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§1. To find a particular set of functions H,(u) satisfying the Hermitian
relation

co

Im,n e1/2X2 Hm(iX)Hn (-ix)dx = 0 (1)
_co

in which the exponential factor is exp (-x2/2) as also in (14) we
may put z = eax, where a is an arbitary positive constant and assume
that Hn(ix) is a polynomial of the nth degree in z with real coefficients.
If q = exp (-a2) and use is made of Euler's generalized binomial coefficient
which Jensen' denotes by the symbol (n, r) and R. Tambs Lyche2 by the

symbol [nf, or [n], we have, with F. H. Jackson's notation [n] for a

basic number3

[n](1 - q) = (1 - qf), (n,r)[1][2] ... [r] = [n][n-1]
[n-r + 1I (n, 0) = 1. (2)

If, now

5(n) = E (-)7(n r)qr(m-n) + 1/2r(r + J) . (3)
r=0

we readily find that

Smn + 1 s(m) m(1-q)mn +I1s(n -I)

Hence
S(n) = 0 m < n

Sn( ) = (1 - q") Sn" -J) = (1 - q)(1 q2) ..(1 qn") (5)
On account of these relations we may write

H.(ix)=Cn {Iz' - (n, 1)ql/2z'-1 + (n,2)qzn2-2. + (-)'(m,n)q1/2n}, (6)

where Cn is a constant which will be chosen so that Inn = 1. The ap-
propriate value of Cn is given by the equation

Cn(27r)1/2(1 - q)(1 - q)2 (1 - q') = 1 (7)

To expand zm in a series of functions H,(ix) we make use of the inversion
formula LIE
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n
xn = (-)7(n, r)q'/2 Yn. (8

r = o (8)
m

Ym = E (m, s)ql/2S2 Xm -s
s=o

which is easily verified with the aid of the relations (5). The relation to
be established is, in fact

n n-r

Xn = j (_)r(n, r)ql/2r E (n - r, n- r - k)q1/2(n-r-k)2Xk* (9)
r=o k=0

Changing the order of summation we have to prove that
n-k

0 = E (-)(n r)(n - r,n - r - k)qkr+1/2r(r+1) k #4 n. (10)
r=0

Now
(n,r)(n-r,n-r-k) = (n,k)(n-k,r) (11)

and so the relation to be established reduces to a particular case of (5).
We obtain, then, the relation

m
Zm = (m r)ql/27 -Hm-r (12)

r0

which may be used to transform a power series in z into a series of type
Go

f(x) = Z AnHn(iX), (13)n=0

in which, under suitable conditions
co

An = e1/2x2Hn(-ix)f(x)dx. (14)
_co

Putting

f(X) = E Bmzm (15)
m=o

the equations of transformation are

70Bm = (_)r(M + r, r)q1/2r Cm+rAm+r
r=0

An =Z BmIe -1/2X2Hn (-ix)zmdx (16)
m=o J-

= C.-1 E (n + s, s)qll"' B. + s
s=o

and these sugg'est the existence of a second inversion formlula
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Xm = (-)7(m + r, r)q'l/ Ym+ r (17)
r=0
Co

Yn = (n + s, s)q1/' Xn .
s=0

A particular set of functions satisfying the Hermitian relation

Jm, n = f Sech 2Q7rx) Fm(ix)F(-ix)dx = 0 m 0 n (18)

is obtained by defining FM(u) to be a polynomial of the nth degree in u
such that

FM (t Sech t = Sech t P,, (tanh t) (19)

where P.(t) is the Legrendre polynomial. It has already been shown4
that

Fm(iX) Sech (2 irx) = ~j e- Sech z. Pm (tanhz) dz (20)

*Jn =- f dxi Sech t. Pm (tanh t) dtfeXQ( z)Pm(tanh z)Sech z.dz

Changing the order of integration with respect to x and t, which is per-
missible since

fcdxJ eix1 F.(ix) Sech 7rx) Sech t P. (tanh t) dt

is absolutely convergent, we have

2 co

-Jm, n Sech2t. P. (tanh t) P. (tanh t) dt.
7r _ca

=0 m p n. (21)

4 1
7r2n+1 m=n.

1 J. L. W. V. Jensen, Nyt Tidsskr Math., 29, 29 (1918). Jensen remarks that this
generalized binomial coefficient plays an important part in Gauss' memoir "Summatie
quarundam serierum singularium" (1811), in which the following relation is obtained

X

,(-)'(n, r) - (1 - q)(1 -q-2) . . . (1 - q) n odd
r=o

=0 n even

Jensen discusses the properties of the sums

r o r=o
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2 R. Tambs Lyche, Bull. SociltA mathUmatique France, 55, 102 (1927); Compt. rend.
t. 186, 1810 (1928); Avhandlingar Oslo (1928) No. 6; Forhandlingar Norske Viden-
skaber, Selskab 1, No. 35, 3 p. In the first paper Tambs Lyche shows that if

,0,(z) -,(z) = qz + a2z" +,. . . apzP + .

the nth iterated function is expressed formally by the series

0kb(z) = c[t,-1(z) = q"z + a2(n)"z + a.a()xP +
where

P-i
a (n) ()p-r-1 qr_'r+"/2(P-r)v.r-i (n,r)(n-r-1, r-r 1)ap(r)

r=1

The notation [n] is preferable to either (n, r) or [nl but we use (n, r) here for

convenience in printing. In 1897 F. H. Jackson used the notation [n for the general-
LrJ

ized binomial coefficient derived from p, where p > 1 but he also used it in a more gen-
eral sense. See Proc. London Math. Soc. 28, 475 (1897). The notation (n) for 1 - q"
was suggested by A. Cayley and adopted by P. A. MacMahon. Proc. London Math. Soc.,
ser. 2, 15, 314 (1916). L. J. Rogers, Ibid., 16, 315 (1917), uses the notation qn for the
same quantity and also writes qg! for the product q, q2... qn.

3F. H. Jackson, Proc. London Math. Soc., ser. 2, 1, 63 (1904); 1, 361 (1904); 2, 192
(1904); 3, 1 (1905); Trans. Roy. Soc. Edinburgh, 41, 1, 105, 399 (1904-5); Proc.
Edinburgh Math. Soc., 22, 80 (1904); Proc. Roy. Soc. Lond., 76, 127 (1905); Messenger
Math., ser. 2, 37, 123 (1907); 38, 57, 62 (1908); 39, 26, 145 (1910); 40, 92 (1910);
47, 57 (1917); 50, 101 (1920); 57, 169 (1928); Rendiconti Palermo, 29, 340 (1910);
Amer. Jour. Math., 32, 305 (1910); Proc. Roy. Soc. Edinburgh, 30, 378 (1910). Many
of these papers deal with a generalization of the binomial theorem and generalizations
of the functions of Legendre and Bessel all of which are more or less closely connected
with the theory of the q-hypergeometric series. This series has been studied also by
C. G. J. Jacobi, Jour. Math., 32, 197 (1846); E. Heine, Ibid., 32, 210 (1846); 34, 285
(1847); 39, 288 (1850); J. Thomae, Ibid., 70, 258 (1869); G. N. Watson, Cambridge,
Phil. Trans., 21, 281 (1910). A new use of the generalized binomial coefficients in the
theory of numbers has been found recently by I. Schur, Sitzungsberichte preuss. Akad.
Wiss., 145 (1933).

' H. Bateman, T8hoku Math. Jour., 37, 23 (1933).
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