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Abstract

An accurate multivariable transfer function model of an
experimental stracture is required for resesrch involving ro-
bust control of fexible struct Initially, 2 multi-input/multi-
output model of the stracture is generated using the finite ele-
ment method. This model was insufficient due toits variation
from the experimental data. Therefore, Chebyshev polyno-
mials are employed to fit the data with a single-input/multi-
output transfer fancti dels. Combining these lead to a
multivariable model with more modes than the original finite
element model. To find a physically motivated model, an ad
hoc model reduction techrique which mses a priori knowl-
edge of the structure is developed. The ad hoc approach is
compared with balanced realisation model reduction to de-
termine its benefits. Plots of select transfer functi
and experimental data are induded.

1 Introduction

This paper documents our experience with modeling and identifica-
tion of a flexible structure for the purposes of control design. There
are no new theoretical results in the paper, only application of curve
fitting and model reduction techniques. These techniques provide
an ad hoc approach to system identification, though a more sys-
tematic method is desired. We will try to motivate some important
research directions in this area.

Initially, a theoretical model of the flexible structure is developed
using the finite element method. The natural frequencies and modes
shapes of the model vary considerably from the experimental data.
These variations are attributed to inaccuracies in the modeling of
interaction between the actuators and the structure, and to a lesser
extent, the modeling of the joints in the structure.

Chebyshev polynomial curve fitting is used to formulate single-
input/multi-output (SIMO) transfer function models from experi-
mental data to provide more accurate models. A multi-input/multi-
output (MIMO) transfer function model is constructed from the in-
dividual Chebyshev SIMO models, with the resulting MIMO model
having the same number of states as the sum of the states of each
SIMO model. In most cases, this leads to a number of excess states
in the MIMO model which are not motivated from the physics of
the problem. A direct MIMO curve fitting method bas been de-
veloped [DailLuk], but its implementation presents some numerical
problems and is not used.

Two methods are used to construct a reduced order MIMO
model from the SIMO models: 1) using physically motivated ar-
guments to combine states of the system, 2) balanced truncation.
These methods provide varying degrees of accuracy in approximat-
ing the experimental data. For use in control design, the variation
between the experimental data and the model needs to be taken
into account. If one were to assume that the uncertainty in the
model was zero, the control designs based on these models would
be unstable on the real system. Similarly, if the difference between
the model and the experimental data is accounted for by pure ad-
ditive noise, an unstable control design would also be synthesized.
Therefore, parametric and unstructured uncertainty models for the
system are developed in an ad-hoc fashion.
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It is apparent that there are a number of shoricomings associ-
ated with these methods for modeling and identification of flexible
structures for control design. Some of the issues in need of attention
are:

1. More straightforward aad direct MIMO modeling.

2. Identification methods whick prod ival models with both
perturbations aad »oise. For control design, there is an explicit
need for uncertaisty models.

3. Better finite clement models. inutlclhnnporh.weuthpmb-
lem of producing inal and dels using the fnite
dementmethod. These are bound to be conservative, but they will
be better than the those used herein in the initial control design.

4. Better connection between the finite element model and the identi-
fied model. There shounld be a way of incorporating post-identification
models of the system into updating the finite clement model of the
system.

Progress in these areas will lead to a more integrated framework
with which structural and control design for flexible structures can
be better performed.

2 Objective

The objective of the Caltech flexible structure experiment is to ex-
amine active control techniques for vibration suppression of flexible
structures. The performance requirement is to provide a signifi-
cant amount of vibration attenuation between the open-loop and
the closed-loop system. There exists a tradeoff between the accu-
racy of the transfer function model and the achievable performance
of the system. The high performance specifications on the structure
require an accurate sransfer function model of the structure together
with a tight description of the associated uncertainties.

The control design methodology to be employed most naturally
uses frequency domain descriptions of the plant model, uncertainties
and performance specifications. Therefore, transfer function mod-
els are developed to accurately describe the experimentally derived
bode plot data in the frequency domain of interest. Once models
are defined, their variation from the experimental data can be quan-
tified and used to develop ad hoc uncertainty models which bound
these variations.

A model reduction technique based on a priori knowledge of the
system and singular value decomposition is developed to comple-
ment the SIMO Chebyshev curve fitting method. This technique
provides an ad hoc approach for generating sufficiently accurate
multivariable transfer function models of flexible structures. For
comparison purposes, model reduction based on balanced realiza-
tions is included {Moore,Enns,Glover].

3 Experimental Flexible Structure

An experimental flexible structure was designed to include a number
of attributes associated with large flexible space structures {BalDoy].
These include closely spaced and lightly damped modes, noncollo-
cated sensors and actuators, and numerous modes in the controller
crnsgover region. In addition to these considerations. the ability



to expand the ssructiire was a desired feature. Expandability pro-
vides a means for increasing the modal density in a frequency range
of interest. Another abjective was to design the structure to have
poor performance with the implementation of a collocated velocity
feedback law at the actuators. This requires that a multivariable
control design methodology be used to achieve the specified perfor-
mance requirements.

The initial experimental structure consists of two stories, three
longerons (columns) and three noncollocated sensors and actuators.
The first story columns are .838 m (33 in.) long with the second
story columns measuring .759 m (29.9 in.) Including the platforms,
the structure has a height of 1.651 m (65 in.). The two platforms
are triangular in shape with a .406 m (16 in.) base and a height
of .353 m (13.9 in.). A longeron is connected to a platform by a
triangular mating fixture and three bolts. This allows for the easy
addition of stories to the structure. All the longerons are shrunk fit
and welded to the mating brackets to reduce the affect of the joint
nonlinearities. Issues associated with joint nonlinearities are an area
of future research. Current plans include expanding the structure
to 5 stories.

The first story platform is a 9.52 mm (3/8 in.) thick plate of alu-
minum, weighing 2.36 kg (5.2 lbs), with diagonal mounting brack-
ets for attachment of the actuator diagonals. The second (lower)
story platform is a 6.35 mm (1/4 in.) thick plate of aluminum with
mounting holes for three accelerometers, it weighs 1.55 kg (3.4 1bs).
A small offset mass is located on the second story platform to lower
the torsional natural frequencies. The entire structure hangs from
a mounting structure fixed to the ceiling. The three actuators are
attached to the mounting structure and act along the diagonals of
the first story. Hanging the structure from the ceiling alleviates the
problem of buckling of the longerons.

The individual stories are designed to have the same first bending
mode natural frequencies as one another. This requires the stiffness
to mass ratio of each story be the same. With this in mind, the
second story columns of the truss structure are designed to have
one fourth the bending stiffness of the first story columns. This al-
lows the interaction of the two stories to decrease the first natural
frequency of the combined structure without significantly spreading
out the remaining modes. The other reason for this is associated
with the poor performance of a collocated velocity feedback design.
Since the two stories have similar first bending mode frequencies,
which are close to the first combined structural bending mode fre-
quencies, requiring the first story to be rigid would provide little
reduction in the second floor motion for similar second story ex-
citation. This would be similar to implementation of a collocated
velocity feedback law at the actuators.

3.1 Voice Coil Actuators

The actuators are a voice coil type design, built by Northern Mag-
netics Inc., which output a force proportional to an input voltage.
The actuators are rated at £ 2.73 kg (6 Ibs) of force at £ 10 volts
and have a bandwidth of approximately 60 Hz. Currently, tests are
being performed to more accurately characterize the input/output
relationship of the actuators.

3.2 Accelerometers

The sensors are Sunstrand QA-1400 accelerometers. These are mounted

on the second (lower) story platform, located along the x-axis, y-axis
and at 45 degrees to both axes. The accelerometers are extremely
sensitive and have a flat frequency response between 0 and 200 Hz.
The noise associated with them is rated at 0.05 % of the output at
0-10 Hz and 2 % at 10-100 Hz. The sensors are scaled for accelera-
tions of approximately 0.016 g per volt. This provides a maximum
£ 5 volts output at peak accelerations of the input disturbance.
The accelerometer output is conditioned by a 100 Hz, 4'* order
Butterworth filter [OppSch,Stout] prior to input into the A/D; this
provides attenuation of the high frequency response and noise.
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3.3 Modeling

A model of the structure which relates signals input to the system
to outputs is needed for control design purposes. The synthesis of
control laws utilizes transfer function and/or state space descrip-
tions of the control inputs to sensor outputs. Initially, a theoretical
model is developed from a finite element model (FEM), from which
an input/output model is derived. In addition to the theoretical
model, a transfer function model between the actuators and sensors
is determined via the ad hoc technique presented in this paper. A
state space model is then constructed.

The FEM of the experiment structure provides a first approxi-
mation to the natural frequencies and mode shapes of the structure
[DesAbel]. The beam elements are treated as space frame elements
having three translational and three rotational degrees of freedom
at each node and a torsional stiffness and bending stiffness in two
directions. The longerons and diagonals are circular bars which have
the same bending stiffnesses in both directions. The longerons are
modeled as having fixed-fixed ends due to the welding of their end
connections.

The accelerometers, mounting brackets, platforms and additional
masses on the structure are modeled as lumped masses. The inertia
properties of each is taken into account in the finite element descrip-
tion. When the control system is not activated, the diagonals in the
first story ride on the bearings of the voice coil actuators. The diag-
onals are directly connected to the permanent magnetics inside the
voice coil actuators via a threaded rod. No force is exerted along the
diagonals in the open loop configuration. The actuators are mod-
eled as having free motion parallel to the diagonals, and fixed in the
plane perpendicular to the diagonals. In actuality, the diagonals
ride on bearings which exhibit some stiction, friction and free play.
These factors lead to errors between the theoretically determined
transfer functions and the experimentally determined ones. The
bearings also cause the damping levels to vary with the excitation
amplitude.

The most flexible directions of the experimental truss structure
are associated with the plane perpendicular to the longerons (the
vertical hanging axis). The degrees of freedom associated with verti-
cal motion, along the longerons, are neglected in the analysis. These
neglected degrees of freedom lead to higher frequency modes be-
tween 35 and 200 Hz, which are outside the 6 Hz bandwidth of the
current control design objectives.

A total of 15 degrees of freedom are included in the finite ele-
ment model. The first six global modes are of interest for control
purposes. The first group of local modes, which involve bending of
the longerons, are located in the frequency range of 37 to 43 Hz.
Vibration attenuation of these modes is not designed for, but these
modes are consider in the control design to insure that they are not
destabilized.

The following is a list of natural frequencies derived from the
Nastran finite element model and natural frequencies and damping
experimentally derived.

Damping Ratios and Natural Frequencies
of the Caltech Experiment

NASTRAN Experimental
Mode Nataral Natural Damping Mode
Freq  (Hz) | Frequency (Hs) Ratio Type
1 991 117 1.8% 1st bending
2 992 119 1.8% 1st bendimg
3 2.004 2.26 1.0% 1st torsional
4 2,069 2.66 1.6% | 2nd bending
5 2.100 2.75 1.8% | 2nd bending
8 3.832 4.43 0.9% 2nd torsional

4 Experimental Transfer Functions

A more accurate input/output description of the structure can be
derived experimentally. A white noise random process is used as an
input signal to each voice coil actuator, with the accelerations due
to this signal measured by the sensors. The accelerations are scaled



to achieve a large signal to noise ratio for the disturbance excitation.
With this in mind, the random noise signals are scaled accordingly.
This leads to a maximum force output from the actuators of £0.5
lbs for the noise input. The input signal, in the form of a voltage
level, is output by the Masscomp computer D/A converters to each
voice coil actuator. The corresponding signals from the sensors are
filtered by a 100 Hz, 4'* order Butterworth filter [OppSch,Stout],
and nput to the Masscomp computer via the A/D converters. A
sample rate of 200 Hz is used for the identification experiments, the
same as in the closed-loop control experiments. Each single input
to multi-output identification experiment is run for a total of 409.6
seconds (81,920 sample points).

A Fourier transform of the time history is performed on each
input/output pair. For the Fourier transform, the data is chopped
into windows of length 4096 data points. Each window overlaps the
previous one by 2048 data points. A total of 39 windows of data
is averaged for each transfer function. Hamming windowing is used
on the time domain data to improve the smoothing properties of
the frequency spectrum. A total of nine transfer functions are de-
termined. The Bode plots of four experimentally derived transfer
functions are shown in figures 1 and 2 together with the bode plots
of the finite element transfer function models. In the plots of the
FEM transfer functions, we have substituted the experimentally de-
rived natural frequencies and damping ratios of the structure for the
Nastran ones. The acronym in the title AiSj means from actuator
i to sensor j.

One will notice that the agreement is poor between the theoreti-
cal finite element model and the experimental data in the frequency
range of interest 0.5 to 5.5 Hz (3.14 to 34.5 rad/s). This discrepancy
is likely due to inaccurate modeling of the interaction between the
voice coil actuators and the diagonal elements of the structure and
the longeron joints. This conjecture is based on the fact that all
other component properties of the structure have been quantified
and measured

The FEM had unacceptable variations from the experimental
data. Therefore, new models are developed from the experimental
data to more accurately represent the input/output bebavior of the
real system. The improved transfer functions model will be used to
design active control systems for vibration suppression.

5 Chebyshev Polynomial Curve Fitting

Chebyshev polynomials have previously been used in FFT signal
analyzers to curve fit measured transfer function data of single in-
put/single output (SISO) systems [Adcock]. This technique was
extended to single input/multiple output (SIMO) systems and has
been applied successfully to experimental data [DailLuk]. The same
technique is employed to develop SIMO transfer function models
for the Caltech flexible structure experiment. A MIMO model is
derived from the sum of the individual SIMO models. This model
has twice the number of modes as the finite element model.
The transfer function equation,
g(‘)_g(_sl_no+nu+nz:’+---+nmf_ )
T d(s) do+ d1s+das? + -+ dys®

which is nonlinear in the coefficients, is transformed into a linear
equation by multiplying through by the denominator, g(s)d(s) —
n(s) = 0. The transfer fanction data is a set of complex numbers,
g(w), at various frequency points, w. Separating this equation into
real and imaginary parts, two real equations are produced for each
value of w. Written in matrix form, they form a linear least squares
problem, infy.g-; I Az ||. The real vector, z, contains the poly-
nomial coefficients of n(s) and d(s).

A problem with this approach is that the matrix A is ill-conditioned.

This is due to the ratio of n(s)/d(s) being very sensitive to small
changes in their coefficients. To alleviated this problem, the numer-
ator and denominator are written as sums of Chebyshev polynomials
and, therefore, indirectly as sums of powers of s, where s is define
as zv [Adcock).
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The numerator, n(s), and denominator, d(s), can be written
as the sum of Chebyshev polynomials, and describing the trans
fer function data, g(yw), by its real and imaginary parts, g(w) =
gr(w) + 39i(w),  matrix equation can be formed from the real and
imaginary parts of the equation g(xw)d(xw) —n(w) = 0.

At each frequency point w , the equation g(xw)d(w) — n{w)
contributes two rows to the matrix A. A weighting can be associ-
ated with each individual frequency point, allowing for accuracy of
the fit to be traded off in different frequency ranges. Each row is
normalized by | g{(xw)d(;w) |, using an estimated d(xv) to achieve
a constant relative accuracy (in log magnitude and phase) at each
frequency.

The algorithm used to fit the data with Chebyshev i
is as foll:rss [DailLuk] : Y polynomiale

Read in data points, g(x), and associated weights
Constract A= ATA

Solve for z to minimize sT Az

Use = to build d(yw), n(w)

Use | g(;}d(pw) |™ as 2 weight, cycle back to Step 2
When the process converges, compate the state space
realisatioa of »(s)/d(s)

L SRS

For the SIMO case, the denominator has the same dynamics as
in the SISO case. Therefore, by extending the number of numerator
coefficients, n(s), one can address the SIMO case in a fashion similar
to the SISO case. One problem with the Chebyshev curve fitting
method is that it does not guarantee that a stable transfer func-
tion will be fit to the raw data. However, given that the frequency
domain data reflects a stable system, and the polynomial approx-
imation is a good fit to the data, the stability properties of the
two are usually comparable. All of the structural transfer function
are stable and the Chebyshev SIMO models have the same stability
properties. Once the single input/multi-output transfer functions
are fit with Chebyshev polynomials, the models are converted to a
state space description.

6 MIMO Transfer Function Model

A multivariable transfer function model is constructed from the in-
dividual SIMO models. This model has the same number of states
as the sum of each SIMO model, which leads to an excess number of
states in the MIMO model which are not physically motivated. A
SVD model reduction technique, based on an a priori model of the
system, is developed to produce a MIMO transfer function model of
the same order as the finite element model. The Chebyshev poly-
nomial curve fitting and SVD based model reduction techniques are
used in sequence to form a system identification method for flexible
structures.

Based on the finite element model and physical data, the exper-
imental structure has only six natural frequencies and mode shapes
between 0.5 to 5.5 Hs. This is the frequency range in which an
accurate multivariable model of the structure is required for con-
trol design. Therefore, the 3 input, 3 output multivariable transfer
function model of the structure should have six modes associated
with it. The SIMO Chebyshev curve fitting technique is used to
develop transfer function models from each actuator to the three
accelerometer sensors. These models contribute 4 modes to the to-
tal system model for each input. Although all six modes are excited
by each actuator, only four modes appear distinctly in the experi-
mental data. After fitting the individual SIMO transfer functions,
12 modes comprise the 3 input/3 output transfer function model.
One would like to take advantage of the physical knowledge of the
problem to reduce the 12 mode model to a 6 mode model.

8.1 Ad Hoc Model Reduction Technique

This model reduction technique requires an a priori knowledge of
the flexible structure experiment. Modes in the SIMO models are



grouped together based on their natural frequencies and the theoret-
ical model. Four groups of modes are defined in the frequency range
of interest. These groups include the first bending modes, first tor-
sional mode, second bending modes and the second torsional mode.
SVD is used to reduce the modes present in the Chebyshev MIMO
model, to the number of physically motivated modes.

The experimental structure has two first bending and second
bending modes present in the frequency range of interest. The two
modes associated with the first bending mode have approximately
the same natural frequency as do the second bending modes. The
bending modes have similar natural frequencies, but their mode
shape are perpendicular to one another. In the individual transfer
functions it is hard to differentiate between the individual bending
modes with similar natural frequencies. In fitting the Chebyshev
polynomial models to the experimental data, the first and second
bending modes are treated as having only one mode each. Each
SIMO model consists of one first bending mode, a first torsional
mode, a secord bending mode and a second torsional mode.

The MIMO model constructed from the three SIMO models con-
tains 12 modes. Combining the SIMO Chebyshev polynomial trans-
fer function models for actuator 1 and 2, a 2 input, 3 output 8
mode model is formed. Since there are two first and second bend-
ing modes, the coefficients associated with both the first and second
bending modes remain in the model. Therefore, it contains two
modes which are not physically motivated. It was found that each
torsional mode in the 8 mode model has two nearly identical natural
frequencies associated with it, accounting for the two extra modes.
This is due to the torsional response showing up predominantly in
both sets of transfer function from actuator 1 and 2 to the three
sensors. From the physics of the problem, there is only one mode
associated with each torsional natural frequency. A common one
mode model for each torsional mode needs to be unraveled from the
two SIMO transfer function models. To see how this might be done,
a modal description of the experimental structure is canstructed.

The voice coil actuators input a force to the structure and accel-
erations are measured. Assuming modal damping, a SISO transfer
function model relating force input to acceleration output can be
developed for individual modes. For the i** mode, it has the form:

bicia?

8 + 2wis + wf @

rewriting the transfer function in strictly proper form yields

_ 28wibie; + wibic; @)
8+ 2Gwis + Wl

Since (; and w; are known from the Chebyshev polynominal models,
all the parameters of the problem have been determined. One will
notice that only the combined scalar b;c; can be determined
uniquely. This approach does not allow for the identification of the
individual modal coefficients b;, ¢; associated with each mode. How-
ever, the identified coefficients are within a scalar transformation of
the modal coefficients. An extension of this methodology to deter-
mine the modal coefficients is of interest but is not currently being
pursued.

In most instances, more than one mode is present in a transfer
function. The SISO transfer function models developed for the ex-
perimental structure each consist of 4 individual modes. Each scalar
D, in the state space formulation, is the sum of the 4 individual
modes constant parts. There is no unique way of decomposing this
into the individual b;¢; components from D. One way to determine
each be; component is to replace & by xv and evaluate the strictly
proper. transfer function associated with each individual mode at
w=0.

The transfer functions, written in state space form, are described

by
G(s) = [%*%-] = D+C(sI - A)'B

bics

4)
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evaluating this transfer function description as s — 0, gives D +
C(~A)~! B, which should be zero.

For an individual mode in a SISO transfer function, the state
space representation is of the form

0 1 l 0
[ —w? 2w | biei
wf 2w UJ d;
28C;wibic; + wibic;
8% 4 2Gwis + W

evaluating this equation at s = 0, the d; component is disregarded,
and scaling —A4 by —1 leads to

bicsw?
A = b
w?

G(s)

&)

= di-

C(A)"'B = (6)
The same idea can be applied to multiple input and output pairs
with a single mode. Instead of a scalar, a full matrix would be
determined. A priori it is known that there is only one or two
modes present in the data at each modal natural frequency. In
the case of the experimental truss structure, it is known that there
are two first bending modes whose natural frequencies are close,
one first torsional, two second bending modes with close natural
frequencies and one second torsional mode. Using this information,
a SVD of the matrix is performed and the dominate mode is kept
for the torsional case and two are kept for the bending cases. For
one mode, the maximum singular value and its associated right and
left eigenvectors determine the b; and ¢; coefficients.

The singular value decomposition for an nxm matrix A [MorZaf],
is given by

M

where U and V' are unitary matrices with column vectors denoted
by, U = (41,%3,...,t,) and V = (v1,93,...,v,), I contains a
diagonal nonnegative definite matrix X, of singular values arranged
in descending order. The C matrix corresponding to the output
direction of the mode is constructed from the maximum singular
value and the unitary U matrix. For a single mode, the C matrix is
given by C = o1u,, where C is a vector of the length of the number
of outputs. The B matrix, constructed from the V matrix, is given
by BT = vy, which is the right singular vector associated with the
maximum eigenvalue. The matrix BTC has the corresponding b;c;
matrix elements associated with input ¢ and output j. For multiple
modes, the B and C vectors would be matrices of size (number of
modes x number of inputs) and (number of outputs x number of
modes) respectfully. These matrices could be derived in a similar
fashion.

This approach is used to transform the 3 input, 3 output, 12
mode model developed from Chebyshev polynomials into a 3 input,
3 output, six mode model which agrees with the physical properties
of the structure in the frequency range of interest. The three SIMO
transfer function models have 3 modes describing the first bending
modes, 3 modes for the first torsional mode, 3 modes describing the
second bending modes, and 3 modes for the second torsional mode.
Applying the SVD based reduction method to these modal groups
led to the development of a six mode MIMO transfer function model
of the experimental flexible structure with 2 first bending modes, a
first torsional mode, two second bending modes and second torsional
mode.

Presented in figures 3 and 4 is a comparison between the Bode
plots of the transfer functions from: (a) The experimental data,
(b) the SIMO Chebyshev polynomial model method and (c) the six
mode MIMO method derived using the techniques described above.
The frequency range of interest for fitting of the Chebyshev polyno-
mial model is between 0.5 and 5.5 Hz (3.14 and 35 rad/s).

X
A=UZV* =Y oA}

i=1

6.2 Balanced Model Reduction

The method of model reduction based on balancing is also applied to
the 12 mode MIMO model constructed from the three Chebyshev



SIMO models. The objective is the same as before, to obtain a
6 mode model from the Chebyshev MIMO 12 mode model. This
method requires no physical knowledge of the system it is trying to
approximate.

The balanced model reduction technique computes a m*™ order
reduced model

Cm(s] = Am) 'Bm + Dm

of a possibly non-minimal n** order system
G = C(sI-A)"*B+ D

such that

n
IG(x) - Gm(mlllo < 2 3 (i)
iz mpl
where o(1) are the square-roots of the eigenvalues of the controllabil-
ity and observability grammians. These are also the Hankel singular
values of G(s) [Moore,Enns,Glover].

A 6 mode MIMO model is developed using this technique. The
reduced order transfer function model matches the original 12 mode
MIMO quite well. The corresponding natural frequencies and damp-
ing values closely match those in the Chebyshev model also. The
corresponding Bode plots functions are shown in figures 3 and 4 and
are compared therein to those from the Chebyshev models and the
experimental data.

®

Gm =
®

(10

7 Experimental Data and Models

Three different multivariable models are developed for the experi-
mental data in the frequencies range of interest. The first model,
SIMO, is the Chebyshev SIMO transfer function model for each ac-
tuator input. A 12 mode MIMO model is developed by combining
the three Chebyshev SIMO models. The second model, MIMO, is
the reduced, six mode MIMO transfer function model formed using
the ad hoc model reduction technique. The third model, Balanced,
is a six mode MIMO model formed by applying balanced mode] re-
duction to the Chebyshev SIMO transfer function models.

As one would expect, the Chebyshev SIMO models provide the
best fit to the experimental data. This is due to the other two
models appraximating the Chebyshev model. The poorest fit oceurs
in the Bode plot representing the transfer function between actuator
1 and sensor 3. Since actuator 1 excites the direction perpendicular
to sensor 3, the magnitude of the transfer function is an order of
magnitude below that of the other actuator 1 transfer functions.
The curve fitting technique applies a3 maximum magnitude error
criteria to fit the data which accounts for this discrepancy.

The ad hoc technique achieves a very good fit to all the exper-
imental Bode plot data except from actuator 1 to sensor 3. The
magnitude and phase characteristics of all the other Bode plots are
well matched. Though, the Bode plots of this mode! do not fit
the experimental data as well as the SIMO models. The balanced
model reduction also fit the data well, with the notable exception
of the Bode plots associated with the transfer functions of A2S52
and A1S3. The balanced model transfer function from actuator 2
to sensor 2 has problems with the interlacing of the poles and zercs
associated with the second bending modes. Overall, the balanced
model reduction method performed quite well considering it had no
knowledge of the dynamic characteristics of the system. The ad hoc
technique produced the best six mode model corresponding to the
experimental data.

8 Conclusions

The finite element model of the structure provided a physical un-
derstanding of the dynamic characteristics of the first six modes.
Unfortunately, this model had considerable error in the determina-
tion of the natural frequencies and mode shapes of the structure.
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To obtain a maore accurate model of the experimental data, we em-
ployed Chebyshev polynomials to curve fit the data. This approach
proved successful in deriving SIMO transfer function models for each
actuator input which accurately fit the data in the frequency range
of 0.5 t0 5.5 Hs. To form a MIMO model, the three SIMO models
were combined. A shortcoming of this was that additional modes
were present in the model that were not physically motivated from
the finite element analysis. The resulting Chebyshev MIMO model
contained 12 modes whereas the finite element model had only six.

The ad hoc model reduction technique provided the best fit to
the experimental data for a six mode model consistent with the
finite element analysis. The balanced model reduction also provided
a consistent model which fit the data. An a priori knowledge of
the physical system aids in providing an accurate transfer function
model corresponding to the physical data.

The problem with all three approaches is that they don’t provide
models which are readily useful for control design. A series of ad
hoc assumptions and fixes are required to fit them into the robust
control framework. The uncertainty models were determined from
engineering judgement, not a systematic approach. It is therefore
hard to verify their accuracy. As discussed in the introduction, there
are a number of issues that need to be resolved in the area of iden-
tification for control design. Although the developed models proved
very useful for our research, we have a great interest in approaching
system identification in a manner more consistent with the robust
control framework.
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