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ABSTRACT

In this paper we give a formulation of differen-
tial flatness—a concept originally introduced by Fliess,
Lévine, Martin, and Rouchon—in terms of absolute equiv-
alence between exterior differential systems. Systems
which are differentially flat have several useful proper-
ties which can be exploited to generate effective control
strategies for nonlinear systems. The original definition
of flatness was given in the context of differential algebra,
and required that all mappings be meromorphic functions.
Our formulation of flatness does not require any algebraic
structure and allows one to use tools from exterior differ-
ential systems to help characterize differentially flat sys-
tems. In particular, we show that in the case of single in-
put control systems (i.e., codimensjon 2 Pfaffian systems),
a system is differentially flat if and only if it is feedback
linearizable via static state feedback. However, in higher
codimensions feedback linearizability and flatness are not
equivalent: one must be careful with the role of time as
well the use of prolongations which may not be realizable
as dynamic feedbacks in a control setting. Applications of
differential flatness to nonlinear control systems and open
questions are also discussed.

1. INTRODUCTION

The problem of feedback linearization is traditionally
approached in the context of differential geometry {10, 15].
A complete characterization of static feedback lineariz-
ability in the multi-input case is available, and for single
input systems it has been shown that static and dynamic
feedback linearizability are equivalent [4]. Some special
results have been obtained for dynamic feedback lineariz-
ability of multi-input systems, but the general problem
remains unsolved. Typically, the conditions for feedback
linearizability are expressed in terms of the involutivity of
distributions on a manifold.

More recently it has been shown that the conditions
on distributions have a natural interpretation in terms of
exterior differential systems (7, 16]. In exterior differential
systems, a control system is viewed as a Pfafian module.
Some of the advantages of this approach are the wealth
of tools available and the fact that implicit equations and
non-affine systems can be treated in a unified framework.
For an extensive treatment of exterior differential systems
we refer to [1).

Fliess and coworkers (5, 11] studied the feedback lin-
tarization problem in the context of differential algebra
and introduced the concept of differential flatness. In dif-
ferential aigebra, a system is viewed as a differential field
generated by a set of variables (states and inputs). The
system is said to be differentially flat if one can find a set
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of variables, called the flat outputs, such that the system
is (non-differentially) algebraic over the differential field
generated by the set of flat outputs. Roughly speaking,
a system is flat if we can find a set of outputs (equal in
number to the number of inputs) such that all states and
inputs can be determined from these outputs without in-
tegration. More precisely, if the system has states z € R",
and inputs u € R™ then the system is flat if we can find
outputs y € R™ of the form

y=ylz,u6,...,uP) (1)
such that,

z= x(yv?}v"'»y(w)

u=y@5...,57).

Differentially flat systems are useful in situations
where explicit trajectory generation is required. Since the
behaviour of flat system is determined by the flat outputs.
we can plan trajectories in output space, and then map
these to appropriate inputs. A common example is the
kinematic car with trailers, where the zy position of the
last trailer provides flat outputs [13]. This implies that
all feasible trajectories of the system can be determined
by specifying only the trajectory of the last trailer. Un-
like other approaches in the literature (such as converting
the kinematics into a normal form). this technique works
globally.

A limitation of the differential algebraic setting is
that it does not provide tools for regularity analysis. The
results are given in terms of differential polynomials in the
variables, without characterizing the solutions. In par-
ticular, solutions to the differential polynomials may not
exist. For example, the system :

(2)

.’bl =u

. 2 (3)
T2 = I,

is flat in the differentially algebraic sense with flat output

y = z3. However, it is clear that the derivative of z»

always has to be positive, and therefore we cannot follow

an arbitrary trajectory in y space.

In differential algebra the coefficients of the polyno-
mials are allowed to be meromorphic functions of time.
However, to treat time as a special variable in the rela-
tions (2), one needs to resort to Lie-Bicklund transforma-
tions on infinite dimensional spaces [6]. Also, the notion of
flatness is more general than (dynamic) feedback lineariz-
ability, as is shown by the example of a rolling penny, and
its promising applications in trajectory generation justify
a deeper study.

In the beginning of this century, the French geometer
E. Cartan developed a set of powerful tools for the study
of equivalence of systems of differential equations [2. 3.
16]. Equivalence need not be restricted to systems of equal
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dimensions. In particular a system can be prolonged to
a bigger system on a bigger manifold, and equivalence
between these prolongations can be studied. This is the
concept of absolute equivalence of systems. Prolonging a
system corresponds to dynamic feedback, and it is clear
that we can benefit from the tools developed by Cartan
to study the feedback linearization problem.

In this paper we reinterpret flatness in a differential
geometric setting. We make extensive use of the tools
offered by exterior differcntial systems, and the ideas of
Cartan. This approach allows us to study some of the reg-
ularity issues, and also to give a more explicit treatment
of time dependence. Moreover, we can easily make con-
nections to the extensive body of theory that exists in dif-
ferential geometry. We show how to recover the differen-
tially algebraic definition, and give an exterior differential
systems proof for a result proven by Martin (11, 12] in dif-
ferential algebra: a flat system can be put into Brunovsky
normal formi by dynamic feedback in an open and dense
set. This set need not contain an equilibrium point.

We also give a complete characterization of flatness
for systems with a single input. In this case, flatness
in the neighborhood of an equilibrium point is equiva-
lent. to linearizability by static state feedback around that
point. This result is stronger than linearizability by en-
dogenous feedback as indicated by Martin, since the latter
only holds in an open and dense set. We also treat the
case of time varying versus time invariant flat outputs,
and show that in the case of a single input, autonomous
system the flat output can always be chosen time inde-
pendent. In exterior differential systems, the special role
of the time coordinate is expressed as an independence
condition. i.e.. a one-form that is not allowed to vanish
on any of the solution curves. A fundamental problem
with exterior differential systems is that most results only
hold on open dense sets. See for example [8]. It requires
some special effort to obtain results in the neighborhood
of a point, see for example [14]

The organization of the paper is as follows. In Sec-
tion 2 we introduce the definitions pertaining to absolute
equivalence and their interpretation in control theory. In
Section 3 we introduce our definition of differential flat-
ness and show how to recover the differential algebraic
results. In Section 4 we present our main theorems char-
acterizing flatness for single input systems, and in Sec-
tion 5 we summarize our results and point out some open
questions.

2. PROLONGATIONS AND CONTROL THEORY

This section introduces the concept of prolongations,
and states some basic theorems. It relates these concepts
to control theory. Proofs of most of these results can be
found in Sluis [16].

Definition 1. A Pfaffiun system I on a manifold M is a
submodule of the module of differential one-forms Q* (M)
over the commutative ring of smooth functions C*(M).
The Pfaffian system is generated by a set of one-forms
{o',... 0"}, and I = {firw|fi € C®(M)}.

People are often careless about this definition and call
the set of generators, or the ideal Z in A(M) generated
by I, a Pfaffian system. Since we are only dealing with

Pfaffian systems the term systern will henceforth mean a
Pfaffian system.

Assumption 1. We will assume throughout this paper
that the system is regular, i.e., that both the system and
the set of exterior derivatives of all generators in the sys-
tem have constant dimension.

For a Pfaffian system we can define its derived sys-
tem IV as IV = {w € Ildw = 0 mod I}. The derived
system is itself a Pfaffian system, so we can defiue the se-
quence I,IM 1P which is called the derived flag of
I. If the system is regular this sequence is decreasing. so
there will be an N such that J!V) = [*N+1)_ This 1) s
called the bottom derived system.

Definition 2. Let I be a Pfaffian system on a manifold
M. Let B be a manifold such that 7 : B = M is a fiber
bundle. A Pfaffian system J on B is a Cartan prolongation
of the system I if the following hold.

1) =~(I)ycJ

(2) For every integral curve ¢ : (—¢,€) = M, thereis a
unique lift ¢ : (—€,¢) » B with moé =c.

Note that the above definition implies that there is
a smooth 1-1 correspondence between solutions of a sys-
tem and its Cartan prolongation. Cartan prolongations
are useful to study equivalence between systems of differ-
ential equations that are defined on manifolds of different
dimensions. This occurs in dynamic feedback extensions
of control systems. We increase the dimension of the state
by adding dynamic feedback, but the extended system is
still in some sense equivalent to the original system.

This allows us to define the concept of absolute equiv-
alence introduced by Elie Cartan:

Definition 3. Two systems I1,I, are called absolutely
equivalent if they have Cartan prolongations Ji, J2 respec-
tively that are equivalent in the usual sense, i.e., there
exists a diffeomorphism ¢ such that ¢*(J2) = Ji. This is
illustrated in the following diagram:

J 1 > Jz

¢

™ ™2
I Iz

When one studies the system of one-forms corre-
sponding to a system of differential equations, the inde-
pendent variable time becomes just anotlier coordinate on
the manifold along with the dependent variables. Hence
the notion of an independent variable is lost. If z de-
notes the dependent variables, a solution to such a system
c: 8 — (t(s),z(s)) is a curve on the manifold. But we
are only interested in solution curves which correspond
to graphs of functions z(t). Hence we need to reject solu-
tions for which :—i vanishes at some point. This is done by
introducing dt as an independence condition, i.e., a one-
form that is not allowed to vanish on any of the solution
curves. An independence condition is well defined only
up to a nonvanishing multiple and modulo I. We will
write a system with independence condition 7 as (I, 7).
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All prolongations are required to preserve the indepen-
dence condition, i.e., 7 can never become a one-form in
the prolonged system.

An interesting subclass of Cartan prolongations is
formed by prolongations by differentiation: If (I,7) is a
system with independence condition on M, and du an ex-
act one-form on M that is independent of {I,7}, and if
y is a fiber coordinate of B, then {I,du — y7} is called
a prolongation by differentiation of I. Note that we have
omitted writing n*(du — y7) where 7 : B = M is the sur-
jective submersion. We will make this abuse in the rest
of the paper for notational convenience. Prolongations by
differentiation correspond to adding integrators to a sys-
tem. The coordinate u is the input that is differentiated.

If we add integrators to all controls, we obtain a total
prolongation: Let (I,dt) be a system with independence
condition, where dim I = n. Let dimM =n+p+ 1.
Let ui,... ,up be coordinates such that du,,... ,du, are
independent of {I,dt}, and let y1,...,y, be fiber coordi-
nates of B, then {I,dui —ydt,... ,du, —ypdt} is called a
total prolongation of I. Total prolongations can be defined
independent of coordinates, and are therefore intrinsic ge-
ometric objects. It can be shown that in codimension 2
(i.e.. a system with n generators on an n + 2 dimensional
manifold), all Cartan prolongations are locally equivalent
to total prolongations.

Cartan prolongations provide an intrinsic geometric
way to study dynamic feedbacks. We shall show that Car-
tan prolongations that extend a control system to another
control system can be expressed as dynamic feedbacks in
local coordinates.

We can view a control system as a Pfaffian system

I = {dz, - fi(z,u,t)dt,... ,dzs — fa(z,u,t)dt} (4)
with states {z1,...,zn} and inputs {u;,...,u,}. Note
that a control system is always assumed to have indepen-
dence condition dt. If the functions f are independent
of time then we speak of an autonomous control system.
Clearly, {I,dt} is integrable. The converse also holds; i.e.,
if {I,dt} is integrable, then I can locally be written as a
control system (ses [16]).

We will call dynamic feedback a feedback of the form

z = a(z,z,v,t)

(5)

If t does not appear in (a,b) we call (a,b) an autonomous
dynamic feedback. An important question is what type of
dynamic feedback corresponds to what type of prolonga-
tion. Clearly, prolongations by differentiation correspond
to dynamic extension (adding integrators to the inputs).
The following example shows that not every dynamic feed-
back corresponds to a Cartan prolongation:

v = b(z, z,v,t).

Example 1. Consider the control system

:il = u,
with feedback .
z21 =23
2y = —2
u = g(z)v.

This dynamic feedback introduces harmonic components
which can be used to asymptotically stabilize nonholo-
nomic systems [9]. It is not a Cartan prolongation since
{z.v) cannot be uniquely determined from (z,u).

It must be said that the feedback in Example 1 is
somewhat unusual, in that most theorems concerning dy-
namic feedback are restricted to adding some type of in-
tegrator to the inputs of the system.

Definition 4. Let £ = f(z,u,t) be a control system.
The dynamic feedback in equation (5) is said to be en-
dogenous if z and v can be expressed as functions of z,u, ¢
and a finite number of their derivatives:

z=alz,u,...,u? 1)

6

'v=ﬂ(z,u,‘..,u(”),t). (6)

Note that this differs slightly from the definition
given in [11] due to the explicit time dependence used
here. The relationship between Cartan prolongations and
endogenous dynamic feedback is given by the following
two theorems. The first says that endogenous feedback
with b a submersion corresponds to Cartan prolongation.

Theorem 1. Let I be a control system on an open set
T x X x U which in coordinates (t,z,u) is given by = =
f(z,u,t). Let J denote the control system on the open set
T x X x Z x V which is obtained from the above system
by including a dynamic feedback given by equation (5).
Suppose further that the feedback is endogenous and that
8b/d(z,v) ts full rank. Then J is a Carten prolongation
of I.

Proof. Define the mapping F : TxXxZxV -+ TxXxU
by F(t,z,z,v) = (t,z,b(x,2z.v,t)). Since b is a submer-
sion so is F. Furthermore b is surjective since the feed-
back is endogenous. Therefore F is surjective too. Since
F is a surjective submersion T x X x Z x V is fibered over
Tx X xU. Hence we have that solutions (¢, z(t), z(t), v(t))
of J project down to solutions (¢, z(t),b(z(t), z(t). v(t),t))
of I. Therefore the first requirement of being a Car-
tan prolongation is satisfied. The second requirement of
unique lifting property is trivially satisfied by the fact that
z and v are obtained uniquely by equation (6). m]

Conversely, a Cartan prolongation can be realized by
endogenous dynamic feedback, if the resulting prolonga-
tion is a control system:

Theorem 2. Let I be a control system on ¢ manifold M
with p inputs, {u1.... ,u,}. Every Cartan prolongation
J = {I,wl,... ,w,.} on B with independence condition
dt such that J is again a control system is realizable by
endogenous feedback.

Proof. Let r denote the fiber dimension of B over M, and
let {wy,...,w,} denote the fiber coordinates. Since I is
a control system, (I,dt) is integrable. and we can find
n first integrals £1,... , .. Integrability of {J.dt} means
that we can find r extra functions ay, ... ,e, such that J =
{I,dz1 —a:dt,... .dz, —a.dt}. Pick p coordinates v(u.w)
such that {¢,z,2,v} form a set of coordinates of B. The
v coordinates are the new control inputs. Clearly a; =
ai(z, z,v,1) since we have no other coordinates. Also since
{t,z, z,v} form coordinates for B, and u is defined on B.
there has to be a function b such that u = b(x, z,v,t). This
recovers the form of equation (5). Since J is a Cartan
prolongation, every (z,u,t) lifts to a unique (z,z,v.1).
From Lemma 1 , to be presented in a later section. it
then follows that we can express (z,v) as functions of x
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and u and its derivatives. We thus obtain the form of
equation (6). O

3. DIFFERENTIALLY FLAT SYSTEMS

In this section we present a definition of flatness in
terms of prolongations. This definition captures the spirit
of the original definition in terms differential algebra [5].
Qur definition makes use of the concept of an absolute
morphism, introduced by Sluis [16].

Definition 5. An absolute morphism from a system
(I\,71) on M; to a system (I3,72) on M; consists of a
Cartan prolongation (Ji,71) on 7w : By — M, together
with surjective submersion ¢ : By — M, such that

(1) ¢7(I2) C Ju,

(2) ¢*(72) = A7y mod Jy,

where A is a smooth, nowhere vanishing function on B;.
This is illustrated below:

Ji

I, I,

Definition 6. Two systems (I1, 1) and (I2,72) are said
to be absolutely morphic if there exist absolute morphisms
from (I;.7) to (I,.m2) and from (Iz,72) to (I1,71). This
is illustrated below:

Ji J2
b2 1

T w2
I, Iy

Two systems (I;.7)) and ([2, 72) are said to be in-
vertibly absolutely morphic if they are absolutely morphic
and the following inversion property holds: let ¢;1(t) be an
integral curve of I; with &, the (unique) integral curve of
Jy such that ¢; = wo ¢y, and let v(t) = ¢2 0 é1(t) be the
projection of ¢;. Then we require that ¢, (t) = ¢ o ¥(t),
where ¥(t) is the lift of oy from I> to J,. The same property
must hold for solution curves of I.

If two systems are invertibly absolutely morphic, then
the integral curves of one system map to the integral
curves of the other and this process is invertible in the
sense described above. If two systems are absolutely
equivalent then they are also absolutely morphic, since
they can both be prolonged to systems of the same di-
mension which are diffeomorphic to each other. However,
for two systems to be absolutely morphic we do not re-
quire that any of the systems have the same dimension.

A differentially flat system is one in which the “flat
outputs” completely specify the integral curves of the sys-
tem. More precisely:

Definition 7. A system (I,dt) is differentially flat if it
is invertibly absolutely morphic to the trivial system I, =

({0}, dt).

Notice that we require that the independence condi-
tion be preserved by the absolute morphisms, and hence
our notion of time is the same for both systems. However,

we do allow time to enter into the absolute morphisms
which map one system onto the other.

If the system (I, dt) is defined on a manifold M. then
we can restrict the system to a neighborhood around a
point in M, which is again itself a manifold. We will call
a system flat in that neighborhood if the restricted system
is flat.

In order to establish the relationship between our def-
inition and the differential algebraic notion of flatness, we
need the following lemma on the nature of the dependence
of the fiber coordinates of a Cartan prolongation on the
coordinates of the base space:

Lemma 1. Let (I,dt) be a system on « manifold M wrth
local coordinates (t,z) € R' x R™ and let (J.dt) be a Car-
tan prolongation on the manifold B with fiber coordinates
y € R". Assume the regularity assumptions 1 hold. Then
on an open dense set, each yi can be uniquely determined
from t,z and a finite number of derivatives of .

Proof. By Theorem 24 in [16] there is a prolongation by
differentiation, on an open and dense set, say Iz, of J.
with fiber coordinates z;, that is also a prolongation by
differentiation of the original system I, say with fiber co-
ordinates w;. This means that the (z,y,z,t) are diffeo-
morphic to (z,w,t): y = y(z,w,t). The w are derivatives
of z, and therefore the claim is proven. O

This lemma allows us to explicitly characterize dif-
ferentially flat systems in a local coordinate chart. Let a
system in local coordinates (t,z) be differentially flat and
let the corresponding trivial system have local coordinates
(t,y). Then there are surjective submersions h and g with
the following property: Given any curve y(t), then

z(t) = g(t,y(t), ... ,y'(t)
is a solution of the original system and furthermore the
curve y(t) can be obtained from z(t) by

y(t) = h(t,z(t).... , =P (1))
This follows from using definitions of absolute morphisms.
the invertibility property, and Lemma 1, stating that fiber
coordinates are functions of base coordinates and their
derivatives and the independent coordinate.

This local characterization of differential flatness cor-
responds to the differential algebraic definition except
that h and g need not be algebraic. Also, we do not re-
quire the system equations to be algebraic. The explicit
time dependence corresponds to the differential algebraic
setting where the differential ground field is a field of func-
tions and not merely a field of constants. The functions
g and h now being surjective submersions enables us to
link the concept of flatness to geometric nonlinear control
theory where we usually impose regularity.

Finally, the following theorem allows us to character-
ize the notion of flatness in terms of absolute equivalence.

Theorem 3. Two systems are invertibly absolutely mor-
phic if and only if they are absolutely equivalent.

Proof. The “if’ part is trivial. We shall prove the ‘only if’
part. For convenience we shall not mention independence
conditions. But they are assumed to be present and do not
affect the proof. Let I; on M; and I, on M; be invertibly
absolutely morphic. Let J; on B; be the prolongation
of Iy with m1 : By — M, and similarly J2 on By be the
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prolongation of I, with n2 : B» & Ma. Let the absolute
morphisms be ¢, : B — M; and ¢ : By = M.

We now argue that J; is a Cartan prolongation of I
(and hence I, and I, are absolutely equivalent}. By as-
sumption ¢, is a surjective submersion and every solution
¢, of Jo projects down to a solution ¢; of I; on M,. The
only extra requirement for J, on ¢, : B =& M; to be a
(Cartan) prolongation is that every solution c¢; of I, has
a unique Lift &2 (on Bz) which is a solution of Jz.

To show existence of a lift, observe that for any given
¢ which is a solution of I;, we can obtain its unique lift
¢t on B; (which solves J1), and get its projection ¢z on
M, (which solves I2) and then consider its unique lift ¢&;
on B,. Now it follows from the invertibility property that
@1 0¢2 = c1. In other words, é projects down to c;.

To see the uniqueness of this lift, suppose ¢; and ¢3
which are solutions of J; on Bz, both project down to ¢;
on M;. Consider their projections ¢z and c3 (respectively)
on M;. When we lift ¢c; or ¢3 to B, and project down
to M we get ¢;. Which when lifted to B gives, say
¢,. By the requirement of the absolute morphisms being
invertible &, should project down to (via ¢2) ¢z as well as
¢3. Then uniqueness of projection implies that ¢; and ¢3
are the same. Which implies é; and é; are the same.

Hence J; is a Cartan prolongation of I as well.
Hence I) and I, are absolutely equivalent. 0O

Using this theorem we can completely characterize
differential flatness in term of absolute equivalence:

Corollary 1. A system (I,dt) is differentially flat if and
only if it is absolutely equivalent to the trivial system I, =

({0}, dt).

It is clear that all feedback linearizable systems are
flat. since we can put them into Brunovsky normal form.
The converse only holds in an open and dense set, as is
shown by the following theorem. An analogous result was
proven by Martin in a differentially algebraic setting.

Theorem 4. Every differentially flat system can be put
into Brunousky normal form in an open and dense set
through endogenous feedback.

Proof. Let J.J; be the Cartan prolongations of I, I, re-
spectively. Then from Theorem 24 in [16], on an open
and dense set. there is a prolongation by differentiation of
Je that is also a prolongation by differentiation of [;, say
Jii. Let Ji be the corresponding Cartan prolongation of
J. Then J, is equivalent to Ji1, which is in Brunovsky
normal form. In particular, since J; is a Cartan prolon-
gation. it can be realized by endogenous feedback. O

Example 2. Consider the motion of a rolling penny, as
shown in Figure 1. Let (z,z2) represent the zy position
of the penny on the plane, z3 represent the heading angle
of the penny relative to a fixed line on the plane, and z4
represent the rotational velocity of the angle of Lincoln’s
head. i.e., the rolling velocity. We restrict z3 € [0, ) since
we cannot distinguish between a positive rolling velocity
13 at a heading angle 3 and a negative rolling velocity
at a heading angle ¢35 + 7.

The dynamics of the penny can be written as a Pfafl-

Y3
(zlyz'))

Figure 1: Rolling penny

fian system described by

wl = sin T3 dt; - C08ZT3 drz

w® = cosz3dz) + sin z3 dz, — T4dt

w? =dz; — zsdt (7
w!= dzq — wadt
w? = dzrs — uadt

where z5 = Z3 is the velocity of the heading angle. The
controls %; and u2 correspond the the torques around the
rolling and heading axes. We take dt as the independence
condition.

This system is differentially flat using the outputs x|
and z; plus knowledge of time. Given z, and z2. we can
use wy to solve uniquely for 3. Then given these three
variables plus time, we can solve for all other variables in
the system by differentiation with respect to time. This
argument also shows that the system is time independent.
differentially flat, since we only need to know y = (z,,22)
and derivatives of y up to order three in order to solve
for all of the states of the system. Moreover, there are no
singularities in these equations, so we have a true equiv-
alence.

Notice that this system is not equivalent to a chain
of integrators. This is because z3 is determined from
and z2 by a prolongation which is not a prolongation by
differentiation relative to the independence condition dt
(although it is still a Cartan prolongation). Once xy. a2
and z3 are determined, the remaining coordinates are de-
termined by differentiation and hence they correspond to
a prolongation by differentiation of the systemn ({wi}.dt).

Often we will be interested in a more restricted form
of flatness that elimminates the explicit appearance of time
that appears in the gencral definition.

Definition 8. An absolute morphism between two au-
tonomous control systems is a time-independent absolute
morphism if maps the states and inputs of (/;.dt) to the
states and inputs of (I, dt) and time is also preserved. A
system (I, dt) is time-independent differentrally flut if it
is differentially flat using time-independent absolute mor-
phisms.

Note that the example given above is time-
independent differentially flat. One might be tempted
to think that if the control system I is autonomous
and knowing that the trivial system is autonomous.
we can assume that the absolute morphism = =
ot y, 4" ... 4'?) has to be time independent as well.
That this is not true is illustrated by the following exam-
ple.
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Example 3. Consider the system y = ay, and the co-
ordinate transformation y = z’¢'**. Then & = 471
Both systems are autonomous, but the coordinate trans-

formation depends on time.

4. FLATNESS FOR SINGLE INPUT SYSTEMS

For single input control systems, the corresponding
differential system has codimension 2. There are a number
of results available in codimension 2 which allow us to
give a complete characterization of differentially flat single
input control systems. In codimension 2 every Cartan
prolongation is a total prolongation around every point of
the fibered manifold. This allows us to proof the following

Theorem 5. Let I be an autonomous control system :

I ={dz; — fiz,u)dt,... dz, — fulz,u)dt},
where u s a scalar control, i.e., the system has codimen-
ston 2. If I is time-independent differentially flat around

an equilibrium point, then I is feedback linearizable by
static autonomous feedback at that equilibrium point.

Proof. Let I be defined on M with coordinates (z,u,t),
let the trivial system I; be defined on M, with coordinates
(y.t). let the prolongation of Iy be J¢, and let J; be defined
on B,. This is illustrated below :

J Je
bt ¢

™ e
I I = {}

First we show that J; can be taken as a Goursat nor-
mal form around the equilibrium point. In codimension
2. every Cartan prolongation is a repeated total prolonga-
tion in a neighborhood of every point of the fibered man-
ifold ([16], Theorem 5). Let Iy = I, Iu1,Is2,... denote
the total prolongations starting at I, defined on fibered
manifolds By = B¢, By, .... If y2 denotes the fiber coor-
dinate of B over By, then I;; has the form Adt + udy:.
Now, g # 0 at the equilibrium point, since y; = cis a
solution curve to I, which would not have a lift to I if
= 0, since dt is required to remain the independence
condition of all Cartan prolongations. From continuity
p# # 0 around the equilibrium point. So we can define
y2 := —~A/p, and Ip1 can be written as dy; — y2dt. We can
continue this process for every Cartan prolongation, both
of I; and of I. This brings J: in Goursat normal form in
a neighborhood of the equilibrium point.

Now we will argue that we don’t need to prolong I to
establish equivalence. Since J is a Cartan prolongation,
and therefore a total prolongation, its first derived system
will be equivalent to the first derived system of J;. Con-
tinuing this we establish equivalence between I and Ii,,
where Iin = {dy) — y2dt,... ,dyn — yn41dt}. So we have
y= (ylv"' vy"+l) = y(-’ﬂyu»t)‘

Next we will show that y1,... ,yn+1 are independent
of time, and that yi1,...,yn are independent of u. By
assumption yn41 is independent of time. Since the cor-
responding derived systems on each side are equivalent,
dyn+1 — Yndt is equivalent to the last one-form in the
derived flag of I. Since the differential du does not ap-
pear in this one-form, yn4+1 is independent of . Analo-
gously, y;,4 = 2,... ,n are all independent of . Since the
¥i,1 =mn,...,1 are repeated derivatives of yn+1, and since

I is autonomous, these coordinates are also independent
of time.

Therefore y; = yi(z),i = 2,... .n+ L.ys = yi(z.u)
and the system J; is just a chain of integrators with input
y1. The original system I is equivalent to this linear sys-
tem by a coordinate transformation on the states and a
state dependent and autonomous feedback. This coordi-
nate transformation is well defined around the equilibrium
point. It is therefore feedback linearizable by a static feed-
back that is autonomous. Note that dy)/0u # 0 because
11 is the only of the y variables that depends on u. O

We will now show that in the case of an autonomous

system, we don’t need the assumption of time invariant
flatness to conclude static feedback linearizability. We
will require the following preliminary result :
Lemma 2. Given a one-form a = A(z.u)dz; —
Ao(z,u)dt (using implicit summation) on a menifold
R™*? with coordinates (z,u,t), and suppose we can write
a = dX(z,u,t) — U(z,u,t)dt. Then we can also write
a as a = dY (z) — V(z,u)dt, i.e., we can take the func-
tion X independent of time and the input, and we can
take U independent of time. If we know in addition
that ¢ = Ai(z)dzi — Ao(z)dt, then we can scule a as
a =dY(z) — V(z)dt, i.e., we can take V independent of
u as well.

Proof. (based on a suggestion by W. Sluis) Write o =
1 — Ao(z,u)dt, where n = Ai(z,u)dz;, then
aAda=nAdn— Aedt Adn —n AdAo Adt.
We also know
aANda = —-dX NdU A dt,
and from
alAdaAdt=0
it follows that
nAdpAdt=0,
and since 7 has no ¢t or dt dependence,
nAdnp=0.
Hence, n = N(z,u)dM(z) for some functions M, N, where
N # 0 due to our regularity assumption. And so
a = N(z,u)dM(z) — Ao(z,u)dt
= N(z,u)(dM(z) — Ao(z,u)N " (z,u)dt)
~ dM(z) — Ao(z,u)N ™ (z,u)dt
=:dY (z) — V(z,u)dt.
Here ~ denotes equivalence of Pfaffian systems. in the

sense that they generate the same ideal. The second part
follows since both 7, and therefore N, and Ag, are inde-

pendent of u. O

(8)

Theorem 6. Let I be a differentially flat, autonomous
control system (with a possibly time varying flat output):
I ={dz, — fa(z,u)dt,... ,dzn — fa(z,u)dt}, where u is a
scalar control, i.e., the system has codimension 2. Then
I ts feedback linearizable by static autonomous feedback.

Proof. Let {a',i = 1,...,n} and {a},i = 1,...,n} be
one-forms adapted to the derived flag of I, I: respectively.
Thus, I = {o},....a"*} and IV = {a},... ,a?7'}.
Since I does not contain the differential du, the forms

n—1

al,... can be taken independent of u. Since I is
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autonomous, the forms ai,...,an can be chosen inde-
pendent of time. We can thus invoke the second part of
Lemma 2 for the forms o',... ,a™"!.

Assume n > 2. Asin Theorem 5 we have equivalence
between a' and a} = dyni1(z,t) — yalz, t)dt (if n = 1
we have yn = yn(z,u,t), which we will reach eventually)
Since I is autonomous we can choose a' time indepen-
dent: o' = A;(z)dz; — Ao(z)dt. From Lemma 2 we know
that we can write a' as d¥p41 — Ypdt where Ypy1,Y, are
functions of  only.

Again according to Lemma 2, we can write o? =
dV{z) — W(z)dt. Now from,

0=da' Ao’ AQ?
=—dYo, AdtAdYn1 AdV
we know V = V(Y,,Yn+1). And from
0 #da’Aa! Aa?
= ~dW Adt AdYpi1 AdV

we know that v, := gV/3Y, # 0. Then, writing ya41 :=
0V/3Y,+1, (and ~ denotes equivalence in the sense that
both systems generate the same ideal),

{a'. @’} = {dYat1 — Yadt, YadYn + Yas1dYnr — Wdt}
~ {dYas1 — Yadt, 1ndYs + yns1 Yadt — Wdt)
= {dYas1 — Yadt,dYs — (—yns1Yn + W)/vadt}
= {dYn41 — Yndt,dY, — Yo, dt}. (9)

Where Y,_1, defined to be Yo_1 = (—n41Yn + W)/7s,
is independent of (t,u) since (va,Yn+1, Yo, W) are. One
can continue this procedure, at each step defining a new
coordinate Y;. In the last step the variable W = W{(z,u)
(this will also be the first step if n = 1), and therefore Y1
depends on u nontrivially. Hence we obtain equivalence
between I and {dYn41 = Yadt,...,dY: — Yidi} with Y; =
Yi(e)oi = 2....,n+ 1, and Y71 = Yi(z,u), i.e., feedback
linearizability by static autonomous feedback. O

Corollary 2. A single input autonomous control system
s differentially flat of and only if it 1s feedback linearizable
by static, uutonomous feedback.

Corollary 3. If a single input system is differentially flat
we can always take the flat output as a function of the
states only: y = y(z).

None of these results easily extend to higher codi-
mensions. The reason for this is that only in codimension
2 every Cartan prolongation is a total prolongation. This
is related to the well known fact that for SISO systems
static linearizability is equivalent to dynamic linearizabil-
1ty.

5. CONCLUDING REMARKS

We have presented a definition of flatness in terms
of the language of exterior differential systems and pro-
longations. Our definition remains close to the original
definition due to Fliess [5]. But it involves the notion of
a preferred coordinate corresponding to the independent
variable (usually time).

Using this framework we were able to recover all re-
sults in differential algebra. In particular we showed that
Hatness implies feedback linearizability in an open and
dense set. This set need not contain an equilibrium point,
and this linearizability is therefore of questionable utility.

For a SISO flat system we resolved the regularity issue,
and established feedback linearizability around an equi-
librium point. We also resolved the time dependence of
flat outputs in the SISO case.

The rolling penny is an example of a system that is
flat but not linearizable by dynamic feedback. Therefore
flatness is more general than feedback linearizability, and
a further study is warranted. The most important open
question is a characterization of flatness in codimension
higher than 2.
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