
Soft-decision minimum-distance sequential
decoding algorithm for convolutional codes

R.M.F. Goodman, B.Sc, Ph.D., C.Eng., M.I.E.E., and A.F.T. Winfield, B.Sc.

Indexing terms: Codes and decoding, Algorithms, Errors and error analysis

Abstract: The maximum-likelihood decoding of convolutional codes has generally been considered
impractical for other than relatively short constraint length codes, because of the exponential growth in
complexity with increasing constraint length. The soft-decision minimum-distance decoding algorithm
proposed in the paper approaches the performance of a maximum-likelihood decoder, and uses a sequential
decoding approach to avoid an exponential growth in complexity. The algorithm also utilises the distance and
structural properties of convolutional codes to considerably reduce the amount of searching needed to find
the minimum soft-decision distance paths when a back-up search is required. This is done in two main ways.
First, a small set of paths called permissible paths are utilised to search the whole of the subtree for the better
path, instead of using all the paths within a given subtree. Secondly, the decoder identifies which subset of
permissible paths should be utilised in a given search and which may be ignored. In this way many
unnecessary path searches are completely eliminated. Because the decoding effort required by the algorithm
is low, and the decoding processes are simple, the algorithm opens the possibility of building high-speed long
constraint length convolutional decoders whose performance approaches that of the optimum maximum-
likelihood decoder. The paper describes the algorithm and its theoretical basis, and gives examples of its
operation. Also, results obtained from practical implementations of the algorithm using a high-speed micro-
computer are presented.

List of principal symbols

V

w
t
[t]
h
\t\
\[t]\
Q
p
d(k)
K
T(k)
T8{k)
E

1

= received sequence
= tentatively decoded sequence
= test error sequence
= soft-decision test error sequence
= sequence consisting of most recent b segments of t
= weight of t
= soft weight of t
= number of quantisation levels
= a permissible path
= code distance over k segments
= constraint length of code in segments
= error-correcting capability over k segments
= soft-decision error-correcting capability, in levels
= decoder effort ratio

Introduction

In several previous papers [1—3] we introduced an efficient
hard-decision decoding algorithm for convolutional codes.
However, in order to realise the high coding gains that are
theoretically achievable with convolutional codes, it is
desirable to perform a maximum-likelihood decoding. In
practice, an optimum soft-decision decoder can closely
approach the performance of a maximum-likelihood decoder,
and it is essential to use soft-decision information in a decoder
if coding gain is not to be lost. In a hard-decision system the
receiver/demodulator makes a hard 0/1 decision on each
incoming data signal before feeding the demodulated bit to the
error-correction decoder. A soft-decision demodulator, on the
other hand, quantises each demodulated bit into Q>2 levels
rather than Q = 2 levels as in the hard-decision case. This
quantisation effectively informs the decoder of the
demodulators 'level of confidence' of its 0/1 decision, and this
confidence information can be used to improve the decoder's
performance (in terms of lower output bit error rate) without
incurring any further redundancy penalty.

It has been shown [4] that hard-decision decoding invokes
a coding gain penalty of 2 dB at low signal/noise ratios (SNRs),
rising to 3 dB at asymptotically high SNR [5] when compared
with infinite-level quantisation soft-decision decoding. In

Paper 1335 F, received 15 th January 1981
The authors are with the Department, of Electronic Engineering,
University of Hull, Hull HU6 7RX, England

addition, the further penalty invoked by using the much more
practical 8-level equal-spacing quantisation is only of the order
of 0.2 dB. Hence most practical soft-decision decoders use
either 8- or 16-level quantisation.

Several good soft-decision decoding schemes exist for
convolutional codes. In general, maximum-likelihood decoding
(in the soft-decision minimum-distance sense) of short
constraint length codes can be achieved by using the Viterbi
algorithm. However, in order to achieve high coding gains it is
necessary to use long constraint length codes, and this renders
the Viterbi algorithm impractical on the grounds of com-
plexity. In this case non-maximum-likelihood sequential
decoding is used because its complexity is insensitive to
constraint length. In this paper we present a soft-decision
minimum-distance sequential decoding algorithm the
complexity of which increases slowly with constraint length,
and which requires much less decoding effort than normal
sequential decoding because of the elimination of needless tree
searching.

A normal sequential decoder operates by computing the
value of a suitable metric based on the soft-decision distance
between the received sequence and the code path being
followed. If the metric exceeds some running threshold then it
indicates that the decoder may be following the wrong path
and that it is necessary to search for a better one. The decoder
then backs up in a node-by-node manner, and searches for a
path that has a better metric value. If a better path is found
then decoding continues along this new path, subject to the
threshold conditions being satisfied. Because the number of
paths rises exponentially with depth in the code tree, it can be
seen that the maximum decoding effort of such a scheme
could also rise exponentially with back-up distance. Several
efficient sequential decoding algorithms have been proposed
[6, 7] , but even so, the performance of a sequential decoder is
directly related to the time available for searching the tree, i.e.
the probability of a buffer overflow. In addition, decoder
operation is not maximum-likelihood because any path that is
chosen is not guaranteed to be the path at minimum soft-
decision distance from the received sequence, but rather a path
that satisfies the threshold conditions.

The algorithm presented in this paper is maximum-
likelihood in that at every node extension the path chosen is
guaranteed to be the path of minimum-soft-decision distance
from the received sequence. The advantage to be gained from
this minimum-distance approach is that incorrect decoding

IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981 0143-7070/81/030178 + 08 $01.50/0 179

paths are identified as early as possible, thus eliminating many
long back-up searches and therefore significantly reducing
decoding effort. Also, the algorithm utilises the distance and
structural properties of the particular convolutional code used,
to further reduce search effort.

As regards complexity, a characteristic of the algorithm is
that it utilises a set of stored paths called permissible paths to
search for the minimum soft-decision distance path. "Die main
complexity of the decoder is therefore the number of these
paths that must be stored in read-only memory. By using the
distance properties of the code the number of these paths can
be easily kept to an economical value for storage in today's
technology ROMs or EPROMs.

The algorithm significantly reduces decoding search effort,
when compared with other decoding schemes, in two main
ways. First, when a back-up search for the minimum-distance
path is required, the decoder can identify the exact nodes at
which path divergence might have occurred. This eliminates
many needless subtree searches, as the number of these nodes
is usually significantly less than the total number of nodes in
the decoding constraint length. Secondly, the decoder
identifies which subset of permissible paths should be used to
search each subtree, and conducts the search in an efficient
manner, thus further eliminating needless searching.

For reasons of brevity the discussion in this paper is limited
to binary half-rate single-generator convolutional codes. The
approach can, however, be generalised to other codes. This
paper develops in the following way. First, we introduce the
distance and structural properties of convolutional codes that
are utilised in the algorithm, and describe the basic decoding
strategy. Next, the concept of decoding with permissible paths
is described together with the technique for choosing such
paths. The search technique is then outlined and the algorithm
is summarised and discussed. Finally, results for coding gain
and decoding effort are presented.

2 Convolutional codes and their structural properties

In this Section we introduce some of the distance and
structural properties of single-generator convolutional- codes
that are utilised in the decoding algorithm.

A single-generator convolutional code is one in which each
message digit is encoded individually into V code digits, where
V is a positive integer, giving a maximum information rate of
l/V. The V code digits for each message digit depend on both
the present message digit and the K — 1 previous message
digits, where K is the constraint length of the code in
segments. Such a code is generated by a A -̂segment generator
sequence G = g(2°)g(21)g(22) . . . g(2K"i) and is a sys-
tematic code if the first digit of each code segment is the
same as the corresponding message digit. The code can be
represented by its tree structure, the branches of which can
be extended indefinitely from any node. Each branch has one
segment of code digits associated with it, and the code digits
of the two branches stemming from an arbitrary node are
always one's-complements of each other. Fig. 1 shows the first
five segments of the code tree for the rate one-half code used
as an example in this paper, which has a 50-segment generator
sequence.

The encoding operation is one of selecting a path through
the tree in accordance 'with the message digits. At- each node
the upper branch is taken if the message digit is a zero, and the

, lower branch is taken if it is a one.
Consider, for any node in the infinite tree, all the paths that

extend k segments forward from that node. The resulting
subtree is referred to as a truncated tree, or fc-unit, and is
divided into two half-trees depending on which branch was
chosen at the first node. The initial code tree (S) is the fc-unit

stemming from the very first node, and is divided into the
upper- and lower-half initial code trees (So and S1}

respectively).
We may now summarise several useful properties of these

codes:
(a) The code is a group code, i.e. if w and w' are two equal-

length code paths, belonging to the initial truncated tree S, it
implies that there is a path x such that JC = w 0 w' is within S.

(b) If w and w' are paths in opposite halves of any fc-unit,
then x = w 0 w is a code path in the lower-half initial code
tree Sx .

(c) The distance between the two half trees of any fc-unit is
defined as the minimum Hamming distance between pairs of
paths, one from each half tree. Consider the initial code tree.
Because of the group property, the minimum distance between
the two halves of the initial code tree is equal to the minimum
distance between the all-zero vector and all the paths in St, i.e.
the minimum distance equals the weight of the
weight code path in St.

(d) Combining properties (b) and (c) above, we can state
that the minimum distance between half trees of any k-unit
is equal to the weight of the minimum-weight path in St. We
can then define a distance function d{') such that d(k) is the
minimum distance between half trees of any fc-unit and
depends only on k and not on the fc-unit chosen. The
guaranteed error-correcting capability of any fc-unit is then
T(k), where T(k) is the largest integer such that T(k) <
\d(k)— l] /2 . Table 1 shows the distance function d(') for
the half-rate code used in this paper.

(e) From properties (b) and (d) we can easily see that
•|w0 w'\ >d(k) and \w'\> d(k) — \w\, where \w\ denotes
the weight of the sequence w.

(/) Consider now a received sequence v, which may differ
from the transmitted sequence due to errors. We then define
t = w 0 v as the test error sequence, which has ones in the
positions where w and v differ. It then follows from (e) above
th&t \t'\>d(k)-\t\.

3 Soft-decision decoding

Let us assume that each received digit is quantised into Q = 8
levels, and can therefore be expressed as a 3-digit, binary
number or its octal equivalent. For example,

[0]8 = [000]2 = [7]

where the square brackets indicate a soft-decision quantity.
Expressed in this way the code digits can only take the values
[000]2 = [0]8 or [111]2 = [7]8 . The digits of the soft-
decision test-error sequence [t], however, also take any value
between [000] 2 and [111]2. For example, if [w,] = [000]
[111]2 and [vt] = [010] [011]2, then [ff] = [010] [100]2.
Note that the sum of the digits of the soft-decision test error
sequence [t], when expressed in octal, give the number of
levels in which v and w differ.

The distance function of the code, in the soft-decision
sense, is given by (Q — \)d(k) levels, and its error correction
capability is Ts(k), where T8(k) is the largest integer satisfying
Ts(k) <((Q-\)d(k)-l)/2. We can now estimate the
theoretical improvement to be gained by using soft-decision
decoding. In the hard-decision sense an error occurs when
sufficient noise is added to a transmitted digit to form a
received digit which lies on the opposite side of the 0/1
decision boundary. For example, if we transmit [000] 2 (hard
zero) and receive [101] 2 an 'error' in the hard-decision sense
has occurred. Similarly, with transmitting [111]2 (hard one)
and receiving [011] 2 . Now, the minimum number of soft-level
errors required to cause an error in the hard-decision sense is

180 IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981

(2/2. For example, transmit [000] 2 receive [100] 2 . As the
simple code has a correcting power of Ts(k) levels the best
'hard' correcting power becomes

Ts(k)l(Q/2) = - [(Q-l)d(k)-l] * d(k) forQlarge

Asymptotically, at high SNRs ratios, soft-decision decoding
therefore doubles the effective 'hard' correcting power of the
code.

4 Decoding strategy

Consider the notation:
[v]
w

[w]
[t]

= 'soft' received sequence, possibly with errors
= tentatively decoded sequence, i.e. a path in code

tree which is the decoder's tentative version of
transmitted sequence

= 'soft'version of w
= [v] @ [w] ='soft'test error sequence
= 'soft' weight of test error sequence over most

recent b segments (actually the arithmetic sum of
the octal soft values of each bit in [tb])

0

1

00

/

g-11

00

11

^ ^
01

/

10

00

11

01

10

11

01

10

00

11

01

10

00

11

01

10

10

00

11

01

10

00

11

00

11

01

10

00

11

01

10

01

10

00

11

01

10

00

11

00

11

01

10

00

11

01

10

01

10

00

11

01

10

00

11

Fig. 1 Development of initial code tree for the half-rate code with g = 11 01 00 01 00. .. g(2k~1J

IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981 181

Table 1: Distance function </(•) for rate one-half code

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

G

11
01
00
01
00
01
00
01
01
00
00
01
00
01
01
01
00
00
00
01
01
00
00
00
01

d(k)

2
3
3
4
4
5
5
5
6
6
7
7
7
8
8
9
9
9
9
9
10
10
10
10
11

k

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

G

01
01
01
01
01
00
00
01
00
01
01
00
00
01 .
01
00
01
00
01
00
01
00
01
01
00

d(k)

11
11
11
12
12
12
12
13
13
13
14
14
14
14
15
15
15
15
16
16
16
16
17
17
17

Our basic soft-decision minimum-distance decoding strategy is
then as follows. At every node extension through the code tree
we always seek a code path w which is at minimum soft-
distance j [t] | from the received sequence [v]. In other words
a tentative w is only accepted to be the decoded sequence if
and only if for all other paths w' in the corresponding
truncated tree, w has minimum soft test-error weight, i.e.

\[t]\ = \[w)*[v)\ < l[w'] 0 [v] | = l [r '] |

We define the basic branch operation (BBO) to be the
decoding action of a single branch forward extension which
selects the latest segment wx of w. Whenever a decoded path
w is accepted as being the minimum-distance path, the decoder
shifts out the oldest segment of w, which is assumed to be a
correct representation of the corresponding segment of the
transmitted sequence, and shifts in the newly received segment
Vi Of V.

The BBO selects Wj to be the segment closest in soft
distance to [vx], i.e. the segment which results in the smallest.
I [tx] |. For" the half rate code, tx may take the values 00, 01
or 10, i.e. the wx chosen by the BBO always results in a \t\ <
1 in hard decision, and a | [tx] \ < (Q — 1) in soft decision. If
we assume that the new segment wx results from the extension
of a path that has minimum test-error weight the following are
implied:

(a) If \ti I = 0, i.e. 0 < | fr] | < 38 = ((2/2) - 1, then the
new path, which is the extension of the old path chosen by the
BBO, is guaranteed to have minimum soft test-error weight,
and the decoder returns to the BBO

(b) If Hi I = 1, i.e. fi/2 = 48 < | [f,] | <(<2 - 1), then it is
possible that there exists some other path w' with smaller test-
error weights

l[f']l = I [W '] S [P] | < I Ml

(c) If a better path w' exists, then its soft test error weight
\[t'] | is constrained by

l W l - 7 8 < I f f '] I < I M l - I s
These assertions are proved in Appendix 11.1. Thus, whenever
Ui | = 12 the decoder initiates the search procedure either to
indicate that no search for w' is needed because w is still the
best path, or to conduct the search in a very efficient manner.

5 Permissible path search decoding

Let us assume that the decoder needs to search the b-unit
which spans the last b segments of the code tree for'a w' with
smaller soft-test error weight. We utilise the permissible path
decoding technique introduced in Reference 1. The technique
is based on code property (b) of Section 2. This states that w'
can be directly derived by the modulo-2 operation w' = wQx,
where x is a truncated path in the lower-half initial code tree.
Also,

[t1] = [w1] Q[v] = [w] 0 [x] 0 [v] = [t] 0 [x]

and so if w and w' are in opposite halves of a fc-unit we can
derive the new test-error sequence [t'] by the direct modulo-2
addition of [t] and the ^-segment path [x]. This is still a
cumbersome process if all 2 A: — 1 truncated paths with length
k < b in the lower-half initial 6-unit have to be stored and
utilised to search for w'. However, by introducing several
conditions which the x must satisfy because of the code
structure, we can significantly reduce the number of JC
required to search the 6-unit. These paths denoted P are called
permissible paths, and must be stored in the decoder.

The conditions are as follows:
(a) \PX | = 12, i.e. choose only code tree paths with Px -

012 or 102 (proof in Appendix 11.2).
(b) an iterative weight constraint. If a test-error weight may

be reduced by the application of either P' over b' segments,
or P" over b" segments, where b" > b' and P" gives a greater
reduction, a necessary condition is \P'b'"\ < \P'b'\.

Thus, to determine if P'b'" is acceptable, calculate \P"\ for
2<i<b"- 1. If, for any i, \P-\ > |P , | m a x , where 1 ^ 1 ^ is
the weight of the maximum weight previously selected path of
length i, then discard Pb". This is proved in Appendix 11.3.

(c) an equal ending constraint. Discard the path Pb if any
of its subpaths P(for 2 < / < (b — 1), is identically equal to a
previously selected, shorter path. This is proved in Appendix
11.4.

(d) given a permissible path of length b we know that Px =
012 or 102, so that only the leading (b — 1) segments of Pb

are unique. The decoder does not, therefore, have to store the
end segments, thereby reducing the effective number of paths
by a further factor of two.
Table 2 shows a list of the permissible paths that would be
required to perform a minimum soft-decision decoding over a
6-unit. In principle, then, the decoder would, on the
occurrence of a nonzero \tx\, search for a better path w' by
simply making 12 path mappings and test-error weight
comparisons (starting with the shortest path) based on
| [t'] | = | [t] 0 [P] | and choosing the best. If no better path
is found the decoder assumes that the current path is the best,
and returns to the BBO. As the paths are stored in read-only
memory, and the test-error weight comparisons are simple

Table 2: Permissible paths required for decoding a
6-unit

\p\

3
4
4
5
5
5
6
5
6
6
6
7

P

11
11
11
11
11
11
11
11
11
11
11
11

01
10
01
10
01
10
10
01
01
10
10
10

01
00
01
00
10
01
00
00
01
10
01

01
01
10
00
01
01
10
10
00
01

01
01
01
00
01
00
10
01

01
01
01
01
01

b

2
3
4
4
5

CJl

5
6
6
6
6
6

182 IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981

Table 3: Number of Pb at each weight

\pb\

3
4
5
6
7
8
g

10
11
12
13
14
15
16
17

2

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3

1
0
0
0
0
0
0
0
0
0
0
0
0
0

4

_
1
1
0
0
0
0
0
0
0
0
0
0
0
0

5

—
2
1
0
0
0
0
0
0
0
0
0
0
0

6

_
—
1
3
1
0
0
0
0
0
0
0
0
0
0

7

—
—
—
3
4
1
0
0
0
0
0
0
0
0
0

8

—
—
1
6
5
1
0
0
0
0
0
0
0
0

g

_
—
—
1
3

10
g
3
0
0
0
0
0
0
0

b

10

—
—
—
—

3
8

16
15
7
0
0
0
0
0
0

11

_
—
—
—

3
7

14
28
24
13
0
0
0
0
0

12

—
—
—
—

8
17
28
50
43
22
0
0
0
0

13

—
—
—
—

3
18
34
61
89
72
46

0
0
0

14

—
—
—
—

3
11
36
71

118
165
142
87

0
0

15

—
—
—
_
—

10
33
72

147
241
2g2
25g
170

0

16

_
—
_
_
—

7
26
70

160
300
467
551
470
303

Totals
Running

total

Soft weight
\ltb]\

bounds

1

1

2

1

2

4

2

2

4

8

3

7

16

3

to

cn

32

4

8

20

64

Table

13

33

128

4: Search

5

26

256

matrix

b
6

49 89

108 197

512 1024

up to length 6 = 11

7

Bounds on \Pb\

168

365

2048

8

323

688

4096

g

633

1321

8192

1224

2545

16536

10

2354

33072

11

0-10
11-14
15-17
18-21
22-24
25-28
2g-31
32-34
35-38
39-42
43-*

4
4 - 5
"

4
5

5-6

—
5

5-6
5-7
"
"
"
"
"

—
—

6
6-7
6-8
"
"
"
"

—
—

6
6-7
6-8
6-g
"
"
"

—
—

6
6-7
6-8
6-g
6-10
"
"

—
—
—

7
7-8
7 - g
7-10
7-11
"

—
—
—

7
7 - 8
7 - g
7-10
7-11
7-12

logic operations, it is apparent that a simple fast hardware
implementation of the algorithm could easily be achieved.

Table 3 gives an idea of the growth rate of the number of
permissible paths that must be stored against decoding
constraint length b in segments. Also shown is the rate of
increase of 2b~l, the total number of paths of length b in the
lower half initial code tree. It can be seen that the number of
permissible paths required for each segment is very roughly
2 b ~ s . For example, the number of paths required at length
b = 16 (32 bits) is = 2345 ^ 211. The total number of paths
that need to be stored to decode over length b is approxi-
mately 2°~4. For example, a decoding constraint length b =
16 would require the storage of a total of approximately 5000
paths. This is not an excessive number when the densities of
modern ROMs and EPROMs are considered. For example, the
b = 16 decoder storage could be achieved by using 12 2 K byte
EPROMs.

From the above we can conclude that the storage growth is
not excessive. Also we will show later that many of these paths
can be omitted without affecting coding gain significantly, and
this eliminates the exponential growth in storage requirement.
However, if the decoder has to search through all the stored
permissible paths every time a nonzero \tt\ occurs the search
effort will be excessive, and this implies a slow decoder. In the
following Section, however, we introduce several techniques
which significantly reduce the number of test-error weight
comparisons that must be performed by the decoder in its
search for the better path w'.

6 Search effort reduction

By utilising the distance properties of the code we may form
the following relationship (Appendix 11.5) between permiss-
ible path weight and test-error weight:

(Q-l)\Pb\ < 2 | [r b] | - l

This relation implies that, for a given length b, if a better path
does exist it is only necessary to try permissible paths up to a
certain maximum weight, and that weight is a function of
I [tb] |. Thus, for a given b and \[tb]\ we have an upper bound
on |jPb| for a reduction in test-error weight to be possible. For
example, assume that we are at a point in the search where we
are looking for a better path [t'9] of length b = 9 segments. If
the weight of [tq] =25 then the bound indicates that only
permissible paths of weight 7 or less need to be tried at this
length. As there are only 4 paths that conform to this out of a
total of 26 permissible paths of length 9, a considerable
reduction in effort is achieved.

We may develop this technique by forming a 'search matrix'
which is stored by the decoder and utilised to conduct the
search. Table 4 shows a search matrix for the half-rate code
used, up to length b= 11. Each entry shows the weights of
permissible paths that must be used in the search. The dashed
entries indicate that no searching at all is necessary. For
example, if the search is at length b = 11 and \[tn] \ < 24,
then no length 11 permissible paths need to be tried, as a
reduction in weight is not possible. It is interesting to note

IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981 183

that the row weight bounds on \[tb]\ are independent of the
code generator, but the low and high limits on \Pb\ are set by
the specific code generator.

In an implementation the decoder would store the search
matrix, but the entries in the matrix would not be the weights
of the P, but actual addresses into the stored P table.
Additionally, the table of P must be stored in order of
ascending weight, within each segment. Thus, whenever a non-
zero \tj | occurs, the decoder undertakes a search and must try
permissible path mappings from length b = 2 to b = DECL
(decoding constraint length). At each length the respective
weights \[t2] I, \[h] I , . . . , I[?DECL] I a r e calculated, and by
looking into the search matrix the decoder directly knows the
actual addresses of the stored permissible paths that must be
tried for each length. The decoder thus produces a 'search-
map' which directly pinpoints the subset of permissible paths
that must be tried. We then assume that all these mappings are
tried from length b = 2 to b = DECL, and the best resulting
path | [t'] | (if one exists) is chosen. Table 5 shows an example
of a search map for a typical test error sequence, which
contains 5 'hard' errors. It can be seen that the search matrix
has produced a search map in which only 10 permissible paths
needed to be tried to find the better path. Given that the total
number of permissible paths of length 2 < 6 < 11 is 197,a
considerable saving in decoding effort has been achieved.

Table 5: An example search map

b

2
3
4
5
6
7
8
9

10
11

\[tb)\

4
11
15
19
19
20
20
21
25
25

\Pb\ upper bound

—
4
5
5
_
—
—
7
7

No. of \Pb\

_

1
2
1
_
—
—

3
3

For [t] = 0 0 04 01 00 01 00 40 40 61 00 408

Total number of paths in search = 10

So far we have assumed that the decoder searches all paths
from length b = 2 to b = DECL utilising the reduced set of
permissible paths as produced by the search matrix, in order to
find the 'best' path. However, we now introduce a 'search
termination' constraint that enables the decoder to know
when the maximum improvement in test-error weight has
occurred. This means that the decoder can then abandon any
searches of greater length, thus further saving decoding effort.

First, in Section 4 it was shown that if a better path w'
exists then

i.e. the maximum improvement in test error weight is 7 levels.
Thus, if at any stage in the search an improvement of 7 levels
was achieved, we could immediately accept the mapping as the
'best', and terminate the search.

It is, however, possible to refine this bound, and it is shown
in Appendix 11.6 that the maximum improvement in test-
error weight is a function of the last segment weight only, and
is given by

0[tb]\-\[t'b]\)max = 2![?!] | -78

where [7X] is the value of the soft-decision digit within [tt]
whose 'hard' value is 1. Thus, I [?i] I can only take the values 4,
5, 6, 7, corresponding to maximum improvements of 1, 3, 5,
7, respectively. The decoder therefore calculates the maximum
possible improvement in test-error weight before starting the
search, and if any mapping achieves this improvement the
search is immediately terminated and the mapping is accepted

as the best. For example, returning to the search map of
Table 5, it can be seen that l[?i]l = 4, indicating that a
maximum improvement of 1 level is possible. This occurs on
the third mapping, i.e. the second permissible path of length 5
results in a i[f$] I = |[fs] I — 1 = 18. The search therefore
terminates after 3 trial mappings instead of the 10 indicated
earlier.

7 Final algorithm

The decoding algorithm can be summarised as follows:
(a) Decoding proceeds by means of the BBO. Whenever the

BBO results in a \tx | = 0, the new path is guaranteed to be at
minimum soft-distance from the received sequence, and the
decoder outputs the oldest segment of w and returns to (a).

(b) If |fj I = 1, then the decoder calculates the maximum
possible improvement in soft-decision test-error weight that
can be achieved by a mapping to another path w.

(c) The decoder searches for the better path starting at
length b = 2 and continuing in a segment by segment manner
until b = DECL is reached. At each segment a reduced set of
permissible paths as pointed to by the search matrix is utilised
to search for w .

(d) If, at any stage, a mapping achieves the maximum
improvement, accept that mapping and return to the BBO.
Otherwise accept the best improvement achieved over the
decoding constraint length.

(e) If no better path is found when all the necessary
permissible paths have been tried, or if the decoder runs out of
time, accept the original path, and return to (a).

8 Results

We have tested a software implementation of the algorithm on
a Plessey Miproc 16-bit computer. Fig. 2 shows the decoder
performance in additive white Gaussian noise for decoding
constraint lengths of 6, 11 and 16. The curves plot output user
error rate against SNR Eb/N0, and all curves are corrected for
rate. It can be seen that useful coding gains are achievable; in
particular, at an output error rate of 10~5 the length 16
decoder achieves 4.25 dB of coding gain.

Also shown in Fig. 2 is the number of permissible paths

10

103

5 10*

10"

106

uncoded

length 11
(50 PP)

length 16
(186 PP)

3 4 5 6 7
Eb/N0.dB

Fig. 2 Decoder performance

10

184 IEEPROC, Vol. 128, PL F, No. 3, JUNE 1981

(PPs) actually used for each decoding constraint length. It
should be noted that for lengths 11 and 16, these are signifi-
cantly less than the total number of paths indicated by the
path selection criteria (Table 3). This is because high-weight,
high-length paths can be removed from the Table of stored
permissible paths without significantly worsening the output
error rate. The number of stored paths shown in Fig. 2 for the
lengths 11 and 16 represent the smallest set for which a
degradation in performance at low error rates was not notice-
able. It is in this way that very significant savings in path
storage requirement can be achieved. For example, the length
16 curve shown in Fig. 2 was achieved using 186 stored
permissible paths, compared with the 4899 paths indicated in
Table 3. The length 16 curve also exhibits a 'crossover' effect
at high error rates. This is also due to the limited number of
paths used, and is an effect similar to buffer overflow.

Fig. 3 gives an indication of the average decoding effort by
plotting 'effort', defined as

number of paths searched
E =

number of nonzero \tx | occurrences

against channel error rate, for the length 11 and 16 decoders.
It can be seen that even at high channel error rates the E is
significantly less than the total number of stored paths. In
particular, at an Eb/N0 of 5dB the average effort E for the
length 11 decoder drops below one path searched per search.
This is significantly less than other types of sequential
decoding algorithm. Also shown is the effort curve for the
length 16 decoder which exhibits the same characteristics. As
expected, the length 16 effort is greater than the length 11
effort at a given Eb/N0. This effort is again significantly less
than the maximum possible search effort.

9 Conclusions

In this paper we have presented a new soft-decision minimum-
distance sequential decoding algorithm for convolutional
codes. A feature of the algorithm is that the minimum-distance
approach ensures that the search effort is much less than that

16

15

U

- 7
o
"ol 6

5

U

3

2

length 11

length 16

required by other sequential decoding schemes. Also, the
decoding effort is insensitive to decoding constraint length.
The ROM storage requirement for the decoder is similarly not
excessive. It was shown in Section 8 that many high-weight
long permissible paths can be deleted from the full list of
paths without significantly reducing coding gain. This makes
the use of much longer decoding constraint lengths, and hence
the achievement of higher coding gains a practical possibility.

Ultimately, the performance of any sequential type decoder
depends on the probability of buffer overflows; although the
results of Section 8 are for an 'infinite buffer' implementation
it can be seen that in this algorithm the buffer overflow
problem is not as severe as in other algorithms, for two main
reasons. First, there is a low amount of searching needed, and
this implies a low probability of buffer overflow. The small,
search requirement is a function of both the minimum-
distance approach, which quickly spots a wrong path decision,
and the search matrix technique, which eliminates many
unnecessary searches in the quest for a better path. Secondly,
only a small set of paths, the stored permissible paths, have to
be searched even if a full back-up search is required. This
indicates that the algorithm requires a much smaller buffer
than other schemes. Finally, the algorithm is simple in
implementation. The processes and path handling involved are
much simpler than in other algorithms. As example of this,
the software-only implementation of the length 16 decoder,
the results of which are shown in Fig. 2, ran at a channel bit
rate of 30000 bits per second at an output rate of 10 ~5. The
building of very fast hardware decoders which can achieve high
coding gains is therefore a practical possibility with this
algorithm. Future work will be directed to investigating longer
constraint length high-speed decoders, and investigating the
tradeoffs between speed, buffer size and performance.

10 References

1 NG, W.H., and GOODMAN, R.M.F.: 'An efficient minimum-
distance decoding algorithm for convolutional error-correcting
codes', Proc. IEE, 1978,125, (2), pp. 97-103

2 NG, W.H., and GOODMAN, R.M.F.: 'Analysis of the computational
and storage requirements for the minimum-distance decoding of
convolutional codes', ibid., 1979, 126, (1), pp. 29-34

3 GOODMAN, R.M.F., and WINFIELD, A.F.T.: 'Soft-decision direct
mapping decoding of convolutional codes'. IEEE international
symposium on information theory, Grignano, Italy, June 1979

4 WOZENCRAFT, J.M., and JACOBS, I.M.: 'Principles of communi-
cation engineering' (Wiley, 1965)

5 FARRELL, P.G., and GOODMAN, R.M.F.: 'Soft-decision error
control for HF data transmission', IEE Proc. F, Commun., Radar &
Signal Process., 1980,127, (5), pp. 389-400

6 FANO, R.M.: 'An heuristic discussion on probabilistic decoding',
IEEE Trans., 1963, IT-9, pp. 64-67

7 JELINEK, F.: 'A fast sequential decoding algorithm using a stack1,
IBM J. Res. & Dev., 1969, 13, pp. 675-685

11 Appendixes

7 7.7 Proof of \[t]\-78 < \[t'] \ < \[t]\ - 78

{a) \[t']\ < \[t] | — 18 is a necessary condition of the
decoder.

(*) l M l - 7 8 < | [r '] | .
Whenever the application of a permissible path leads to a
reduction in test-error weight, the reduction must be in the
last segment only:

E b / N 0 , d B

Fig. 3 Length 11-16 decoder effort

IEE PROC, Vol. 128, Pt. F, No. 3, JUNE 1981 185

If [t] is the lowest weight test error sequence up to node A,
then

for any t, otherwise the decoder would have been following t'.
Thus, if

\[t'b)\ < l f o ,] | - l .

then

\[t\]\ < \[h]\-U

Now since the BBO restricts the maximum soft weight of
![tx] I to (Q — 1), then (<2 — 1) is also the maximum reduction
in soft weight, then

and over the whole sequence, with Q — 8 levels,

l W l - 7 8 < l[r'] |

11.2 Proof of \PX\ = 12

From the code tree, Px could take values 0 0 2 , 0 1 2 , 102 or
1 1 2 . Clearly, if JPX = 0 0 2 , no soft-weight reduction i ^ ' J I <
I [ti] | - 12 could occur. If Pt = 1 1 2 , then | [tx] | < | [Pt] | -
7 8 , and since | [/ \] | - \[tx]\ < \[t\]\, this gives \[t\]\ > 7 8 ,
contradicting I [t\] | < | [tx] | - 1 2 .
Thus,/1! may only take values 0 1 2 and 102.

11.3 Proof of \P'b'\<\P'b'\

[t'] = [t] 0 [P']

[t") = [t]®[P")

If the application ofP' gives an improvement,

IK']I < IMI-U
but the application of P" gives a better improvement, then

IK'-] I < l [V l l - 2 8

Now

Now

IK'] I = \[tb'] 9 [Pi']\ > \[Pt']\-\[tb']\

IK'] I < 2 | [v] l - 2 8

By a similar deduction for/*',

IK']I < 2 | [v] | - l 8

But we must replace this inequality by an equality otherwise
contradicting the assumption that P" gives a better reduction
than P'. Thus

IK-]I < - i

or

IK'] I < IK'] I, but |[P] | = (Q-l)\P\

K'l < K'l

/1.4 Proof of the equal ending constraint
Referring to the sketch in Appendix 11.3 above, if /&' =Pb',
then \[t'b'] | = \[tb"] \. Also, since t is the minimum test-error
weight sequence to node A, then |[*"(&"-&•)] I > \[t(b"-b')] |.
Thus, the longer path P" cannot give a better reduction in test-
error weight.

11.5 Proofof(Q-1)\Pb\<2\[tb]\-U
Now

IK] I = \[tb]9[Pb]\
Thus

IK]I > \[Pb]\-\[tb]\

and substituting

IK1I < \[tb]\-ls

gives

\[Pb]\ < 2 | [r b] | - l 8

11.6 Proof of (\[tb]\- \ftbj\)max=2\[t}]\- (Q- 1)
From Appendix 11.1, the weight reduction | [f '] | < l[f] | —
18 is confined to the final segment tx. Further, the weight
reduction is confined to the digit of tx corresponding to the
nonzero digit of Px. Now, for any given [tt] , the maximum
value of (| [tx] | — | [t i] |) is given by

otherwise the decoder would be following t"; thus

IK']I < lK']l-28

where [tx] is the digit of [tx], whose value is > Q/2, i.e. the
digit whose 'hard' value is 1. Now the maximum value of

K K l

186 IEEPROC, Vol. 128, Pt. F, No. 3, JUNE 1981

