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Abstrat
An accurte multivariale tranfer fwution modd of an

expmental strutur i reque fo resarch ivdving ro-
but control of lexible stru niilly, a multfi-iput/multi-
output modl of the sctre is genert Usn the ite de-
meat method. This model was isuffiiet de toits vaiatioa
from the experimtal data. Therein, Chebynhev polyno-
min are employed to it the data with a sigl-input/multi-
output transfer function models. Combining thes lead to a
multivariable model with more moda thia the orginal bite
element modeL To fid a phyically motivated mod, an ad
hoc model reduction techique whic - & priorin kowl-
edge of the rcture is developed. The ad hoc approach is
compared with banced raizafio model reductioa to de-
termite its be s.fit Plots of sdect transer function modds
ad expemet data are induded.

1 Introduction
This paper documents our expeiene with modeling and idenstica-
tion of a flexible structure for the purposs of control design. The
are nonew theoretical resuts in the ppe, only applcation of curve
fitting and model reduction tcniq These technique provide
an ad hoc approach to system identification, though a more sys-
tematic method is desred. We will try to motivate some important
rearch direction in this area

Initially, a theretical model of the flexible structure is developed
ung the finite element method. The natural frequeneis and modes
shapes of the model vary comnideably from the experimental data.
These variations are attributed to inaccuracies in the modeling of
interaction between the actuators and the structure, and to a leser
extent, the modeling of the joints in the structure.

Chebyshev polynomial curve fitting is used to formulate single
input/multi-output (SIM1O) trnsfer function models from experi-
mental data to provide more accurate models. A multi-input/multi-
output (MIMO) transfer function model is constructed from the in-
dividual Chebyshev SIMO models, with the resulting MIMO model
having the sme number of states as the sum of the states of each
S1M0 model. In most cas, this leads to a number of exces states
in the MIO(10 model which are not motivated from the physics of
the problenL A direct MIMO curve fitting method has been de-
veloped [DaiLuk], but its implementation presents some numerical
problems and is not used.

Two methods are used to construct a reduced order MIMO
model from the- SIMO model- 1) using physically motivated ar-
guments to combine states of the system, 2) balanced truncation.
These methods provide varying degree of accuracy in approximat-
ing the experimental data. For use in control degn, the variation
between the experimental data and the model needs to be taken
into account. If one were to assume that the uncertainty in the
model was zero, the control designs based on these models would
be unstable on the real system. Similarly, if the difference between
the model and the experimental data is accounted for by pure ad-
ditive noie, an unstable control design would also be synthesized.
Therefore, parametric and unstructured uncertainty models for the
system are developed in an nd-hoc fashion.
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it is apparent that there are a number of shotoming nasci-
ated with thee mehods for modelin and identification of flexible
structures for control deign. Some of the imu in need of attention
are:

1. More sraighfwrd ad irec 1MM0 modeling
2. Ideanifcatio metods whick produc nminal moddes with both

perturbatons ad aise. For control deign, thee i an explt
need for unocrainty model

3. Better bitenet models. Of picar ce is te prob-
lem of producig nominal an ncertain models nain the bite
elemnt method. These are bound to be conservative, but they wil
be better tha the those usd herein in the tial control desgn.

4. Better onnctio between the bite elemet model and the identi-
fied model Thee should be a way of incorporatn post-dentification
model of the sysm isto updating the bite emt modd of the

Progree in these are will lad to a more integrated famework
with which structural and control design for fexible structures can
be better performed.

2 Objective
The objective of the Caltech flexible structure experiment is to ex-
amine active control tecdhniqe for vibrtion suppresion of fleible
structures. The performance requirement is to provide a signifi-
cant amount of vibration attenuation between the open-loop and
the closed-loop system. Thee exists a tadeoff between the accu-
racy of the transfer function model and the achevable performanee
of the system The high perfonnance specifications on the srcture
require an acurate tranfer function model of the struture together
with a tight description of the amociated uncertainties.

The control desin methodology to be employed most naturally
uses frequency domain descriptions of the plat model, uncertainties
and performance ifications. Therefore, transfer function mod-
els are developed to accurtely describe the experimentally derived
bode plot data in the fiequency domain of interest. Once models
are defined, their variation from the experimental data can be quan-
tified and used to develop ad boc uncertainty models which bound
thee variations

A model reduction technique based on a priori knowledge of the
sysem and singular value decomposition is devdoped to comple-
ment the SIMO Chebyshev curve fitting method. This technique
provides an ad hoc approach for generatin sfficiently accurate
multivariable tander function models of flexible structure For
comparon purposes, model reduction based on balanced realiza-
tions is included fMoore,Enns,Glover].

3 Experimental Flexible Structure
An experimental flexible structure w designed to include a number
ofattributessociated with large flexible space structures [BaDoy].
These include cloely sped and lightly damped modes, noncollo-
cated sensors and actuators, and numerou modes in the controller
crnover region. In addition to these considerations the ability
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to expand the sucture was a desired feature. Expendability pro-
vides a means for icring the modal density in a frequency range
of interest. Another objctive was to design the strueture to have
poor performance with the implementation of a collocat velocity
feedback law at the actuators. This requires that a multivariable
control design methodology be used to achieve the specified perfor-
mance requirements.

The initial experimental structure consists of two stories, three
longerons (columns) and three noncollocated sensors and actuators.
The first story columns are .838 m (33 in.) long with the scond
story columns measuring .759 m (29.9 in.) Including the platforms,
the structure has a height of 1.651 m (65 in.). The two platforms
are triangular in shape with a .406 m (16 in.) base and a height
of .353 m (13.9 in.). A longeron is connected to a platform by a
triangular mating fixture and three bolts. This allows for the easy
addition of stories to the structure. All the longerons are shruni fit
and welded to the mating brackets to reduce the affect of the joint
nonlinearities. Isues associated with joint nonlinearities are an area
of future research. Current plans include expanding the structure
to S stories.

The first story platform is a 9.52 mm (3/8 in.) thick plate of alu-
minulm, weighing 2.36 kg (5.2 lbs), with diagonal mounting brack-
ets for attachment of the actuator diagonals. The second (lower)
story platform is a 6.35 mm (1/4 in.) thick plate of aluminum with
mounting holes for three accelerometers, it weighs 1.55 kg (3.4 Ibs).
A small offset ma is located on the second story platform to lower
the torsional natural fiequencies. The entire structure hangs from
a mounting structure fixed to the ceiling. The thr actuators are
attached to the mounting structure and act along the digonals of
the first story. Hanging the structure from the ceiling alleviates the
problem of buckling of the longerons.

The individual stories are designed to have the same first bending
mode natural frequencies as one another. This requires the stiffness
to mas ratio of each story be the ame. With this in mind, the
second story columns of the truss structure are designed to have
one fourth the benLding stiffness of the first story columns. This al-
lows the interaction of the two stories to decrease the first natural
frequency of the combined structure without significantly spreading
out the remaining modes. The other reason for this is associated
with the poor performance of a collocated velocity feedback design.
Since the two stories have similar first bending mode fiequencies,
which are cloe to the first combined structural bending mode fre-
quencies, requiring the first story to be rigid would provide little
reduction in the scond floor motion for simiar scond story ex-
citation. This would be similar to implementation of a collocated
velocity feedback law at the actuators.

3.1 Voice Coil Actuators
The actuators are a voice coil type desig, built by Northern Mag-
netics Inc., which output a force proportional to an input voltage.
The actuators are rated at + 2.73 kg (6 Ibs) of force at ± 10 volts
and have a bandwidth of approximately 80 Hz. Currently, tets are
being performed to more accurately characterize the input/output
relationship of the actuators.

3.2 Accelerometers
The sensors are Suntrand QA-1400 accelerometers. These are mounted
on the scond (lower) story platform, located along the x-axis, y-axis
and at 45 degrees to both axes. The accelerometers are extremrely
sensitive and have a flat frequency response between 0 and 200 Hz.
The noise associated with them is rated at 0.05 % of the output at
0-10 Hz and 2 % at 10-100 Hz. The sensr are scaled for accelera-
tions of approximately 0.016 g per volt. This provides a maximum
I 5 volts output at peak accelerations of the input disturbance.
The accelerometer output is conditioned by a 100 Hz, 4th order
Butterworth filter [OppSch,Stout] prior to input into the A/D; this
provides attenuation of the high frequency response and noise.

3.3 Modeling
A model of the structure which relates sipals input to the system
to outputs is needed for control design purposes. The synthesis of
control laws utilizes transfer function and/or state space descrip-
tions of the control inputs to sensor outputs. Initially, a theoretical
model is developed from a finite element model (FEM), from which
an input/output model is derived. In addition to the theoretical
model, a transfer function model between the actuators and sensors
is determined via the ad hoc technique presented in this paper. A
state space model is then constructed.

The FEM of the experiment structure provides a first approxi-
mation to the natural frequencies and mode shapes of the structure
[DesAbel]. The beam elements are treated as space frame elements
having three translational and three rotational degrees of freedom
at each node and a torsional stiffness and bending stifness in two
directions. The longerons and diagonals are circular bars which have
the same bending stiffnesse in both directions. The longerons are
modeled as having fixed-fixed ends due to the welding of their end
connections.

The accelerometers, mounting bracket, platforms and additional
masses on the structure are modeled as lumped masses. The inertia
properties of each is taken into account in the finite element descrip-
tion. When the control system is not activated, the diagonals in the
first story ride on the bearings of the voice coil actuators. The diag-
onals are directly connected to the permanent magnetics inside the
voice coil actuators via a threaded rod. No force is exerted along the
diagonals in the open loop configuration. The actuators are mod-
eled as having free motion parallel to the diagonals, and fixed in the
plane perpendicular to the diagonals. In actuality, the diagonals
ride on bearings which exhibit some stiction, friction and free play.
These factors lead to errors between the theoretically determined
trander functions and the experimentally determined ones. The
bearings also cause the damping levels to vary with the excitation
amplitude.

The most flexible directions of the experimental truss structure
are associated with the plane perpendicular to the longerons (the
vertical hanging axis). The degrees of freedom associated with verti-
cal motion, along the longerons, are neglected in the analysis. These
neglected degrees of freedom lead to higher frequency modes be-
tween 35 and 200 Hz, which are outside the 6 Hz bandwidth of the
current control design objectives.

A total of 15 degrees of freedom are included in the finite ele-
ment model. The first six global modes are of interst for control
purposes. The first group of local modes, which involve bending of
the longerons, are located in the frequency range of 37 to 43 Hz.
Vibration attenuation of thes modes is not designed for, but these
modes are consider in the control design to insure that they are not
destabilized.

The following is a list of natural frequencies derived from the
Nastran finite element model and natural frequencies and damping
experimentally derived.

Damping Ratio, ad Natural Prequencies
of the Caltech Experiment

NASTRAN xin
Mode Natural Natural Damping Mode

±n!Fh (zl Frequency (H) Ratio Type
I .991 1.17 1.8 % ltbending
2 .992 1.19 1.8 % lSt bening
3 2.004 2.26 1.0% lSt torsional
4 2.06o 2.66 1.6% 2nd bending
5 2.100 2.75 1.8 % 2nd bending
6 _ 2 _ 4.43 0.9 % 2rd torsional

4 Experimental Transfer ]Functions
A more accuate input/output description of the structure can be
derived experimentally. A white noise random process is used as an
input signal to each voice coil actuator, with the accelerations due
to this signal measured by the sensors. The accelerations are scaled
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to a:chieve a large signal to noise ratio for the disturbace excitation.
With this in mind, the radom noie sigals are scaled accodingly.
This kads to a maum force output from the actuators of *0.5
lbs for the noise input. The input signal, in the form of a voltage
level, is output by the Masomp computer D/A converters to ech
voice coil actuator. The corresponding signals from the ensors are
filtered a 100 Hz, 415 order Butterworth filter [OppSch,Stout],
and. inpUt to the Maoromp computer via the A/D converters. A
sample rate of 200 Hz is used for the identification experiments, the
same as in the cloed-loop control experiments. Each single input
to multi-output identification experiment is rn for a total of 409.8
seconds (81,920 sample points).

A Fourier transform of the time history is performed on each
input/output pair. For the Fourier trasform, the data is chopped
into windows of length 4096 data points. Each window overlaps the
previou oue by 2048 datapoints. A total of 39 windows of data
is averaged for each transfer function. Hamming windowing is usd
on the time domain data to improve the smoothing properties of
the frequency spectrum. A total of nine transfer functions are de-
termined. The Bode plots of four experimentally derived transfer
functions are shown in figures 1 and 2 together with the bode plots
of the finite element transfer function models. In the plots of the
FEM transfer functions, we have substituted the expermentally de-
rived natural fiequencies and damping ratios of the structure for the
Nastran ones. The acronym in the title AiSj means fiom actuator
i to senor j.

One will notice that the agreement is poor between the theoreti-
ca finite elment model and the txpeimental data in the frequency
range of interest 0.5 to 5.5 Hs (3.14 to 34.5 rad/s). This discrepancy
is likely due to inaccurate modeling of the interation between the
voice coil actuators and the diagonal elements of the structure and
the longeron joints. This coneture is based on the fact that all
other component propertis of the structure have been quantified
and mesured

The FEM had unacceptable variation from the experimental
data. Therfore, new models are developed from the experimental
data to more accurately represent the input/output behavior of the
real system. The improved transfer functiom model will be used to
design active control systems for vibration suppresion.

5 Chebyshev Polynomial Curve Fitting
Chebyshev polynomiais have previously been used in FFT signal
analys to curve fit mesred transfer function data of single in-
put/single output (SISO) sstem [Adcock]. This technique was

extended to kngle input/multiple output (SIMO) systems and has
been apphld successfully to expterental data [DailLuk]. The ame
technique is employed to develop SD11O transfer function models
for the Caltech flexible structure experiment. A MIMO model is
derived from the sum of the individual SIMO models. This model
has twice the number of modes as the finite element model.

The tranfer function equation,
(=(s) _no + nls + n22 + +nNtN (

d(s) do4 -dis +d s+-+dNiN
which is nonlinear in the coefficients, is trandormed into a linear
equaion by multiplying through by the minator, g(s)d(s) -
n(s) = 0. The tranfer function data is a set of compex numbers,
g(jw), at various frequency points, w. Separating this equation into
real and im parts, two real equations are produced for eah
value ofw. Written in matrix form, they form a linear least squares
probkm, imf4=l1 Ax 11. The real vector, :, contains the poly-
nomial coefficients of n(s) and d(s).

A problem with this approach is that the matrix A is ill-conditioned.
This is due to the ratio of n(s)/d(a) being very sensitive to small
changes in their coefficients. To alleviated this problem, the numer-
ator and denominator re written as sums of Chebyshev polynomials
and, therefore, indirectly as smm of powers of a, where a is define
as yw [Adcock].

The numerator, n(s), an denominator, d(s), can be written
as the sum of Chebybev polynomiab, and deibing the trans-
fer function data, g(jw), by its re and ima4inary parts, (OW) =

Dr(w) + jgi(w), a matrix equatio can be formed from the real and
imagiary parts of the equation g(jw)d(jw) - nQw) = 0.

At each frequency point w the equation g(y4() - n(y)
contributes two rows to the matrix A. A weighting can be associ-
ated with each individual frequency point, allowing for accuracy of
the fit to be traded off in different frequency ranges. Each row is
normalised by g(yw)d(jw) 1, uin an esimated d(y.) to achieve
a constant relative accuracy (in log magnitude and phase) at each
fiequency.

The algorithm used to fit the data with Chebyshev polynomials
is as folows [DailLuk]:

1.
2.
3.
4.
5.
6.

Read is data points, gQw), sd asocae weights
Consct A = ATA
Saolve r s to im.imiw STAx
User to buil d(Cw), a(w)
Us g(jw)cd(,e) g1 a a weight, cycle back to Step 2
When the procen coaverges, compute the te sPac
reai of s(s)/d(s)

For the SIM0 case, the denomintr has the same dynamics a
in the SISO case. Therefore, by extending the number of numeator
eoefficients, n(s), one- can addrm the 51M0 ae in a fasion similar
to the S510 case One problem with the Chebyshev curve fitting
method is that it does not guarantee that a stable trander fuc-
tion will be fit to the raw data. However, given that the freuency
domain data reflects a stable system, and the polynomial approx-
imation is a good fit to the data, the stability properties of the
two are usually comparable. All of the structural transfer function
are stable and the Chebyshev SIM0 models have the same stability
properties. Once the single input/multi-output transfer functions
are fit with Chebyshev polynomials, the models are converted to a
state space desription.

6 LMIIMO fransfer Function Model

A multivariable transfer function model is constructed from the in-
dividual SIMO models. Thdi model has the sme number of states
as the sum of each SIO model, which leds to an exces number of
stes in the MMO model which are not physically motivated. A
SVD model reduction technique, basd on an a priori model of the
system, is developed to produce a MIMO trans function model of
the same order as the finite element model. The Chebyebv poly-
nomial curve fitting and SVD based model reduction techaques are
used in sequence to form a system identification method for flexible
structures.

Based on the finite ement model and physical data, the exper-
imental structure bas only six natural frequencies and mode shapes
between 0.5 to 5.5 Hs. This is the frequency range in which an
accurate multivariable model of the stucture is required for con-
trol desgn. Theror, the 3 input, 3 output multivariable transfer
function model of the structure should have six modes associated
with it. The SIMO Chebyahev curve fitting technique is used to
develop transfer function models fom each actuator to the three
accelerometer sors. These models contribute 4 modes to the to-
tal system model for each input. Although all six modes are excited
by eah actuator, only four modes appear distinctly in the experi-
mental data. After fitting the individual SIMO transfer functions,
12 modes comprise the 3 input/3 output transfer fiuction model.
One would like to take advantage of the physical knowledge of the
problem to reduce the 12 mode model to a 6 mode model.

6.1 Ad Hoc Model Reduction Technique

This model reduction technique requires an a priori knowledge of
the flexible structure experiment. Modes in the SIMO1 modes are
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gouped together based on their natural frequencies and the theoret-
ical modL Four groups of modes ae defined in the frequency range
of interest These groups include the firs bending modes, first tor-
sional mode, cond bending modes and the second torsional mode.
SVD is usd to reduce the modes preset in the Chebyshe MIMO
model, to the number of physially motivated modes.

The expeimentl structure has two first bending and second
bending modes preent in the frequency range of interest. The two
modes asociated with the first bending mode have approximtely
the sam natural frequency as do the second bending modes. The
bending modes have simila natural frequencies, but their mode
shape are perpendicular to one another. In the individual tranfer
functions it is hard to differentiate between the individual bending
modes with imilar natural frequencies. In fitting the Chebyshev
polynomial models to the expermental data, the first and seond
bending modes are treated as having only one mode each. Each
SIMO model consist of one first bending mode, a first torsional
mode, a secowd bending mode and a scond torsional mode.

The MIMO model costructed fom the three SIMO models -con-
tains 12 modes. Combining the SIMO Chebyshev polynomial trans-
fer function models for actuator 1 and 2, a 2 input, 3 output 8
mode model is formed. Sine there are two first and seond bend-
ing modes, the coeficients associated with both the first and second
bending modes remain in the model. Therefore, it contains two
modes which are not physically motivated. It was found that each
torsional mode in the 8 mode model has two nearly identical natural
frequencies assciated with it, accounting for the two extra modes.
This is due to the torsional response showiLg up predominantly in
both sets of transfer function from actuator 1 and 2 to the three
sensors. From the physics of the problem, there is only one mode
associated with each torsional natural frequency. A common one
mode model for each torsional mode needs to be unraveled from the
two SIMO transfer function models. To see how this might be done,
a modal description of the experimental structure is constructed.

The voice coil actuators input a force to the structure and accel-
erations are measured. Assuming modal damping, a SISO transfer
function model relating force input to acceleration output can be
developed for individual modes. For the iY mode, it has the formr

82 + 24w.s + ?q (2)

rwriting the transfer function in strictly proper form yields

b 2Cswtbi-2 i+i fbi (3)
b, 2 +24-Wis 4

Since (i and wi ae known from the Chebyshev polyn inal models,
all the parameters of the problem have been detrmined. One will
notie that only the combined salar bict can be determined
uniquely. This approach does not allow for the identification of the
individual modal coefficiets bi, ci associated with each mode. How-
ever, the identified coefficiets are within a salar tranormation of
the modal coefficients. An extension of this methodology to deter-
mine the modal coefficients is of interest but is not currently being
pursued.

In most instances, more than one mode is present in a transfer
function. The SISO transfer function models developed for the ex-
peimental -structure each consist of 4 individual modes. Each salar
D, in the state space formulation, is the sum of the 4 individual
modes constant parts. There is no unique way of decomposing this
into the individual bici components from D. One way to determine
each bic component is to replce * by*w and evaluate the strictly
proper transfer function associated with each individual mode at
w = 0.

The transfer functions, written in state space form, are described
by

G([)= AX]-1I + C(sl1-A)B (4)

evaluating this transer fmetion description as a -* 0, gives D +
C(-A)-1B, whih should be sew.

For an individual mode in a SLSO transfer function, the state
space represntation is of the form

0 1 o '1
G(a) = -2(tw bic

- w; 2Cwi di
= di - 2!,iib,4i+Mwbici

83 ++20-wis+
evaluating this equation at a = 0, the di component is disregrded,
and ling -A by -1 leads to

C(A)-'B = ;i2±' =bici (6)

The same idea can be applied to multiple input and output pairs
with a single mode. Instead of a scalar, a full matrix would be
determined. A priori it is known that there is only one or two
modes present in the data at each modal natural frequency. In
the case of the experimental truss structure, it is known that there
are two first bending modes whose natural frequencies are close,
one first torsional, two second bending modes with close natural
frequencies and one second torsion mode. Using this information,
a SVD of the matrix is performed and the dominate mode is kept
for the torsional case and two are kept for the bending cases. For
one mode, the M u3n singular value and its associated right and
left eigenvectors determine the bi and Ci coefficients.

The singular value decomposition for an nxm matrix A [MorZaf],
is given by

K

A = UEV -= oi(A)uiv4 (7)
i=1

where U and V are unitary matric with colmlmn vectors denoted
by, u = tU I U2X. iUn) and V = (v v2, -t -, vm), S contains a
diagonal nonnegative definite matrix ES of singular values arranged
in descending order. The C matrix corresponding to the output
direction of the mode is constructed from the maximum singular
value and the unitary U matrix. For a single mode, the C matrix is
given by C = Oiu1, where C is a vector of the lenth of the nurmber
of outputs. The B matri, constructed from the V matrix, is given
by B - vi, which is the right ingulr vector associated with the
maximumn cigenvalue. The matrix BTC has the corresponding bic1
matrix elements associated with input i and output j. For multiple
modes, the B and C vectors would be matrices of size (number of
modes x number of inputs) and (number of outputs x number of
modes) respectfully. These matrices could be derived in a simlar
fashion.

This approach is used to trnsform the 3 input, 3 output, 12
mode model developed from Chebyshev polynomials into a 3 input,
3 output, six mode model which agrees with the physical properties
of the structure in the frequency range of interest. The three SIMO
transfer function models have 3 modes describing the first bending
modes, 3 modes for the first torsional mode, 3 modes describing the
second bending modes, and 3 modes for the second torsional mode.
Applying the S)D based reduction method to these modal groups
led to the development of a six mode MIMO transfer function model
of the experimental flexible structure with 2 first bending modes, a
first torsional mode, twoseond bending modes and second torsional
mode.

Presented in figures 3 and 4 is a comparison between the Bode
plots of the transfer functions from: (a) The experimental data,
(b) the SIMO Chebyshev polynomzia model method and (c) the six
mode MEMO method derived using the techniques described above.
The frequency range of interest for fitting of the Chebyshev polyno-
mial model is between 0.5 and 5.5 Hz (3.14 and 35 rad/s).

6.2 Balanced Model Reduction
The method of model reduction based on balancing is also applied to
the 12 mode MIMO model constructed from the three Chebysbev

2569

(5)



SIM0 models. The objective is the same as before to obtain a
6 mode model from the Chebyshev MIMO 12 mode mode. This
method requir no physal knowledge of the system it is trying to
approximate.

The balanced model reduction tecnkue computes a mtl order
reduced model

Gm = C4(sI-AE)-4Bm + Dm

of a pofibly non-minimal nth order system

G = C(sI-A)-'B + D

such that

jjG(jw) - G,m(w)llI < 2 E r(i)
i=+1

(8)

(9)

(10)

where r(i) are the square-roots of the eigevalues of the controllabil-
ity and observability an These ae also the Hankel ingular
values of G(s) [Moore,Enns,Gkye].

A 6 mode MIMO model is developed using this technique. The
reduced order transfer function model matches the original 12 mode
MIMO quite well. The corresponding natural frequencies and damp-
iLg values closely match those in the Chebyshev model also. The
corresponding Bode plots functions are shown Lu figures 3 and 4 and
are compared therein to those from the Chebyshev models and the
experimentaJ data.

7 Experimental Data and Models

Tbre different multivariable models are developed for the experi-
mental data i the frequencies rage of interest. The first model,
SIMO, is the Chebyshev SIMO traer function model for each ac-

tuator input. A 12 mode MDMO model is developed by combining
the three Chebyshev SEMO models The scond model, MNIO, is
the reduced, six mode MIMO transfer function model formed

the ad hoc model reduction technique. The third model, Balaced,
is a six mode MIMO model formed by applying balanced model re-

duction to the Chebyse-v SEMO trnsfer function models.
As one would expect, the Chebyshev S1M0 models provide the

best fit to the erperimental data. This is due to the other two

models approximating the Chebyshev moddel. The poorest fit occurs
in the Bode plot representing the transfer function between actuator
I and senor 3. Since actuator 1 excites the direction perpendicular
to sesor 3, the magnitude of the trnsfer function is an order of

magnitude below that of the other actuator 1 transer functions.
The curve fitting technique applies a maximum magnitude error

criteria to fit the data which accounts for this discrepancy.
The ad hoc technique achieves a very good fit to all the exper-

imental Bode plot data except from actuator 1 to sensor 3. The

magimtude and phase charateristics of all the other Bode plots are

well matched. Though, the Bode plots of this model do not fit

the experimental data as well as the SEMO models. The balanced

model reduction also fit the data wel, with the notable exception
of the Bode plots associated with the transfer functins of A2S2
and AlS3. The balanced model transfer function from actuator 2

to sensor 2 has problems with the interlacing of the poles and zero

associated with the scond bending modes. Overall, the balanced

model reduction method performed quite well considering it had no

knowledge of the dynamic charactertis of the system The ad hoc
technique produced the best six mode model correonding to the

expeimetal data.

8 Conclusions
The finite element model of the sctwtue provided a physical un-

dersanding of the dynamic characterist -of the first six modes.

Unfortunately, this model had coniderabl error in the determina-
tion of the natural frequencies and mode shapes of the structure.

To obtain a more acurte model of the experinmetal data, we em-
ployed Chebyshev polynomials to curve fit the data. This approach
proved s ul int deriving SIMO transer function models for each
actuator iput which accurately fit the data in the frequency range
of 0.5 to 5.6 Us. To form a MJMO model, the thee Sm0 models
were combined. A shortcoming of this was that additional modes
were -presnt in the model that were not physically motivated from
the finite elment analysis The resulting Chebyshev MEMO model
contained 12 modes wheres the finite elment model had only six.

The ad hoc model reduction technique provided the best fit to
the experimental data for a six mode model consi t th the
finite element analysis. The balanced model reduction also provided
a consstent model which fit the data. An a priori knowledge of
the physical system aids in providing an accurate trnsfer function
model corresponding to the phyical data.

The problem with all three approaches is that they don't provide
models which are readily useful for contol design. A series of ad
hoe assumptions and fixes are required to fit them into the robust
control firmwork. The uncertnty models were determined from
engineering judgement, not a systematic approach. It is therefore
hard to verify their accuracy. As discused Lu the introduction, there
are a number of isse that need to be resolved in the area of iden-
tification for control design. Although the developed models proved
very usful for our researh, we have a great interest in approaching
system identification in a mnner more consisent with the robust
control fimework.
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