Ignition characteristics of dual-fuel methane-n-hexane-oxygen-diluent mixtures in a rapid compression machine and a shock tube

Yizhuo Hea,b, Yingdi Wanga,b, Claire Grégoirec, Urszula Niedzielskac,d, Remy Mévela,b,*, Joseph E. Shepherdc,*

aCenter for Combustion Energy, Tsinghua University, Beijing, China.
bDepartment of Automotive Engineering, Tsinghua University, Beijing, China.
cGraduate Aeronautical Laboratories, California Institute of Technology, Pasadena, USA
dWarsaw University of Technology, Warsaw, Poland

The present supplemental material shows additional experimental and numerical results of ignition delay time in the RCM and shock tube.
Additional experimental and numerical results in RCM

(a) CH₄ + 10% N₂O (Mix 1) 1 MPa
(b) CH₄ + 10% N₂O (Mix 1) 2 MPa

Temperature (K)
Ignition Delay Time (ms)
Relative Error (%)
Figure 1: Additional comparisons between the experimental and numerical first-stage and total ignition delay time in RCM.
Additional experimental and numerical results in shock tube

Figure 2: Comparisons between the experimental and numerical ignition delay time based on CO_2* emissions for lean CH_3-C_6H_14-O_2-diluent mixtures.
Figure 3: Comparisons between the experimental and numerical ignition delay time based on CO$_2^*$ emissions for stoichiometric CH$_4$-C$_6$H$_{14}$-O$_2$-diluent mixtures.
Figure 4: Comparisons between the experimental and numerical ignition delay time based on CO$_2^*$ emissions for rich CH$_4$-C_6H$_{14}$-O$_2$-diluent mixtures.
Figure 5: Comparisons between the experimental and numerical ignition delay time based on CH* emissions for lean CH$_4$-C$_6$H$_{14}$-O$_2$-diluent mixtures.
Figure 6: Comparisons between the experimental and numerical ignition delay time based on CH* emissions for stoichiometric CH$_4$-C$_6$H$_{14}$-O$_2$-diluent mixtures.
Figure 7: Comparisons between the experimental and numerical ignition delay time based on CH* emissions for rich CH$_4$-C$_6$H$_{14}$-O$_2$-diluent mixtures.