 1] x+ 1 (10)

with E (§) = E (n) = 0;
E [E()E(T)] = E[n(e)n(D)] = §(t-1)
Centroller:
u=[-50 -10] &+ [50] r (11)

The plant in this example is a (harmless) stable
system with transfer function.

s + 2
O e TRy az

The contoller happens to be a linear-quadratic one,
corresponding to the performance index

(&
]

f («xTH'Ex + u) dt (13)
[o]

with

H

4¢y5 [y 1]
It places the closed loop regulator poles at
s = -7.0 £ j2.0

A Nyquist diagram (polar plot of the loop transfer
function at Point X) for the full-state design is
given in Figure 2. Gain margin is infinite in
both directions and there is over 85  phase margin.
The design is then implemented using a Kalman fil-
ter for the given noise parameters. The Nyquist
plot for the resulting observer-based controller
is also shown in Figure 2. Oops... less than 15
phase margin.

In an effort to improve this margin, one ad-



justment to the filter that could be made is to
speed it up. So, we can try moving the filter/ob-
server poles to the left in a second-order
Butterworth pattern. For the filter/observer
poles at =22 * 17.86j one gets the third Nyquist
plot in Figure 2. As can be seen, the results are
less than satisfactory. Not only are the margins
disappearing (now less than 10 degrees) but the
loop bandwidth has increased (crossover has gone
from approximately 12. to 40. rad/sec).

Unless we're trying to design an explosive
device, this is clearly undesirable. It gets
worse as the filter gets faster. In fact, it can
be shown that the margins go asymptotically to ze-
ro for large gains, while the loop bandwidth goes
to infinity. The present example is not a patho-
logical one, either. Similarly undesirable char-
acteristics for fast filters are obtained with
most systems.

When the observer adjustment procedure of
Section 3 is applied to the same example, much
more pleasing behavior is obtained. Following (6)-
(7), we let the process noise covariance matrix be

35 (35 -61) 0 (0 1)
Q =‘ ) rq? (14)
-61

1

We then increase q from zero until a reasonable
compromise between noise performance and robust-
ness is achieved. Some results of this process
are summarized in Figure 3 and Table 1. Figure 3
shows Nyquist diagrams for q¢ = 100, 500, 1000,
and 10,000. Margins improved with essentially no
change in bandwidth as the modified loop transfer
function tends toward full state optimal. Noise
performance is summarized in Table 1 for the same
set of q values. As expected, the error covari-
ance of the adjusted filter with respect to the
original noise increases markedly with q. How-
ever, there was not the same deterioration in
state covariance.

Table 1 also documents other parameters as-
soclated with these design points - - poles of the
error dynamics, margins, and filter gains. Note
in particular that the filter poles tend toward
the plant zero and toward infinity, as required by

3.

This adjustment procedure was also success-

fully applied to recomstruction of measured out-
uts after sensor failures for the A7-D aircraft.

8]. In this application the optimum Ralman fil-
ter produced an unstable system when tested in hy-
brid simulation over the A7-D flight envelope.
After attempts with "ad hoc" ficititious noise ad-
Justment procedures failed the method discussed
here successfully stabilized the system. Also,
the resulting error covariance properties re-
mained closed to the optimum values.

5. Conclusions

This paper illustrates some of the difficulties

one can get into by relying on observers for state
reconstruction. We have concentrated on robust-
ness properties. In general, these will be poorer
for observer-based implementations than for full-
state implementations. For minimum-phase systems,
however, full-state robustness can be recovered
asymptotically provided it is done correctly. Fast
observers are not in general correct. A "ficti-
tious noise" adjustment procedure was suggested
which is.

The apparent practical value of this proce-
dure is that it gives a simple way of trading off
between noise rejection and margin recovery. When
q = 0, the noise filter will be optimal with re-
spect to the "true" (as modelled) system noise.

As q increases the filter will do a poorer job of
noise rejection but the closed-loop stability mar-
gins will improve. Hopefully, a satisfactory com-
promise can be found through the adjustment of the
single parameter q. We stress that margin recov-
ery occurs at Point X in Figure 1 -- at the con-
trol signal interface to the outside world. As-
ymptotically, the full-state and observer-based
implementations will have the same tolerance to
disturbances and uncertain elements inserted at
this point. While Point X is clearly a physically
important one ( more inportant that Point XX, cer-
tainly), engineers who may wish to test robustness
at still other points in the control loop should
recognize that the recovery results may not be ap-
plicable there.

The suggested adjustment procedure is essen-
tially the dual of a sensitivity recovery method
suggested by Kwakemaak [7]. The latter provides a
method for selecting the weights in the quadratic
performance index so that full-state sensitivity
properties are achieved asymptotically as the con-
trol weight goes to zero. In this case, however,
closed loop plant poles instead of observer poles
are driven to the system zeros, which can result
in unacceptable closed loop transfer funcion ma-
trices for the final system.

ACKNOWLEDGEMENTS

We would like to thank the Math Lab Group,
Laboratory for Computer Sciences, MIT for use of
their invaluable tool, MACSYMA, a large symbolic
manipulation language. The Math Lab Group is sup-
ported by NASA under grant NSG 1323 and DOE under
contract #E(11-1)-3070.

APPENDIX A: Derivation of Property &
Referring to Figure 1A, the loop transfer

function from u" to u' of the full state imple-
mentation is obtained from the relationships

x =¢ (Bu" + Fv) (A.1)

u' = -HHyx, (A.2)
where

o = (sI - A)L (A.3)



= -G1G2x . (A.4) 1978.
. . 3. MacFarlane, A. G. J. and Karcanias, N., "Poles
E:e va;iabiesi: TEOY§ areT:Ot zhow: 1:h£1%urf l)for and Zeros of Linear Multivariable Systems: A
€ saxe of simp.lclty. ey cenote on-p Survey of Algebraic, Geometric, and Complex
control components for which loops are not broken "
X Variable Theory," Int. J. Control, July 1976,
in the event that p < m. Matrices F, G,, and G 33-74
are the control input matrix and the fee&back com— PP- -
pensator matrices for these components, respective- .
ly. 1If the original plant is square or can be made 4 g:z::iz::nzilc'lg?gertain D ic Systems,
square by augmenting (p - m) additional control ’ :
variables, then v, F G, and G, are zero identical- .
Iy: For stther sieuachon, G2 - Go) detine > Remkermealy B and siven, R, Lisear optfen]
the following full-state 1oop transfer function: XOREI0L SySTEms, ’ :
6. Anderson, B. D. O. and Moore, J. B., Linear
[ - n ’ E s Lllleal
v o= -HH) (1 +'°FG ¢ ) ¢Bu (a.5) Optimal Contol, Prentice-Hall, 1971.
The corresponding relationships for observer-based 7. FKwakernaak, H., "Optimal Low-Sensitivity Lin-
implementations are (Fig. 1B). ear Feedback Systems," Automatica, Vol. 5, No.
A -1 -1 3, May 1969, p.279.
X =( " +KC) ~ {Bu' + Fv + KOb (Bu" + Fv)}
-1 -1 -1 8. Cunningham, T.B., Doyle, J. C., and Shaner, D,
= (& ~ + KC) {Bu' + KC% Bu" + (@ + KC) A., "State Reconstruction for Flight Control
3 Fv} Reversion Modes", 1977 IEEE Conference on De-
-1 -1 cision and Control, New Orleans, December 1977.
= (% ~ +KC) ~ {Bu' + KCOBu"} +¢Fv (A.6)
‘ 9. Householder, A. S., "Principles of Numerical
with Analysis," McGraw-Hill, New York, 1953.
T = o
u Hlﬂzﬁ
v = —Glei (A.7)
This gives
1 1 1 FF> }JLLTEESR A“{'l ™
u' = -EH (I +0F6,G,)" @ = + KC)~ 22417.86)
{Bu' + KC® Bu"} (A.8)
Now applying the Matrix inversion lemma [9] to the
(2-1 + RC)-1 term in this expression gives 0 -2
, 1 -1 30 100 250 = .igg
= - - 5
u H,8,(I +¢¥G,G,) [ - oK (I + ®K) 0.2 50 e
Ca Bu' + KCOBu" 10
] {Bu u"} 2 -
1 -1 0.5
= —H1H2(I + 9 Fclcz) ¢[B-K(IL+COK) 1.0 b 20
C ®Blu' OPTIMAL
FILTER
~H (I +8F6,C)) " 9K (I + C#K)™!
v—/
C $Bu". (A.9) 1047
From (A.9) it follows that if (1) is satisfied,
then the u' term on the right hand side vanishes
and the u" term is identical to (A.5). Since u"
is arbitrary, this establishes the claimed equal- FULL STATE

ity of loop transfer functioms.
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Figure 2. Loop Transfer Functions of Example:
“Fast Filter" Adjustment Procedure
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Figure 3. Loop Transfer Function of Example:
"Fictitious Noise" Adjustment Procedure o = o
FILTER GAIN PHASE ERROR STATE FILTER
POLES MARGIN MARGIN COVARIANCE COVARIANCE GAIN
db deg € [ (-x(x-0)7 ] Elxa")
Optimal 97 - 163 221 - 613 30
N
LGG Design -7-2§ - 6.75 15
- 163 277 -613 2070 - 50
Fast Filter Adjust- . 6284 -12224 130 - 613 720
ment Procedure . -22-17.864 - %8 <10
-12224 23788 -613 8517 -1400
Fictitious Adjust- -4.3 107 - 184 236 -613 26.8
ment Procedure -17.73 19
q = 100 -13.1 - 184 319 -613 1812 -10.2
2 -2.9 163 - 301 268 -613 20.4
q° = 500 -10.9 33
=24 -301 564 -613 1497 - 1.7
2 3 -2.5 204 -385 285 -613 16.7
q¢ =10 13.9 42
-33 -385 743 -613 1360 - 1.9
P ‘ -2.1 290 -570 317 -613 6.9
q“ =10 -37 7
-100 -570 1169 -613 1198 84.6
TABLE 1. SUMMARY OF EXAMPLE




