ON THE THEORY OF
PULSE STIMULATED RADIATION FROM A PLASMA

W. H. Kegel and R. W. Gould

Technical Report No. 30

November 1965
ON THE THEORY OF
PULSE STIMULATED RADIATION FROM A PLASMA

W. H. Kegel and R. W. Gould

Technical Report No. 30
November 1965

Research sponsored by the
U. S. Office of Naval Research
Contract Nonr 220(50)

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California
ON THE THEORY OF PULSE STIMULATED RADIATION FROM A PLASMA

W. H. KEDEL ** and R. W. GOULD

California Institute of Technology, Pasadena, California

Received 12 November 1965

The aim of this letter is to show that the relativistic mass effect in a cold plasma in an inhomogeneous magnetic field gives rise to an echolike phenomenon [1] with all the characteristics of the experimentally observed echoes reported by Hill and Kaplan [2].

We consider a plasma in a slightly inhomogeneous magnetic field excited by two short pulses at the electron gyrofrequency, the time separation of the pulses being \(\tau \). We ask for the radiation after the second pulse. We treat the problem in the single particle approach.

The radiated intensity depends on the phase correlations between the different particles. More precisely, the time variation of the radiation is given by

\[
\Phi(t) = \left(\sum_{l=1}^{N} r_l \right)^{-2} \left| \sum_{l=1}^{N} r_l \exp \{ i [\omega_{lc} t + \alpha_l] \} \right|^2 ,
\]

where \(N \) is the number of particles considered, \(r_l \) is the Larmor radius of the \(l \)th particle, \(\omega_{lc} \) is its gyrofrequency, and \(\alpha_l \) its phase at time \(t = 0 \). \(\Phi(t) \) is normalized such that it is unity when all particles have the same phase. From (1) one sees that it is sufficient to determine phase differences. For this it is convenient to consider the phases in a coordinate system rotating with the average gyrofrequency \(\bar{\omega}_c \).

We neglect the initial energy of the electrons (cold plasma approximation). At the end of the first pulse all particles have in this approximation the same energy and the same phase. We now account for the field inhomogeneities by attributing a different gyrofrequency to each electron. (This implies that the inhomogeneities are perpendicular to the field lines.) We assume a distribution \(g(\eta) \) over the different gyrofrequencies, where \(\eta = \Delta_{inh} \omega_c \) is the deviation from the average gyrofrequency due to the inhomogeneities. The relative phase of a particle at a time \(\tau \) after the first pulse is

\[
\varphi(\eta_l, \tau) = \eta_l \tau .
\]

After the second pulse the particles have different energies according to their phase at the onset of this pulse. This give rise to additional differences in the gyrofrequencies due to the relativistic mass effect. With \(v^2 \ll c^2 \) we have after the second pulse

\[
\Delta \omega_{lc} = A (B - \gamma_{l*}^2 / R^2) + \eta_l
\]

with \(A = \bar{\omega}_c^3 R^2 / 2c^2 \), \(R \) being the Larmor radius after the first pulse and \(\gamma_l^* \) that after the second pulse. \(B \) is an arbitrary constant which defines the particle with respect to which \(\Delta \omega_{lc} \) is measured. The relative phase of a particle at time \(\tau \), now measured from the second pulse, is then given by

\[
\varphi_l(t) = \varphi_l^*(t=0) + \Delta \omega_{lc} t
\]

\(\varphi_l^*(t=0) \) and \(\gamma_l^* \) of a particle depend on its phase at the onset of the second pulse and are given by

\[
\gamma_l^2 / R^2 = 1 + B^2 + 2D \cos [\varphi(\eta_l, \tau) - \varphi_0]
\]

\[
\varphi_l^*(t=0) = \varphi_0 + \beta_l
\]

* This work was sponsored by the U.S. Navy, Office of Naval Research.

** On leave from the Institute für Plasmaphysik, Garching bei München, Germany.
\[
\sin \beta_I = \left(\frac{R}{r_i} \right) \sin \left[\phi(\eta_1, \tau) - \varphi_0 \right],
\]

where \(D \) gives the strength of the second pulse relative to the first and \(\varphi_0 \) the phase of the electric field of the second pulse relative to a particle with \(\phi(\tau) = 0 \). With these relations we have, after the second pulse:

\[
\Phi(t) \sim \int d\eta \, g(\eta) \left[D \exp[if(\eta)] + \exp[if_1(\eta)] \right]^2 \tag{8}
\]

\[
\begin{align*}
\phi_1(\eta) &= \eta \tau - \varphi_0 + f(T_1) \\
\phi_2(\eta) &= \eta \tau - \varphi_0 + f(T_1) \tag{9a, 9b}
\end{align*}
\]

As there is a cosine in the exponential functions, we make an expansion into Bessel functions:

\[
\exp[if(\eta)] = \sum_{k=-\infty}^{+\infty} J_k(2ADt) \exp\left[i\left[\eta(k+1) - (k-1)\varphi_0 - \frac{\pi}{2}k + \psi\right]\right]. \tag{10}
\]

\(\psi \) stands for all terms not depending either on \(\eta \) or the index of the Bessel functions. From (10) it follows that there are maxima of \(\Phi(t) \) at times

\[
t_m = mT, \quad m = 1, 2, 3, \ldots \tag{11}
\]

\[
\Phi(t_m) \approx (1 + D^2)^{-1} \left\{ |D| J_m(2ADt_m) |^2 + |J_{m-1}(2ADt_m) |^2 \right\}. \tag{12}
\]

If the argument of the Bessel functions is large we have \(\Phi(t_m) \sim 1/t_m \). When collisions are taken into account (12) is to be multiplied by an exponential function. The shape of the radiation peaks is the square of the Fourier transform of \(g(\eta) \).

As an example of their experimental results Hill and Kaplan [2] give an oscillogram showing two radiation maxima at times \(\tau \) and \(2\tau \), the intensity ratio being \(8:1 \). This ratio is essentially determined by collisions, as \(\tau \) is of the order of the reported decay constant.

In the case of three exciting pulses Hill and Kaplan find an echo at a time \(\tau \) after the third pulse. The dependence of its intensity on \(T \) (time between the second and the third pulse) turns out to be determined by the inelastic collisions only.

If one treats the three-pulse case at first in the collisionless approximation analogous to the two-pulse case, one obtains an expression for \(\Phi(t) \) now consisting of sums over products of Bessel functions multiplied by an exponential function of the kind

\[
\exp\left[i\left[\eta(t + (k + m + n)\tau + (l + m)T + \psi_m\right]\right], \tag{13}
\]

where \(k, l, m, n \) are summation indices. From this one concludes that radiation maxima arise at times

\[
t_{KL} = K + LT, \quad \pm K, L = 0, 1, 2, \ldots \tag{14}
\]

\(t \) now being measured from the third pulse. If one now assumes that the phases of the electrons are, due to elastic collisions, randomized between the second and third pulse, but the individual energies are preserved, one must consider the phase \(\eta \tau \) in (13) as a statistical quantity over which one must integrate. This integration leads to the cancellation of all terms with \(L \neq 0 \), while those with \(L = 0 \) survive.

The essential difference with the two-pulse case is that, after the second pulse, there is information stored not only in the phases, but also in the energy distribution, which is not destroyed by elastic collisions.

If the plasma dimensions are of the order of the wavelength (or larger), the \(k \)-vectors of the exciting pulses have to be perpendicular to the magnetic field. Otherwise, particles excited at different phases can exchange their places and spoil by that the generated phase correlations. If the initial temperature of the plasma is too high, the radiation maxima vanish [3].

References
3. W.H. Kegel, to be published.
ON THE THEORY OF PULSE STIMULATED RADIATION FROM A PLASMA

By including the relativistic mass change in the motion of electrons gyrating in a slightly inhomogeneous field, it is possible to account for the cyclotron echoes observed by Hill and Kaplan.
UNCLASSIFIED
Security Classification

14.

KEY WORDS

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

CYCLOTRON RADIATION
PLASMA RADIATION
ECHOES

INSTRUCTIONS

. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether 'Restricted Data' is included. Marking is to be in accordance with applicable security regulations.

. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. An important title cannot be selected without classification. Show title classification in all capitals in parenthesis immediately following the title.

. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final, the inclusive dates when a specific reporting period is over.

. AUTHOR(S): Enter the name(s) of author(s) as shown in the report. Enter last name, first name, middle initial, military, and branch and rank of service. The name of the principal author is an absolute minimum requirement.

. DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears in the report, use date of publication.

. TOTAL NUMBER OF PAGES: The total page count must follow normal pagination procedures, i.e., enter the number of pages containing information.

. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, abuse project number, system number, task number, etc.

. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or the sponsor), also enter this number(s).

. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through.

(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through.

(5) "All distribution of this report is controlled. Qualified DDC users shall request through.

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the governmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

UNCLASSIFIED
Security Classification