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ABSTRACT

A plasma excited by two short pulses at the electron gyrofrequency 

which have a time separation τ, is considered in the single particle

approach. It is shown that the relativistic mass effect can lead to a 

series of radiation maxima after the second pulse. In the case of a cold 

plasma in an inhomogeneous magnetic field these maxima arise at multiples 

of the time τ ; in the case of a hot plasma in a. homogeneous magnetic 

field at multiples of τ∕∣1±D∣, where D is the strength of the second 

pulse relative to the first one. The shape of the radiation maxima is 

given by the square of the Fourier transform of the distribution of the 

inhomogeneities or the initial energies, respectively. The two effects 

have the tendency to cancel each other. If the plasma is excited by 

three pulses, the time separation of the second and third pulse being T , 

radiation maxima occur at times t = Kτ + LT, (±K, L = 0, 1, 2 . . . but t > 0) 

after the third pulse in the case of a cold plasma with field inhomogeneities, 

and at t = (Kτ + LT)∕|1±D ± D2| in the case of a hot plasma. If col- 

Iisions are taken into account the dependence on T of the radiation

maxima with L = 0 is determined by inelastic collisions only, while the

other decay times are determined by all kinds of collisions.

*This work was sponsored by the U. S. Navy, Office of Naval Research 
**On leave from the Institut für Plasmaphysik, Garching bei München, Germany



2.

I. INTRODUCTION

Recently the observation of echoes radiated from a plasma was 

reported1. One type of experiment was to excite the plasma at the elec­

tron gyrofrequency by two short pulses with a time separation τ.
The echo radiation was then observed at a time τ after

the second pulse. This effect is related to the well known sp in echo2.

Any theory of echo-like phenomena has to be nonlinear. The aim of 

this paper is to study a special nonlinearity caused by the relativistic 

mass effect, which can Iead to such radiation maxima after the second 

(third . . . ) pulse. There is a general relation to the spin echo3, but 

the results obtained here show also essential differences with it.

We consider a magneto plasma, which is so dilute that the single 

particle approach is valid. For simplicity the plasma dimensions are 

assumed to be small compared to the wavelength of the cyclotron radiation. 

The radiation by the plasma at the cyclotron frequency essentially depends 

on the relative phase of the gyrating particles. The energy radiated per 

second into the solid angle dθ is in she nonrelativistic (v << c) case4:

(1)

where N is the number of particles considered, vℓ is the magnitude of 

the velocity of the ℓth particle perpendicular to the magnetic field ,

ωℓc is its gyrofrequency and αℓ its phase at t = 0. is the average

gyrofrequency and θ is the angle between the direction of observation and

. If the dimensions of the plasma are not small compared to the wavelength, 

retardation effects have to be taken into account.

In the case where the phases of the particles are randomly distri- 

buted (incoherent radiation), the last factor in (1) reduces to
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. If all particles have the same phase (complete coherence)

the value is , i.e., the radiation is increased by about 

a factor N compared to the incoherent case. In order to measure the degree 

of coherence, we introduce the function

(2)

which is unity in the case of complete coherence and 1/N if the phases are

randomly distributed. If one neglects the statistical fluctuations in the 

phase distribution in order to substitute the sums in (2) by integrals, one 

obtains φ = 0 in the case of equally distributed phases.

In order to have an effect like the echo1, the quantity Φ must 

depend on time and have a sharp maximum at the time the radiation peak is to

occur. This means that the phase correlations between the particles have to

be time dependent. In the approximation used here this requires the intro­

duction of individual gyrofrequencies for the different particles. One way 

for this to occur is through inhomogeneities of the magnetic field. An

additional· possibility is the relativistic mass effect which causes the gyro- 

frequency to become energy dependent. This effect also provides the necessary 

nonlinearity in the equations.

The assumed validity of the single particle approach implicitly 

includes the assumption that the total energy contained in the radiation 

peaks emitted by the plasma is small compared to the total kinetic energy of 

the plasma.

II. THE MODEL

At first we consider the acceleration of the electrons by the pulses. 

For this we treat the nonrelativistic (v << c) motion of an electron in a 

homogeneous magnetic field under the influence of a plane electric wave. We
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neglect the magnetic field of the pulses as well as the apatial variation 

of their electric field. As we are interested in the gyration of the elec- 

trons, we assume the to be perpendicular to the static , and we

choose our coordinate system so that the z-axis is parallel to and the

x-axis parallel to . The equation of motion for an electron in this

approximation is

(3)

ψ being the phase of the electric field at t = 0. Separation of the

equations leads to

(4a)

(4b) 

ω being the electron gyrofrequency. In the case of Eo = 0, i.e., before 

and after the pulses, the solution of (4) is

(5a)

(5b)

where vo is the coaponent of the velocity of the electron under considera- 

tion perpendicular to , and χo is its phase at t = 0. 

When the frequency of the exciting field is exactly the gyrofre- 

quency of the electron under consideration (ω = ωc), the general solution 

of (4) is:

(6a)
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(6b)

with

(7a, b)

(7c,d)

The motion of the electron as given by (6) consists of two parts: that induced 

by the external electric field and that associated with the initial condition 

As an initial condition we required for t = 0 that have the value given 

by (5). So, if we assume that for t < 0 there is no electric field, while 

at t = 0 a pulse starts, the motion of the electron is given by (5) for 

t < 0 and by (6) for t ≥ 0. If we further assume that the pulse starts 

at t = 0 with the phase Ψ = 0, i.e., with Ε(0) = 0, the solution (6)

reduces to:

(8a)

(8b)

In the case ω ≠ ωc the general solution of (4) is 

(9a)

(9b)

with
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(10a, b)

(10c, d)

If we again assume that ψ = 0 and write ω = ωc +∆ω, We obtain from (9)

(11a)

(11b)

If we further assume that the pulse acting on the electron is short and 

its frequency near the cyclotron frequency, i.e., that

(12a, b)

where t1 is the duration of the pulse, we can expand the trigonometric 

functions with the argument ∆ωt. Keeping only terms linear in ∆ωt and 

neglecting terms of the order ∆ω∕ωc compared to unity, the equations (11) 

reduce to the solution given by (8).

In the following we shall always make the assumptions (12), i.e., 

assume that the pulses are so short that the differences in the gyrofre­

quency of the different particles are not essential for the acceleration. 

By using equations (8) we neglect all nonlinear effects during the pulses.

We now consider an ensemble of electrons, i.e., an electron plassa 

(without interactions) excited at the gyrofrequency by two short pulses.
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The quantity of interest is the radiation after the second pulse, which is 

characterized by Φ(t) given by (2).

In order to have differences in the gyrofrequencies after the first

pulse, we consider the influence of an initial temperature and account for

field inhomogeneities by attributing a different gyrofrequency to each elec-

iron. (This implies that the inhomogeneities are perpendicular to the field

lines). We assume a distribution h(η) over the different gyrofrequencies,

where η = Δinhωc is the deviation from the average gyrofrequency due to 

the inhomogeneities

At first we assume that all electrons have the same initial (trans- 

verse) energy with the corresponding (transverse) velocity vo, but 

different, equally distributed phases. Then we have, in the two-dimensional 

v-space, the distribution given in Fig. la. As it follows from (2) that 

only phase differences are essential, it is convenient to consider this 

diagram in a velocity space system, rotating with an average gyrofrequency 

ωc (defined by equations (17) and (2+)). Then φ is the phase difference  
with respect to a specified particle.

The velocities v'x and v'y in this rotating system are obtained 

from the velocities in the nonrotating system by the transformation

(13a)

(13b)

If we apply this transformation to equation (8) we obtain:

(14a)

(14b)
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If we assume vo, pt >> p∕ωc or sin ωct1 = 0 (i.e., the pulse consist-

ing of an integer number of cycles), we can neglect in (14) the terms with 

p∕ωc. We then have at the end of the first pulse the distribution given 

in Fig. 1b with

(15)

The electrons are now equally distributed on the small dashed circle. The

velocities of the electrons are now between V - vo and V + vo, while 

the phase differences are smaller or equal to 2 artg vo/V. For the treat­

meat which follows we further assume that

(16)

i.e. that the energy the electrons gained during the first pulse is large 

compared to the initial (thermal) energy. Then all particles in Fig. 1b 

have almost the same phase and we approximate the distribution on the dashed 

circle by a uniform distribution on its solidly drawn diameter or, as we 

later allow for different initial energies, by a distribution g(v) on this 

line. This means, the only effect of the initial energy we keep is that 

the particles have different energies after the first pulse according to 

their phase at the onset of the pulse.

As time proceeds, phase differences arise between the particles accord­

ing to the differences in their gyrofrequencies. In our model the

gyrofrequency depends on the energy and on the local magnetic field, and is 

given by4

(17)

where Eℓ is the relativistic energy. As we are interested in the phase
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differences, we ask for the differences in the gyrofrequency. With the 

assumption v2ℓ << c2 we have in first order

(18)

with
(19)

when we attribute ∆ωℓc = 0 to particles with vℓ = V.

Correspondingly the relative phase at time τ after the first pulse is

(20)

Fig. 1c gives the distribution in the v'-space at the end of the 

second pulse, which follows the first pulse after a time τ. The electrons 

are now distributed in the hatched ring. The quantities v*ℓ and φ*ℓ of a

particle are determined by the corresponding quantities vℓ and φℓ (τ) at

the onset of the second pulse and we have

(21)

(22)

(23a)

(23b)

(24)

(25)

φo gives the phase of the electric field of the second pulse relative to a 
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particle with φ(τ) = 0. In any actual experiment this is a statistical 

quantity. B is an arbitrary constant which defines the particle with 

respect to which ∆*ωc is measured, D gives the strength of the second 

pulse relative to the first one (p2t2 = DV), and t is now the time mea­

sured from the end of tile second pulse.

Having determined the velocity and the relative phase of the par- 

tides for any time after the second pulse, we now can calculate Φ(t) 

according to (2) and study its time dependence. For this we introduce the 

distribution functions g(v) and h(η) and substitute the sum in (2) by 

an integral over v and η. Then we find

(26)

with

(27)

(28)

III. RESULTS

We now calculate Φ(t) from (26) using several approximations. 

The normalizing factor in (26) can be given approximately by

(29)

From equations (21), (24) and (27) we find

(30)

By virtue of the relation
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(31)

Jℓ being the Bessel function of order ℓ, we find

(32)

Before discussing the general case, we consider two special cases:

a) An initially cold plasma in an inhomogeneous magnetic field.

In this limit
(33)

Then we have only to perform the integration over η. We see from (32) 

that at a time

(34)

the ℓ-th term in the sum (32) becomes independent of η. If we integrate 

for a time tℓ the first term in (26), the ℓ-th term of (38) gives the 

essential contribution. Or more precisely: If we perform the integral and 

consider it as a function of t , then the ℓ-th term of (32) gives a con­

tribution which is the Fourier transform of h(η) with its maximum at 

tℓ. If the width of this maximum is small compared to the separation from

the next maximum which is due to the next term In (32), then the maximum at 

tℓ is essentially determined only by the ℓ-th term. In this case Φ (t) 

can easily be calculated. It shows maxima at times given by (34) (with the 

condition t > 0), i.e., we have a series of radiation maxima at times after

the second pulse that are multiples of τ.5
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The second term in (26) has essentially the same structure as the 

first. As we have, according to (28)

(35)

we see that at a time t where the ℓ-th term of (32) gives the main con­

tribution to the integral, the (ℓ-1)-th term of the corresponding 

expansion of exp(if1) contributes. These two contributions have a phase 

difference of π/2. So we find for the maxima

(36)

If the argument of the Bessel functions is small, we may use the approxi­

mation6

(37)

and we obtain

(38)

In this approximation the amplitude of the radiation maxima grows with

the pulse strength and grows with increasing τ .

If, on the other hand, the argument of the Bessel function is large, 

we may use the approximation6

(39)

(40)
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Fig. 2 gives Φ(t1) for the first radiation maximum (ℓ = -1) as a 

function of τ, calculated from (36), (38) and (40) with D = 1. If 

one takes into account collisions, the decay for large τ becomes nearly 

exponential. The maximum is then determined by the pulse strength and 

by the collision frequency.

We observe that the normalizing factor (29) is proportional to

V2 and in the approximation (40) we have φ(t) ~ 1/A ~ 1/V2. This shows 

that in the region of validity of (40) the absolute intensity of the 

radiation maxima does not depend on A, i.e. on the strength of the 

pulse, in the case D = 1.

The shape of the radiation peaks is the square of the Fourier 

transform of h(η). If h(η) is a Gaussian with a width ηo, then 

the shape of the radiation peaks is also a Gaussian with a width 

Δot = 4∕ηo. In making our approximations we assumed that the width of 

the radiation peaks is small compared to the time separation of the 

different peaks. This assumption is equivalent to the assumption

(41)

where ηo is a characteristic spread in the gyrofrequencies due to the 

inhomogeneities. If this condition is not fulfilled, or more precisely,

if ηoτ is of the order π or less, the wings of the different peaks 

overlap and this means that one has really to employ the entire sum (32) 

in order to determine Φ(t). One sees that in this case the actual 

value of Φ(t) depends now in an essential way on φo which determines 

the relative phase of the different terms. As in any actual experiment, 

φo is a statistical quantity, one should find under this condition that 

the amplitudes of the radiation peaks are different, each time one performs
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the experiment without changing any of the other parameters.

For ηoτ << 1 there arise no maxima in Φ(t).

b) A hot plasma in a homogeneous magnetic field. In this limit we

have
(42)

and we deal only with the dependence of (32) on v. In this case we have 

the integration variable v also in the argument of the Bessel functions. 

We assume this argument to be large, so that the approximation (39) is 

valid. lf we write the cosine in (39) as the sum of two exponential func­

tions, we find for (32) (having performed in (26) the integration over η, 

i.e. dropped the η-independence):

(43)

with

(44a)

(44b)

We now write v/V = 1 + u and make use of the assumption (16) by neglecting 

in (44) all terms which are quadratic in u. We then have

(45a)

(45b)

Using the same arguments as in the cold plasma case, we conclude that 

we now have two series of radiation maxima at times

(46a, b)
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The essential difference from the cold plasma case is that the time for

the occurrence of the radiation peaks depends on the relative pul.se 

strength D.7

The term exp(if1) in (26) can be treated in the same way. We 

find again that the (ℓ-1)-th term of the expansion contributes to the 

integral at a. time t where the ℓ-th term of (93) contributes. These 

two terms now have either the same phase, if they are determined by (45a), 

or have opposite sign, if they are determined by (45b). So we find for 

the maxima of Φ(t)

(47a)

(47b)

In the case that

(48)

the contribution from both series add to one radiation peak. The phase 

with which they add depends on the last term in (45a) and (45b), i.e., 

depends on A and D.

The shape of the radiation peaks is now essentially the square of

the Fourier transform of g(v) . If we assume g(v) to be a Maxwellian

with its maximum at v = V, then the shape of the radiation peaks is 

also a Gaussian ~ exp[-(t - tℓ)∕(∆ot)2], where

(49)

vo being the velocity of a particle with the energy kTe , i.e.
vo, V = (kTe/E)1/2 where Te is the initial temperature and E1 is the
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energy an electron gains by the first pulse if it is initially at rest. 

If we introduce the dimensionless quantity

(50)

we have

(49a)

According to (49a) the initial temperature of the plasma can, in 

principle, be determined by measuring the width of the radiation maxima.

The total energy in one of the radiation peaks is proportional to 
∫φ(t)dt. If the shape of the peak is a Gaussian with a width given by

(4b), we have

(51)

The assumption that, the width of the peaks is small compared to the 

separation between the different peaks is now equivalent to

(52)

and corresponds to the condition (41) in the cold plasma case. For χ << 1 

no radiation maxima arise.

Fig. 3 gives a numerical example for the case of a hot plasma in a

homogeneous magnetic field, computed from equation (26) without further

approximations. The initial energy distribution was assumed to be Maxwel­

Iian. The parameters for this example were chosen to Aτ = 50, vo/V = .1,

φo = π, and D = 1. Fig. 3 shows also how the results obtained from (26)

are modified by collisions according to equation (77). A Φ(t) of 10-3 means
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that the radiation is N · 10-3 times the intensity which the plasma would

radiate if the electrons had the same energy distribution but randomly
 distributed phases, i.e. for 108 electrons this would be a factor of 105.

We now consider the general case, i.e. the simultaneous influence 

of the field inhomogeneities and of the initial temperature. If the con­

dition (41) Is fulfilled, we retain for a time tℓ given by (34) just the 

ℓ-th term of (32) after integration over η. If we further assume the 

argument of the Bessel functions to be large, i.e. the approximation (39) 

to be valid, and g(v) to be Maxwellian, the integration over v gives 

us the result (40) multiplied by a correction factor

(53)

If we, on the other hand, assume (52) to be valid and integrate at first 

over v, we find correspondingly for times given by (46) the result (47) 

multiplied by a factor

(54)

if h(η) is assumed to be Gaussian.

This result shows that the effect of the initial temperature and that

of the inhomogeneities have the tendency to cancel each oilier, if both con­

ditions (41) and (52) are fulfilled simultaneously, essentially no radiation 

maxima arise.

IV. EXCITATION BY THREE OR MORE PULSES

Next we consider a plasma excited by three short pulses. Let D2 be 

the strength of the third pulse relative to the first and φ1 the phase of 

the electric field of the third pulse in the rotating coordinate system, and
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v2, φ2(t), β2, Δ2ω , B2 be quantities after the third pulse. Furthermore, 

let T be the time between the second and third pulse. Then we have, cor­

responding to equations (21-25):

(55)

(56)

(57a)

(57b)

(58)

(59)

where t now is measured from the end of the. third pulse. By analogy with 

(26) we find

(60)

with
(61a)

(61b)

(61c)

More explicitly we have
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(62)

where Δ*ωcT is to be calculated from (24).

We now specialize to the case of an initially cold plasma in an

inhomogeneous magnetic field, i.e. we make the approximation (33). Per­

forming the v-integration in (60) means essentially dropping the 

v-dependence. As (62) contains three cosines, the expansion into BesseI 

functions now gives a threefold product of sums of the type (31). As

∆*ωcT still contains a cosine we apply (31) once more and obtain finally: 

(63)

With the assumption (41) we conclude from (63) that in the case of three 

exciting pulses we have radiation maxima at times

(64)

K and L being integers with the restriction tKL > 0. As we consider

in (63) for a time tKL only those terms which are independent of η,

the fourfold sum reduces to a double sum over k and m. We perform the 

sum over 1 by means of the addition theorem6
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(65)

and obtain*

(66)

(66a)

with

(67a, b, c)

(o7d)

It seems that the expression (66) can only be simplified by making

further restrictive assumptions. If we assume D = 1, i.e. x2 = x3,

we can use the formula6

(68)

We apply (68) to the last two Bessel functions in (66a) so that Jk-m(x1) 

remains the only Bessel function depending on m. We now can perform the 

sum over m by virtue of (31). Thus we find:

(69)

Only in special cases have we found an analytic expression for the inte­

gral (69). If K = 0, from which it follows that x1 = 0, we can 

apply (68) and find

(70)

*In (66) there is only a phase factor omitted, which is common to all 
terms in the sum.
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In the case that x1 << 1 and x1 << x2, one can neglect the

exponential function In (69) and obtain

(71)

This approximation is not valid for L = 0 as we than have x1 ≈ x2 

and the variation of the exponential function in (69) with ψ must not be 

neglected in comparison with the variation of the Bessel function.

In the same way one finds for the other two terms in (60):

(72)

(73)

where G3 and G4 are defined as similar to G2 (67d). These sums can

be treated as (66).

If we consider the case of a hot plasma in a homogeneous magnetic 

field excited by three pulses, we obtain an expression similar to (63) 

where the arguments of the Bessel functions, except the second, depend on 

v. Making the large argument approximation (39) leads us to expect 

radiation maxima at times

(74)

where K and L are again integers with the restriction tKL > 0 and

the signs of D and D2 may occur in each combination.

The results obtained for the case of three exciting pulses may be

generalized in a straightforward manner to the case of n+1 pulses. The 

relations (55-59) become recurrence formulae by substituting the index 2 

by n, the index 1 and the star by the index (n-1), and T by Tn.
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For t being the time elapsed after the last pulse, one has

(75)

In the case of an initially cold plasma in an inhomogeneous mag­

netic field one concludes that radiation maxima arise at times

(76)

where Li are integers with the requirement that t > 0.

V. THE INFLUENCE OF COLLISIONS

As collisions destroy phase correlations, it is obvious that they 

give rise to a much faster decay of the radiation maxima than that given 

by the previous formulae, which were derived in the approximation of a 

collisionless plasma. It was observed in the experiment of Hill and KapIen1 

that the dependence of the radiation maxima on τ was determined by all 

phase-destroying collisions, while in the three-pulse case the dependence 

on T was determined by the inelastic collisions only. This is due to 

the fact that after the second pulse there is information stored not only 

in the phases but also in the energy distribution.

Let us consider at first the two-pulse case. If we assume that the 

phase of a particle after a collision. is not related to its phase before 

the collision, it follows that only particles can contribute to the radia­

tion maxima which did not undergo any collision. If we assume that the
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probability of undergoing a collision is the same for all particles 

(independent of their velocity) we have

(77)

where v(t) is the value obtained for a collisionless plasma and ν1 is 

the collision frequency accounting for all kinds of collisions.

Under conditions as in the experiment of Hill and Kaplsn1 most of 

the collisions the electrons undergo are with neutrals. As the mass of 

an electron is very small compared to that of an atom, most collisions 

only change the phases of the electrons but not their energies, We call 

these collisions elastic.

We now consider the three-pulse case and study at first the influ­

ence of the elastic collisions during the time between the second and

third pulse in the limit Tνe1 >> 1. In this case the phases have been

randomized at the onset of the third pulse and α = ΔωcT is not a 

statistical quantity which is to be integrated over, instead of being 

given by (24). Furthermore, the problem now has become three dimensional, 

as the electrons can, through collisions, acquire a velocity component 

parallel to the magnetic field. So we have

(78)

where θ is the angle between the electron velocity and the z-axis. We 

also have to integrate our final result over θ. Consequently we have 

to substitute in (55) and (57) v* by v*⊥(t = T) and (58) by

(79)

v2 now being again only the transverse part of the velocity. With these 

modifications we now find instead of (62):
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(80)

If we now make the expansion into Bessel functions, we see that only terms 

with L = 0 give a contribution after integrating over α. So there are,

in spite of ν1T >>> 1, still radiation maxima after the third pulse, but

their number is decreased by the limitation to L = 0.

In the case of a cold plasma in a homogeneous magnetic field we

derive from (80) again equation (66) with L = 0 and x2 and x3 to 

be substituted by x2sin θ and x3sin θ. Assuming again D = 1 and 

integrating over θ we find

(81)

We observe that the value of (81) is not changed if we substitute sin θ 

by cos θ. So we apply (68) in order to perform the integration over 

θ. This yields

(82)

In order to account for the inelastic collisions during the time between 

the second and third pulse and all kinds of collisions during the time 

before the second and after the third pulse, the value (82) has to be mul­

tiplied by the factor

(83)
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where ν2 is an effective collision frequency for inelastic collisions.

VII. DlSCUSSION

In the previous sections it has been shown that the relativistic

mass effect can give rise to radiation maxima in a plasma excited by a 

sequence of short pulses at the electron gyrofrequency. The essential 

point in the treatment was that the influence of the relativistic mass 

effect was neglected during the exciting pulses, while it was taken into 

account between the pulses. This approximation can only be made if (12) 

is fulfilled, i.e. if the pulses are short and if τ >> t1 and further 

if v << c.

The occurrence of a series of radiation maxima is essentially dif­

ferent from the spin echo case2 and is due to the fact that the gyrofre­

quency in our treatment is energy dependent . A further essential difference 

is the new result that when the plasma is hot the time at which the radiation 

maxima occur depends on the relative pulse strength D.

A not very essential assumption in our treatment was that the 

dimensions of the plasma are small compared to the wavelength of the 

radiation at the gyrofrequency. If this is no longer true, one sees that

the of the exciting pulses has to be perpendicular to the magnetic

field. If and are parallel, particles excited at different phases 

can interchange their places by moving along the lines of force, giving 

rise thereby to statistical phase differences and spoiling the correlations 

which have been generated. A further consequence is that the radiated 

energy in this case is essentially radiated into the same direction as the 

exciting pulses.

It has already been pointed out5 that the model of a cold plasma in 

an inhomogeneous magnetic field gives all the characteristics of the
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observations by Hill and Kaplan1. But a general discussion3 shows that

there are also other nonlinearities beside the relativistic mass effect

which can give rise to radiation maxima. The relative importance of the

different effects depend oa the details of the experiment. It should be

noted, however, that the results obtained in this paper are qualitatively

correct also for other nonlinearities, by which the gyrofrequency of a

particle becomes energy dependent, as e.g. the influence of spatial 

gradients of the magnetic or electric field3, 8.
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Fig. 1. Particle distribution in v'-space:
a) before the first pulse,
b) at the end of first pulse,
c) at the end of second pulse.



Fig. 2. Amplitude of the first radiation 
maximum as a function of τ in 
different approximations as given 
by equations (36), (38) and (40) 
with D = 1.



Fig. 3. Radiation after the 
second pulse in the 
case of a hot plasma 
in a homogeneous mag­
netic field


