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Mixed 3 - l ~  and Em Performance 
Objectives I: Robust Performance Analysis 

Kemin Zhou, Member, IEEE, Keith Glover, Fellow, IEEE, Bobby Bodenheimer, Member, IEEE, and John Doyle 

Abstract-This paper introduces an induced-norm formulation 
of a mixed 'Hl and 'H% performance criterion. It is shown 
that different mixed ' H 2  and 'Hx norms arise from different 
assumptions on the input signals. While most mixed norms 
can be expressed explicitly using either transfer functions or 
state-space realizations of the system, there are cases where the 
explicit formulas are very hard to obtain. In the later cases, 
examples are given to show the intrinsic nature and difficulty 
of the problem. Mixed norm robust performance analysis under 
structured uncertainty is also considered in the paper. 

1. INTRODUCTION 

HIS paper considers the system in Fig. 1 where G is a T linear system, 'ti10 is a signal of bounded spectrum and 
w1 is a signal of bounded power. These signal sets are defined 
in Section TI. We are interested in the induced norm on G 
when the inputs are from these sets and z is taken to be of 
bounded power. This is called a mixed 3-12 and 3-1, problem 
because if only 'w0 were present, this induced norm would be 
the standard 3-12 norm on G and if only 1111 were present, it 
would be the standard 3-1, norm. 

Motivation for this problem comes from several sources. 
The most general motivation is that we would like to develop 
a theory of robust 3-12 performance with 3-1, norm-bounded 
structured uncertainty similar to the p-analysis theory for 
robust 3-1, performance. While the 3-1, norm is natural for 
norm-bounded perturbations, in many applications the natural 
norm for the input-output performance is the 3-12 norm. The 
mixed problems considered in this paper provide a starting 
point for a theory of robust 3.12 performance. 

A second motivation arises from the paper by Doyle et al. 
[51, where standard 3-12 and 3-1, optimal control problems 
are treated as separate problems, but in a unified state-space 
framework. A natural continuation of this work is to find a 
single problem formulation that has the standard 3-12 and 3-1, 
theories as special cases. Additional motivation came from 
Bemstein and Haddad [2], who consider a mixed framework 
with an apparent "duality" to the framework proposed here. 
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Fig. 1.  

Although certain formulas are transposes of each other, the 
nature of this duality is not operator theoretic. The present 
paper, and the companion paper on synthesis, could be viewed 
as an attempt to extend and formalize the work in the two 
papers above. The connections between these papers will be 
considered in more detail in the synthesis paper. 

A final and somewhat peripheral motivation is that we 
wish to suggest a theory of noise signals which does not 
require stochastics, although it is clear that the theory de- 
veloped here could be done entirely within a conventional 
stochastic framework. We pursue a slightly different, more 
operator theoretic course in the spirit of the CZ motivation 
for 3-1, optimal control, but using signals bounded in power 
or spectrum rather than energy. We believe that this course 
will eventually lead to a framework for modeling signals 
that will be simpler and easier to motivate than conventional 
stochastics, although much more work will be needed before 
this goal will be realized. In order to avoid a long and 
technical preliminary section, signal sets of bounded power 
and spectrum are defined and developed in an informal and 
heuristic manner. While this approach greatly shortens and 
simplifies the paper, we recognize that a rigorous treatment 
will require that the preliminaries in Section IT be revisited. 

Section 111 presents the main results of the paper where 
the system's performance under various inputs is quantified. 
In particular, the mixed analysis problems seems to divide 
naturally into cases where tuo is white or not, and where w1 
is causally dependent on 200 or not. We say w1 is causally 
dependent on W O  if w1 = WWO for some W E 3-12. The 
analysis results were given without proof in Zhou et al. [I31 
for the white and causal case, which is the case that is treated 
in the companion synthesis paper. Section IV gives our results 
on the mixed robust performance analysis problem, which we 
consider a step in the direction of developing a robust 3-12 

theory. 

11. PRELIMINARIES 
This section reviews some elementary 

system theoretic results, and presents the 
fairly standard. 

mathematical and 
notation, which is 
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A. Notation are defined, respectively, as 

The Hardy space 'HZ ('Hi) consists of square-integrable 
functions on the imaginary axis with analytic continuation 
into the right- (left-) half plane. The Hardy space 3-1, con- 
sists of bounded functions with analytic continuation into the 
right-half plane. The Lebesgue spaces C2 and C, consist 
of, respectively square-integrable and bounded functions on 

All integrals are Lebesgue integrals. In general, u(t) : R + 

R" and ?U; ( t )  : R Ow". will be used to denote signals which 
are inputs to systems, z ( t )  : W -+ Wq and y(t) : R + W P  denote 
signals which are the outputs of a system, and z ( t )  : R --t R" 
denote signals which are the states of a system. Let * denote 
the convolution operator, superscript * denote the adjoint 
operator, and (z,y) the usual inner product on C" or R". 
In most cases, we will omit all vector and matrix dimensions 
and assume that all quantities have compatible dimensions. 

A transfer matrix in terms of state-space data is denoted 

rG] := C(s1-  A)- lB + D 

For a matrix M E CPxr  or RpX1', M' denotes its conjugate 
transpose and @ ( M )  denotes its maximum singular value. The 
prefix B denotes the closed unit ball and the prefix R denotes 
real-rational. The unsubscripted norm 1 1  . 1 1  will denote the 
standard Euclidean norm on vectors. Finally, if X = X' is the 
stabilizing solution to the algebraic Riccati equation 

(-m; m). 

A'X + X A  + X R X  + Q = 0 

with A + R X  stable, then we will denote the solution by 
X = R i c ( H )  where 

H = [ "  -Q -A' " 1  

I r m  

11~112 := 

and 

Il.u.wll := esssup Ilu(t)ll. 

Bounded Power Signals: Given a signal u(t), we define its 
autocorrelation matrix as 

l T  
R,,(T) := , ~ m  lim - 2T J, U ( t  + T ) U ( t ) ' d t  

if the limit exists for all T .  It can be shown that R,,(T) = 

For the purpose of this paper, we further assume the Fourier 
transform of the signal's autocorrelation matrix function exists 
(but may contain impulses). This Fourier transform is called 
the spectral density of U ,  denoted S,,(jw) 

Ruu(-T)' 2 0. 

00 

S,,(jw) := R,,(i-)e-JWTdT. 

Then R,,(T) can be obtained from S,,(jw) by inverse 
Fourier transform as 

R , ~ ( T )  := -.L / SUu(jw)eJWTdw. 

Note that spectral density matrices are Hermitian (S,,(jw) = 
S:,(ju)) and positive semidefinite (SutL(ju) 2 0). 

We will consider the set of signals satisfying the following 
conditions: 

A l )  u(t)  E C,; 
A2) the autocorrelation matrix R,,(T) exists for all T ;  

A3) the power spectral density function S,,(jw) exists (it 
need not be bounded and may include impulses). 

Jw 
W 

2 r  -w 

is the associated Hamiltonian. The matrix H for which Rzc(H) 
is defined is the domain of the Riccati operator and will be 
denoted by dom(Rzc). For more details on this notion for 
Riccati equations and Hamiltonian matrices, see [ 5 ] .  

B. Signals and Norms 

A signal U satisfying the above conditions is said to have 
bounded power if 

lim / T  llu(t)112dt < m. 
T+w 2T -T 

The set of all signals having bounded power is denoted by 
All signals and systems considered in this paper are assumed 

to be deterministic. The development of the signal sets here is 
somewhat peripheral to the main theme of this paper, and will 
be quite informal and heuristic. Some relevant background 
material may be found in [9]. The objective is to motivate 
certain induced norms, which are mixtures of 3-12 and 3-1, 
norms. These mixed norms could also be motivated in a 
stochastic framework. 

L 2  and C, Signals: These classes of functions (signals) 
are well understood and widely used in control community; 
we remind the reader that the 2 and m norms of a signal 

P := {u( t )  : u(t)satisfies Al)-A3) and 
T 

T-03 2T -T 
lim -..L / 11u(t)l12 dt  < m 1. 

A seminorm can be defined on the space of signals of 
bounded power, i.e., 

The script "P" is used to differentiate this power semi-norm 
from the usual Lebesgue L, norm. The power norm of a signal 
can also be computed from its spectral density function 
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We note that if u E P and lJu(t)Jl, < 00, then JJuJJp 5 JJuJJ,. 
Not every L ,  signal, however, is in P,  because the limit in 
the definition of the autocorrelation matrix may not exist. Note 
also that signals of bounded power may be persistent signals 
in time such as sines or cosines. Clearly an L2 signal has zero 
power so I (  . IJp is only a semi-norm, not a norm. 

The cross-correlation between two signals U and w is defined 
as 

R,,(T) := lim - JT U(t+T)TJ( t ) ' d t  
~ + a :  2T -T 

if it exists for all 7. It is easy to show that the cross-correlation 
has the following property 

The Fourier transform of R,%,(T) is called the cross-spectral 
density and is denoted as S u v ( j w ) .  

Bounded Spectrum Signals: Note that a bounded power 
signal need not have bounded spectral density; for example, a 
sine function has an impulse as a spectral density. On the other 
hand, some signals having bounded spectral density need not 
have bounded power; in particular, a signal U having bounded 
spectrum S,, = I has unbounded power. 

The set of signals having bounded spectrum is denoted as 

S := { ~ ( t )  : u(t)  satisfies Al)-A3) and 

l l s l l u ( ~ w ) l l ~ < O 0 ~ .  

The quantity /lulls := ~ ~ ~ ~ , , ( j w ) ~ ~ ,  is a seminorm on S .  
The engineering relevance of the set S is that it can be used 

to model signals with fixed or bounded spectral characteristics. 
Similarly, P could be used to model signals whose spectrum 
is not bounded but which are bounded in power. In both 
cases, these signals can be passed through weighting filters 
to produce signals with desired frequency content. We will 
primarily view the signals in S and P directly in the frequency 
domain in terms of their spectra. 

Since U E C, we have that R,,(T) < m, and hence 
S,,(jw) cannot be constant for all w.  When we refer to white 
signals we mean the limits of sequences of signals in BS 
that approach a constant spectrum. Some of the manipulations 
that we will make using white signals in subsequent sections 
require essentially an interchange of this limit process with 
others. A rigorous treatment of this material would justify the 
details of these interchanges of limits. 

We have not demonstrated that S is nonempty. One solution 
to this would be to note that sample paths of stationary 
stochastic processes satisfy the assumptions for S.  A more 
satisfactory solution would be to exhibit deterministic signals 
that satisfy S ,  but this is not trivial and is beyond the 
scope of this paper. This is an important issue and must be 
addressed before the nonstochastic theory suggested here can 
be considered to be established. 

Spectral Analysis and Induced Norms We now list some 
useful spectral analysis facts for a linear system G with 
convolution kernel g ( t ) ,  input U ,  and output z as shown in 
Fig. 2. 

Fig. 2. 

TABLE I 
INDUCED SYSTEM GAINS 

Input output  Signal Norms Induced Norms 

s s  

A more complete development of this material would prove 
these results using only the earlier assumptions. For g ( t )  
which are exponentially bounded, this should be entirely 
straightforward. These properties are useful in establishing 
several input and output relationships; in particular we have 
the relationships listed in Table I. Note that the induced norms 
from energy (C2) to energy, power to power, and spectrum 
to spectrum are all m-norms, while the induced norm from 
spectrum to power is the 2-norm. In particular, if the input 
signal is white with unit spectral density, then the power of 
the output equals the 2-norm of the transfer matrix. 

C. Computing 3-12 and 3-1, Norms 

This section reviews some results on the computation of 
the 3-12 and Em norms of a transfer matrix G. Consider a 
realization 

= rq-1 C D  (1) 

with A stable (i.e., all eigenvalues in the left-half plane). Let 
L, denote the controllability gramian of ( A , B )  and Lo the 
observability gramian of (C, A) ,  then 

ALc + L,A' + 33' = 0 AIL, + LOA + C'C = 0 

and for D = 0, the 3-12 norm of G can be computed by 

lJGlli = Trace(CL,C') = Trace(B'LoB). ( 2 )  

Note that this computation involves the solution of a linear 
equation and can be done in a finite number of steps. 

Computing the 3-1, norm of G is much harder. A recent 
effort involves using a Hamiltonian matrix. Given y > @ ( D ) ,  
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1 0  * c- zF--b 
Fig. 3. 

define the Hamiltonian matrix 

] (3) H := [-c?(EZ-%& - ( A  + BR-lD’C)’ 
y - 2 ~ ~ - 1 ~ r  

where R := y21 - DID > 0. 
The following lemma is essentially from [ 11, [ 121, [3]. 
Lemma I :  The following conditions are equivalent: 

b) a( D )  < y and H has no eigenvalues on the imaginary 

c) @(D)  < y and H E dom(Ric) 
d) & ( D )  < y, H E dom(Ric), and R i c ( H )  2 0 

To determine llGll, numerically, select a positive number 
y; determine if 11Gl1, < y by calculating the eigenvalues 
of H and using the above theorem. Increase or decrease y 
accordingly, and refine the iteration until the desired precision 
is reached. 

a) IlGllm < 7 

axis 

( R i c ( H )  > 0 if (C, A )  is observable) 

Fig. 4. 

signal space for w and its spectrum SWW. We shall measure 
the system performance by the power of the output ~ ( t ) .  

Problem I: Let W c BS x P and let BW = W n (BS  x 
BP)Compute the induced norm 

(4) 

The exact form of the set W depends on the assumptions 
on 200 andwl, which will be specified later. This problem has 
been referred to as the “mixed 7-12 and 3-1,” problem in our 
previous research because, from the table shown in the last 
section, if we ignore w1 then the norm induced on G from wO 
to z is the 3-12 norm; similarly, if we ignore WO then the norm 
induced on G from w1 to z is the 3-1, norm. Hence when 
both W O  and w1 act on the system, the induced norm will be 
a mixture of 3-12 and 3-1, norms. 

The following alternative problem will be formulated to 
address the norm evaluation of Problem I. 111. MIXED 3-12 AND 3-1, NORM PERFORMANCE ANALYSIS Problem 11: Given y > llG1[lx and W as above, compute 

In general, in any analysis problem, our objective is to 
determine a system’s performance under certain specified 
criteria with a fixed controller. The performance criteria may W E W  

be bandwidth, overshoot, tracking error, robustness against 
uncertainties and disturbance, and so on. The criteria we are 
interested in this paper are related to 3-12 and 3-1, norms. 
It can be argued that the E 2  norm, traditionally called a 
quadratic (functional) criteria, is a more natural and more 
suitable measure for system performance than the 3-1, norm. If 
there are uncertainties in the system model, however, then it is 
not a suitable measure for the system robustness. On the other 
hand, system robustness can be and has been very effectively 
described using 3-1, related criteria. It is thus natural that 
some quantity that combining the 3-12 norm and Xm norm is 

The term y2 can be considered as a Lagrange multiplier for 
Problem I which has the constraint llwl Ilp 5 1. The following 
lemma illustrates the relation between Problems I and 11. 

Lemma 2: Suppose that yo is such that 

a desirable measure of a system’s robust performance. The 
mixed 7-12 and 3-1, norm introduced in this line of research is 
an attempt to achieve this goal. 

Pro08 Equation ( 5 )  implies that zo  is produced by w E 
BW and 

A. Problem Formulations 
To set up our mixed norm analysis problem, let us consider 

a system shown in Fig. 3. 
The norms induced on G when G is subjected to two 

different classes of inputs, w = [::[:; 1,  are of particular 

and is hence optimal since 

WEBW 

U 
interest to us. Specifically, we assuhe that the signal wo(t) is 
a signal with spectral density Swowo( ju )  and the spectrum 
is bounded, i.e., wo(t) E S and the signal w l ( t )  is a 
bounded power signal, i.e., w l ( t )  E P with power spectrum 
S,, w 1  ( j w ) .  We will be concerned with problems when WO and 
w1 are independent and when w1 has a causal or noncausal 
dependence on WO, and these give differing assumptions on the 

Hence a solution to Problem I1 will give a solution to 
Problem I if such a yo can be found. It is unfortunately not 
always the case that such a yo can be found (e.g., in the case 
of Theorem 2) and in Section 111-C this will be discussed in 
more detail. 

Another motivation for introducing Problem I1 is its relation 
to the following robust performance problem: 



ProblemIII: Let G = [GO G I ]  with llG1)Jm < y 5 1 
be a nominal system and A E RX, with JJAJJoo 5 1 be the 
system uncertainty as shown in Fig. 4. Evaluate the system's 
worst performance 

Jo:= sup ( ( z ( ( ~ =  sup Il(1- G I A ) - l G o ~ ~ ( ( p .  

The following theorem shows that the robust FLz perfor- 

Theorem 1: Suppose w1 depends causally on WO and 

2 2 

wo EBS, II A )I 5 1 w o  EBS, I1 a I1 5 1 

mance Jo can be bounded above. 

Then 
J 

Jo I - 1 - y2' 

Proof: Note that for any w1 E P depending causally on 
W O ,  we have 

1141; - Y211wlll: I J. 

1 1 ~ 1 1 ;  I Y 2 1 1 ~ l l l ;  + J 

L Y211Zll; + J. 

From the setup of Problem 111, w1 = Az, so w1 depends 
causally on WO, hence 

= y2)lAzll; + J 

Therefore, for any A E RX, 
2 J  

IIZIIP 5 

U 
Hence the performance index J gives not only the system 

performance under two different kinds of disturbances but also 
an upper bound for the robust 'H2  performance. Since most of 
our analysis will be done in the frequency domain, we shall 
first give a frequency domain characterization of IIzllP. Denote 
the cross spectral density of WO and w1 by S w o w l ( j w ) .  Now 
assume G is stable and partition G compatibly with WO and 
w1 as [Go GI], where Go is assumed strictly proper (otherwise 
the output signal will have unbounded power if W O  is white). 
In terms of the state-space matrices, this can be represented as 

The spectral density matrix of w is positive semidefinite and 
hence it can be written as 

for some ,911 2 0 and W. 

Using this formula and the facts from spectral analysis shown 
before, we get 

and 

We will say that w1 depends causally on WO if w1 = WWO 
for some W E E2,  which implies S,,,, = S,,,,W* and 
S11 = 0. This is a very narrow notion of causality, but it is 
appropriate for the purposes of this paper. We will say that w1 
has a noncausal dependence on W O  when no specific constraint 
on W is imposed, that is, wl may or may not depend causally 
on WO.  

We shall consider several different cases for our analysis 
problem: 

a) Orthogonal: WO and w1 are orthogonal, i.e., S,,,, = 0 
and W = 0 (but SI1 is not necessarily zero); 

b) White and causal: WO is white and w1 is causally 
dependent on wo; 

c) Nonwhite and causal: W O  is nonwhite and w1 is causally 
dependent on w0; 

d) Nonwhite and noncausal: W O  is nonwhite and w1 is not 
necessarily causally dependent on w0. 

Each case then corresponds to different assumptions on the 
signal set W .  Note that by nonwhite we mean not necessarily 
white. 

Let us first consider the analysis problem when WO and w1 
are orthogonal. In this case we have the following theorem. 

Theorem 2: If W O  and w1 are orthogonal, i.e., S,,,, = 0, 
then 

Proof: Since S,,,, = 0, we have 

and 

1 r w  

and the worst signal W O  is white noise with unit spectral 
density matrix, S,,,, = I ,  while the worst signal for w1 
is as given in the Appendix. 
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On the other hand and substituting from (6)-(7) we obtain, 

where 

x [G;(jw)Gi(jw) - y21]& r := w - (y21 - G ; G ~ ) - ~ G ; G ~  

= IlGoll; Since we wish to maximize this expression and (7'1 - 

with a worst-case signal w1 = 0. 
In each of the cases a)-d) we have 

GTG1) > 0, the maximizing S,, will always have ,911 = 0. 
Thus for all the cases considered here, S,,,, = WS,,,, W* ,  
and w1 is completely correlated with WO. 

Let Nl E RXm be a spectral factor of y 2 1  - GTGl such llzllp = ~ ~ G O W O  + GlWlllp I IlGowoIIp + IIGlWlIIp. 
that NF1 E RXm and N,*N1 = y21 - GyG1, then 

Hence 
Trace S,,,, {r2Gg (7'1 - GlG;)-lGo 

- r*N;NlI'}dw. (10) 

SUP llzllp I IIGoll2 + IIG111" 
W € B W  

Let R = y21 - Dl'D1 and 

X = Ric 

Thus the relationships among the costs of llzllp in different 
cases can be summarized as the following theorem. 

sup {Ilzllp : S,,,, = 0) I sup {ll.zllp : WO is white 

Theorem 3: 

Then it can be shown that 
and w1 depends causally on WO } 

and w1 depends causally on WO} 
I sup{llzllp : wois nonwhite 

5 sup { llzllp : WO is nonwhite and 

We will show later that where 

(13) sup { llzllp : wo is white and w1 is noncausal} 

= sup {Ilzllp : wois nonwhite andwl is noncausal}. 

Hence the cost supwEBw llzllp for different cases makes very 
little difference in the actual induced norm. For engineering 
purposes, it is probably adequate to choose whichever case is 

0 

- ( A  + BIKID1 'C + BIR-lB1'X)' 

E 72%;. (14) 

easiest to work with. On the other hand, the different cases 
have features which are interesting from a theoretical point of 
view, so the relationship between the different cases will be 
considered further. 

B. Preliminary Manipulations for Problem I1 
To compute J for the other cases b)-d), we first need to 

establish some key formulas for Problem 11. Let y > 0 be 
such that llGlII, < 7, then 

Hence 

and without loss of generality, we can assume 

W = N ; ~ N ~  + Q 

for some Q E Q c C2, since the mapping from Q to W 
is bijective and where Q depends on the set of assumptions. 
Hence 

= sup 1 Trace(S,, - y2S,,,,)& 
wEW 27T -c€ and the following lemma is proven. 
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Lemma 3: With the above definitions 

J =  sup L Jm Trace {Sw,,o@(jw)}dw 
WOEUS, Q E Q  27r -33 

where 

a( S )  y2GG(y21 - G L G T ) - ~ G ~  - ( Q  - N3)* (Q - N3) (16) 

and w1 = WWO with 

W = Nc1N2 + Q: Q E &. 

Note that depending on the assumptions on the signals 200 

and 201, @ ( j w )  need not be positive semidefinite for all w, 
hence white noise is not, in general, the worst signal for 200. 

C. Pegormanee Analysis with White and Causal Signals 
In this case, WO is assumed to be white, i.e., S,,,, = I and 

w1 is assumed to depend causally on 200, so W E 7 i 2 .  We 
shall only present a frequency domain solution in this paper 
and a time domain solution will be given in the companion 
paper [7] together with synthesis results. 

Since in this case S,,,, = I and Q = ‘?-12, from Lemma 
3 we have 

33 

J = sup / Trace@(jw)dw. 
QE7-La 2T -CC 

Theorem 4: Let y > llGlII, then 

1 ”  
27T -m 

J = - Trace {y2GG(y21 - GIG;)-lGo - NlN3}dw 

= IlC‘ol l i  + llN211; = Trace(Bo’XB0) 

with 
W=N,’NF [=]ER%. A + BIR-l(D1’C + B1’X) 

R-l(D,‘C + B1’X) 
(17) 

Proof: Since in this case 

Trace {y2GG(y21 - GIGr)-lGo}dw 
J = - /  1 =  

2T -” 
1 P a  

- inf Tracc {(Q - N3)*(Q - N3))dw. 
Q E ’ H H ~  2T -, 

It is clear that the worst signal satisfies Q = 0 by orthogonal 
projection, so wl = N r 1 N 2 , ~ ”  and 

@(s) = y 2 G i ( y 2 1  - GiGr)-lGo - NiN3.  

Hence 

J = 1 33 Trace 
2T s, 

{GG(I + G1(y21 - G;GI)-’G;)Go - NiN3)dw 
00 =‘s Trace 

27r -= 
{GiGo + GGGINFINc*G;Go - NiN3)dw 

and since NZ and N3 are orthogonal and N2 + N3 = 
(N,*)-lG;Go we obtain J = IlGoll; + llN211i. This can be 

evaluated from the state-space realization of [: ] on noting 

that the Riccati equation for X in (1 1) can be wntten as 

X A  + A’X 
C C 

+[R-’”(o1’C + B1’X)]’[R-’/2(n1’C + BI’X)] = 

i.e., X is the observability gramian of . Thus we have 

J = Trace(Bo’XB0). [2] U 
This gives the solution to Problem I1 and by Lemma 2 we 

can derive a solution to Problem I if we can find a suitable 
value of yo as follows. 

Corollary I: Let W be defined in (17), then there exists yo 
such that IIW112 = 1 if 

Further such a yo gives 
2 

SUP l lzl lp = I lc ‘O l l ;  + IINzll; + 7% = J(r0) + 7: . 
WEUW 

Proof: First, it will be shown that 1120ll)~ must be 
monotonically increasing as y decreases towards [Im3. Let 
llGllloo < yo < 71, and the corresponding signal norms in 
the optimal solutions to Problem I1 be respectively, (Izollp, 

I I G l l P 9  IlZ111P and llw;llP. Then 

IlzOll; - 7:ll4ll; 2 ll.lll; - -Y:lldll; 
llzlll; - T:llW;ll; 2 IlzOll; -y?ll4l; 

r;(Ilwi’ll; - IIw:ll;)3 and hence 1 1 ~ ~ 1 1 ;  2 Ilw:llP. Further, 

2 2 which implies that y ~ ( ~ ~ ~ i ’ ~ ~ ~ - I l w ~ ~ $ )  I ( ~ l z o l ~ p ; ~ ~ ~ l ~ ~ P )  I 

it is clear that as y + 00 that llWllz + 0. Hence there will 
exist a yo giving llWllz = 1 if liIIiy,llG11135 IIW112 > 1. The 
evaluation of the norm is then directly from Lemma 2. 0 

The conditions for the existence of yo are quite intricate as 
can be seen from examining the state-space realization for W .  
As y -+ )/GI llco one typically has a pole of W tending towards 
the imaginary axis and hence IIW112 will tend to 00 unless this 
pole is not minimal, by for example a suitable choice of Bo. 
This will also be the case if the stable poles of Go are canceled 
by the stable zeros of G; in forming (N:)-lG;Go = N2+N3, 
and hence giving W = N r 1 N 2  = 0. 

Hence computing the power norm of z involves iterations 
on 7, as in the pure 7fm case. We will now illustrate the above 
process though a simple example. Let 

G = [SI. 
Then GI = -& and llGllloo = 1. It is clear that for y > 1, 
the Riccati equation for X has a stabilizing solution 

X = y ” y J n  

which gives 

2( 1 - JV) 
s + Jp W ( s )  = 
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and 
1 

IlW(4112 = d v  - l. 

Since IIW(s)llz -+ 00 as y + 1 and IlW(s)l12 -+ 0 as y + 00, 

there is yo such that IIW(s)(12 = 1. Indeed, yo = -2 is the 
solution, which gives W ( s )  = h. 

In general, however, neither X nor IIW1I2 can be obtained 
explicitly in terms of y, hence iteration on y has to be done. 

D. Performance Analysis with Nonwhite and Causal Signals 

This is the case where WO E S is not assumed to be 
white and 201 E P is assumed to depend causally on WO, 

i.e., ~1 = Wwo for W E T L 2 .  This is what we think of 
as the “real” problem, and it has a much better physical 
motivation than any other problem mentioned above. The 
difference between this case and the white and causal case 
considered in previous research is significant. The fact that 
white noise will not be the worst case signal can be inferred 
from (16), where we see that Q,(jw) need not be positive 
semi-definite for all w. This is shown by an example. 

We will construct an example where the whitekausal prob- 
lem can be solved analytically and then construct a nonwhite 
spectrum, S,,,,, and causal W such that an increased norm 
of z is achieved. Let 

v5 

Since IIG111, = 1 we need y > 1 and it will be convenient 
to define a := d v  > 0. Straightforward algebra now 

= N2 + N3 
p d c 2  

(a  - s)(s + 1 ) 2  

P d K 2 ( S  + 2 + a )  
(1  + a)2(1+ s)2 

p diT7 
(1 + ay(.: - s )  

P ( 1 -  Q)(S + 2 + Q) 

(1 + a)(s  + a)(s  + 1) 
2P P 

(1 +a)( .  + a )  
-~ 

( s  + 1) 
20 

(1 + a ) ( s  + l ) ( s  + a )  

(1-a2)  s + a  s+l 
-{---}. 2P 1 1 

Hence Q ( j w )  < 0 for all w sufficiently large and it is not 
optimal in Problem I1 to use a white WO. 

It remains to be shown that the norm can be increased 
by choice of a nonwhite signal. We will demonstrate this by 
choosing a value of a = 0.5 and then making the spectrum of 
WO unity for the frequencies up to w2 = 2314 =: w:, where Q, 
is positive and zero is outside this range. The filter, W ,  will 
be as above and /3 will be chosen to give unity norm for w1 

P2 = -{16arctan(2w0) - 7arctan(w,)} 

= 1 if P = 1.44114.. . . 
9T 

With this value of P we calculate the norm of z = (Go + 
GIW)wo as 

dw 4P2 
a)2(w2 + 1)(w2 + Q 2 )  

=- 64P2 { 2 arctan(2w0) -arctan(w,)}=2.43637. . . . 
2 7 ~  

This gives a lower bound on the squared norm in the non- 
whitekausal case, and it will now be compared with the 
whitekausal case for which we need to calculate the value 
of yo or equivalently a,, so that 

which is satisfied if a, satisfies the cubic 

This results in a,  = 0.50529. . . and gives a maximum norm 
for z as 

SUP Ilzll:=IIGo + GI WII; 
2 - - 

This gives the maximum value of the squared norm in the 
whitekausal case and it is slightly smaller than the suboptimal 
nonwhite/causal value given above, hence verifying that the 
optimal input signal for WO is not generally white in this case, 
in contrast to the case when a noncausal W is allowed as in 
the next subsection. 

E. Performance Analysis with Nonwhite and Noncausal Signals 

N~~ considering the white/causal optimal case when Q = 0 In this section, we shall consider the analysis problem where 
we obtain WO is not restricted to be white and ~1 is not restricted to 

depend causally on WO. Then the filter W in w1 = WWO is 
not necessarily causal, so W E C2. The following study will 
show that in this case the worst-case signal WO is actually 
white, but the worst-case signal w1 is not, in general, a causal 
function of WO. 

N3* N3 
r2GoG;; Q ( j w )  = ~ - 
N; Nl 

~ 

P2 1 - - 
w 2 + a 2 {  ( w 2 + 1 )  
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Fig. 5.  

Theorem 5: If any W E C2 is admissible then 

Trace {y2Gi(y2.1 - GIG;)-~Go}& 

= IlGoll; + llN211; + llN311; 

with the worst-case signal WO =white and 

Proof: Since W can be any function in C2, the set Q 
equals C2, and for any given signal W O ,  the worst-case signal 
~1 must satisfy r = 0; that is, Q = N3 and 

So the worst-case signal w1 is generated from passing wo 
through the noncausal linear system (7'1 - GTG1)-lGTG~. 
Hence we have 

Obviously, the worst-case signal WO is white, so the above is 
equal to 

Trace { Gi(1-  y-2G1G;)-1Go}d~. (19) 

U 
The results presented in Corollary 1 can also be applied here 

to compute supwEBw llzllp if desired. 

Iv. ROBUST AND X, PERFORMANCE 

In this section we will consider system performance analysis 
when the system model has structured norm-bounded pertur- 
bations as shown in Fig. 5 where G is partitioned according 
to the inputs and outputs as 

The uncertainty is structured such that A E A where 

We shall consider the evaluation of the system worst perfor- 
mance. 

ProblemIV: Given llp(G1)ll, < y 5 1, where p(G1) is 
the structured singular value of GI with respect to the struc- 
tured uncertainty diag(A0, A} with A E A and IlAoll, 5 1, 
compute 

J a  := SUP (1121 11; - Y21/wllll;). 
WoEBs,wll  EP.AEA 

For information on the structured singular value (p ) ,  the 
reader is referred to Doyle [4], Packard [ l  11, and Fan and Tits 
[8]. Analysis of this mixed problem is more difficult than the 
pure Xw case, where the p analysis theory applies directly. An 
upper bound for this problem can be obtained by combining 
the p analysis and the mixed norm analysis results in the 
previous section. Define a set of scaling transfer matrices 

23 = { diag(d1 ( s ) I t ,  . . . . d,(s)ltm} : d, (s), d r l  (s) E Xw , }. 
Then DADp1 = A for all A E A and D E D. 

Let D(s) E D and 

Then we have 
Goo I Go1 Go2D-l 

'=  [DGlol DGll D G ~ z D - ~ ]  [E:] 
=: [Go  GI ]  p]. 

W1 

Now consider the following mixed norm analysis problem 

Given D, the above maximization problem can be solved using 
the results obtained in the-previous section. 

7'heorem 6: Suppose llGlll, < y 5 1 for some D E D, 
then 

Ja 5 J .  

Proof: Note first that 

1141% = 11~111; + IlDZzII; 

11~111; = 11w1111; + llDwl2ll;. 

II 41;-Y2 Ilw1 ll$= II 21 11;-Y2 IIwll;l;+11 Dzz It;+ I I DAz2 1 1 %  
= II z1 II;? ll W l l  ,&+I1 Dzz II ;-Y2 I1 ADZ2 11; 
L II 21 Il$,v2 ll W l l  ,I ;+I1 Dzz l l ;4  II Dz2 1 1 %  
L llz1 Il$,Y2 1lWlll12p. 

and 

Then 

Note that we have used W I Z  = Az2 in the first equation and 
U 

To get the least conservative test possible, a search on D is 
required. If W O  = 0, then the problem is exactly the p analysis 
problem and the best D solves a convex optimization problem. 
Furthermore, if the number of uncertainty blocks less than two, 
the above criteria is necessary as well as sufficient for robust 
performance. The problem of selecting the best D scalings 
for the mixed problem is still open and not as simple as for 
the Xw case, where the problem can be reduced to constant 
matrices at each frequency. 

DA = AD in the second equation. 
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V. CONCLUSIONS 
In this paper, several system analysis problems based on a 

mixed 712 and 7-1, criterion were introduced. The problems 
were divided into cases involving whether WO was white or not, 
and whether w1 was causally related to WO or not. Solutions 
were given for the white causal case and for the nonwhite 
noncausal case. In the latter case we showed that white noise 
was in fact the worst-case signal. The most difficult case 
is the nonwhite causal case, and we presented an example 
showing that white noise is not the worst-case signal here. This 
problem remains unsolved. In addition, some applications to 
robust performance analysis with structured uncertainties were 
discussed. 

Several issues in the paper need to be addressed further. 
For example, what is the best y in the robust X 2  performance 
bound that will give the least conservative bound for Jo? What 
are the best scaling matrices D? We believe that some p- 
like computational algorithm can be developed to evaluate 
this robust performance. As far as the mixed norm analysis 
problem is concerned perhaps the most puzzling problem is 
what the worst-case signal wig for the nonwhite and causal case 
is. A better characterization of signals of bounded spectrum 
would also be helpful. In a related paper, we have successfully 
solved the synthesis problem for the white and causal case. 
The synthesis problem for the white and noncausal case has 
not been solved. These issues will be considered in our future 
research. 

APPENDIX 
PROOFS OF INDUCED NORMS 

We now prove the relationships given in Table I.  
BC2 + L2: This is a standard result. 
BS -+ S: If U E S ,  then 

S z z ( j w )  = G(jw)Suu(jw)G*(ju) 

so 

I I S Z Z ( j 4 I I m  5 I l ~ ( ~ ~ ) l l ~ l l ~ Z L u ( ~ ~ ) I I , .  

W ( j w o ) l  = IlGll, 

Now suppose for some 'WO E W U {m}, we have 

and take a signal U such that Suu(jw0) = I (for example 
a white signal). Then 

IISrr(jW)II, = l lG l l2  

BS + P:  By definition, we have 

Trace{G(jw)Suu(jw)G*(jw)} dw 

1573 

Note that if G is not strictly proper then the norm is 
unbounded. 
BP -+ P :  Since 

we get immediately that 

llzllp 5 IIGIImII~llp. 

To show that llGllm is the least upper bound, first assume 
there exists some WO < 00 such that 

@[G(jwo)l = 11GIlm. 

Let G(jw0) have a singular value decomposition 

G(jwo) = @ ~ i ( j ~ o ) . ;  ( j w o )  + 

where T is the rank of G(jwo), and ui and w; are unit 
vectors. Write v1 ( jwo )  as 

r 

o i ~ i ( j w o ) v f  ( jwo )  
i=2 

where ai E R is chosen so that Bi E ( -T,  01 and q is the 
number of columns of G. Now let P; > 0 be such that 

and let the input U be generated from passing .iL through 
a filter 

where 

~ ( t )  = JZsin(w,t). 

Il.iLllp = R;(O) = 1. 

Then R;(T) = cos (w ,~ ) ,  SO 

Also 

S;( jw)  = T [ S ( W  - W O )  + S(w + U,)]. 

Then 

and it is easy to show 

1 
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so from (5) 

Finally if WO = M, then the above procedure 
arbitrary close norm. 
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