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Abstract

We develop an axiomatic theory of information acquisition that captures the idea
of constant marginal costs in information production: the cost of generating two
independent signals is the sum of their costs, and generating a signal with probability
half costs half its original cost. Together with a monotonicity and a continuity
conditions, these axioms determine the cost of a signal up to a vector of parameters.
These parameters have a clear economic interpretation and determine the difficulty
of distinguishing states. We argue that this cost function is a versatile modeling tool
that leads to more realistic predictions than mutual information.

1 Introduction

“The choice of information structures must be subject to some limits,
otherwise, of course, each agent would simply observe the entire state of the
world. There are costs of information, and it is an important and incompletely
explored part of decision theory in general to formulate reasonable cost functions
for information structures.” – Arrow (1985).

Much of contemporary economic theory is built on the idea that information is scarce
and valuable. A proper understanding of information as an economic commodity requires
theories for its value, as well as for its production cost. While the literature on the value
of information (Bohnenblust, Shapley, and Sherman, 1949; Blackwell, 1951) is by now well
established, modeling the cost of producing information has remained an unsolved problem.
In this paper, we develop an axiomatic theory of costly information acquisition.
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We characterize all cost functions over signals (i.e., Blackwell experiments or information
structures) that satisfy three main axioms: First, signals that are more informative in
the sense of Blackwell (1951) are more costly. Second, the cost of generating independent
signals equals the sum of their individual costs. Third, the cost of generating a signal with
probability half equals half the cost of generating it with probability one.

As an example, the second axiom implies that the cost of collecting n independent
random samples (for example by surveying n customers) is linear in n. The third axiom
implies that the cost of an experiment that produces a sample with probability α is a
fraction α of the cost of acquiring the same sample with probability one.

Our three axioms admit a straightforward economic interpretation. The first one is a
simple form of monotonicity: more precise information is more costly. The second and
third axioms aim to capture the idea of constant marginal costs. In the study of traditional
commodities, a standard avenue for studying costs functions is by categorizing them in
terms of decreasing, increasing, or constant marginal costs. The case of linear cost is,
arguably, the conceptually simplest one.

With this motivation in mind, the second axiom states that the cost of generating a
signal is the same regardless of which additional independent signals a decision maker
decides to acquire. Consider, as an example, a company surveying customers by calling
them to learn about the demand for a new product. Our axiom implies that the cost of
calling an additional customer is constant, i.e. calling 100 customers is 10 times more costly
than calling 10. Whether this assumption is a reasonable approximation depends on the
application at hand: for instance, it depends on whether or not large fixed costs are a
crucial ingredient of the economic environment under consideration.

The third axiom posits constant marginal costs with respect to the probability that an
experiment is successful. To formalize this idea we study experiments that succeed with
probability α, and produce no information with probability 1− α. The axiom states that
for such experiments the cost is linear in α, so that the marginal cost of success is constant.

We propose the constant marginal cost assumption as a natural starting point for
thinking about the cost of information acquisition. It has the advantage that it admits
a clear economic interpretation, making it easy to judge for which applications it is
appropriate.

Representation. The main result of this paper is a characterization theorem for cost
functions over experiments. We are given a finite set Θ of states of nature. An experiment
µ produces a signal realization s with probability µi(s) in state i ∈ Θ. We show that
for any cost function C that satisfies the above postulates, together with a continuity
assumption, there exist non-negative coefficients βij , one for each ordered pair of states of
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nature i and j, such that1

C(µ) =
∑
i,j∈Θ

βij

(∑
s∈S

µi(s) log µi(s)
µj(s)

)
. (1)

The coefficients βij can be interpreted as capturing the difficulty of discriminating between
state i and state j. To see this, note that the cost can be expressed as a linear combination

C(µ) =
∑
i,j∈Θ

βij DKL(µi‖µj),

where the Kullback-Leibler divergence

DKL(µi‖µj) =
∑
s∈S

µi(s) log µi(s)
µj(s)

is the expected log-likelihood ratio between state i and state j when the state equals i.
DKL(µi‖µj) is thus large if the experiment µ on average produces evidence that strongly
favors state i over j, conditional on the state being i. Hence, the greater βij the more
costly it is to reject the hypothesis that the state is j when it truly is i. Formally, βij is
the marginal cost of increasing the expected log-likelihood ratio of an experiment with
respect to states i and j, conditional on i being the true state. We refer to the cost (1) as
the log-likelihood ratio cost (or LLR cost).

In many common information acquisition problems, states of the world are one dimen-
sional. This is the case when, for instance, the unknown state is a physical quantity to be
measured, or the future level of interest rates. In these examples, a signal can be seen as a
noisy measurement of the unknown underlying state i ∈ R. We provide a framework for
choosing the coefficients βij in these contexts. Our main hypotheses are that the difficulty
of distinguishing between two states i and j is a function of the distance between them,
and that the cost of performing a measurement with standard Gaussian noise does not
depend on the set of states Θ in the particular information acquisition problem; this is a
feature that is commonly assumed in models that exogenously restrict attention to normal
signals.

Under these assumptions (Axioms a and b) Proposition 3 shows that there exists a
constant κ such that, for every pair of states i, j ∈ Θ,

βij = κ

(i− j)2 .

Thus, states that are closer are more difficult to distinguish. As we show in the paper, this
1Throughout the paper we assume that the set of states of nature Θ is finite. We do not assume a finite

set S of signal realizations and the generalization of (1) to infinitely many signal realizations is given in (3).
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choice of parameters offers a simple and tractable framework for analyzing the implications
of the LLR cost.

The concept of a Blackwell experiment makes no direct reference to subjective proba-
bilities nor to Bayesian reasoning.2 Likewise, our axioms and characterization theorem do
not presuppose the existence of a prior over the states of nature. Nevertheless, given a
prior q over Θ, an experiment induces a distribution over posteriors p, making p a random
variable. Under this formulation, the LLR cost (1) of an experiment can be represented as
the expected change of the function

F (p) =
∑
i,j

βij
pi
qi

log
(
pi
pj

)

from the prior q to the posterior p induced by the signal.3 That is, the cost of an experiment
equals

E [F (p)− F (q)] .

This alternative formulation makes it possible to apply techniques and insights derived
for posterior-separable costs functions (Caplin and Dean, 2013; Caplin, Dean, and Leahy,
2018).

Relation to Mutual Information Cost. Following Sims’ seminal work on rational
inattention, cost functions based on mutual information have been commonly applied
to model costly information processing (Sims, 2003, 2010). Mackowiak, Matějka, and
Wiederholt (2018) review the literature on rational inattention. Mutual information costs
are defined as the expected change

E [H(q)−H(p)]

of the Shannon entropy H(p) = −
∑
i∈Θ pi log pi between the decision maker’s prior belief

q and posterior p. Equivalently, in this formulation, the cost of an experiment is given by
the mutual information between the state of nature and the signal.

Compared to Sims’ work—and the literature in rational inattention—our work aims
at modeling a different kind of phenomenon. While Sims’ goal is to model the cost of
processing information our goal is to model the cost of generating information. Due to this
difference in motivation, Sims’ axioms postulate that signals which are harder to encode
are more costly, while we assume that signals which are harder to generate are more costly.
As an illustrative example of this difference consider a newspaper. Rational inattention

2Blackwell experiments have been studied both within and outside the Bayesian framework. See, for
instance, Le Cam (1996) for a review of the literature on Blackwell experiments.

3By Bayes’ rule the posterior belief p associated with the signal realization s is given by pi =
qiµi(s)/(

∑
j
qjµj(s)).
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theory models the readers’ effort of processing the information contained in the newspaper.
In contrast, our goal is to model the cost that the newspaper incurs in producing this
information.

Given the different motivation, it is perhaps not surprising that the LLR cost leads to
predictions which are profoundly different from those induced by mutual information cost.
We illustrate the differences by four stylized examples in §5.

2 Model

A decision maker acquires information on an unknown state of nature belonging to a finite
set Θ. Elements of Θ will be denoted by i, j, k, etc. Following Blackwell (1951), we model
the information acquisition process by means of signals, or experiments. An experiment
µ = (S, (µi)i∈Θ) consists of a set S of signal realizations equipped with a sigma-algebra Σ,
and, for each state i ∈ Θ, a probability measure µi defined on (S,Σ). The set S represents
the possible outcomes of the experiment, and each measure µi describes the distribution of
outcomes when the true state is i.

We assume throughout that the measures (µi) are mutually absolutely continuous,
so that each derivative (i.e. ratio between densities) dµi

dµj is finite almost everywhere. In
the case of finite signal realizations these derivatives are simply equal to ratio between
probabilities µi(s)

µj(s) , as in (1). This assumption means that no signal can ever rule out any
state, and in particular can never completely reveal the true state.

Given an experiment µ, we denote by

`ij(s) = log dµi
dµj

(s)

the log-likelihood ratio between states i and j upon observing the realization s. We define
the vector

L(s) = (`ij(s))i,j

of log-likelihood ratios among all pairs of states. The distribution of L depends on the true
state generating the data. Given an experiment µ, we denote by µ̄i the distribution of L
conditional on state i.4

We restrict our attention to signals where the induced log-likelihoods ratios (`ij) have
finite moments. That is, experiments such that for every state i and every integral vector
α ∈ NΘ the expectation

∫
S |
∏
k 6=i `

αk
ik |dµi is finite. We denote by E the class of all such

experiments.5 The restriction to E is a technical condition that rules out experiments whose
log-likelihood ratios have very heavy tails, but, to the best of our knowledge, includes all

4The measure µ̄i is defined as µ̄i(A) = µi({s : L(s) ∈ A}) for every measurable A ⊆ RΘ×Θ.
5We refer to E as a class, rather than a set, since Blackwell experiments do not form a well-defined set.

In doing so we follow a standard convention in set theory (see, for instance, Jech, 2013, p. 5).
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(not fully revealing) experiments commonly used in applications. In particular, we do not
restrict our attention to a parametric family of experiments such as normally distributed
signals.

The cost of producing information is described by an information cost function

C : E → R+

assigning to each experiment µ ∈ E its cost C(µ). In the next section we introduce and
characterize four basic properties for information cost functions.

2.1 Axioms

Our first axiom postulates that the cost of an experiment should depend only on its
informational content. For instance, it should not be sensitive to the way signal realizations
are labelled. In making this idea formal we follow Blackwell (1951, Section 4).

Let q ∈ P(Θ) be the uniform prior assigning equal probability to each element of Θ.6

Let µ and ν be two experiments, inducing the distributions over posteriors πµ and πν given
the uniform prior q. Then µ dominates ν in the Blackwell order if∫

P(Θ)
f(p) dπµ(p) ≥

∫
P(Θ)

f(p) dπν(p)

for every convex function f : P(Θ)→ R.
As is well-known, dominance with respect to the Blackwell order is equivalent to the

requirement that in any decision problem, a Bayesian decision maker achieves a (weakly)
higher expected utility when basing her action on µ rather than ν. We say that two
experiments are Blackwell equivalent if they dominate each other. It is a standard result
that two experiments µ and ν are Blackwell equivalent if and only if for every every state
i they induce the same distribution µ̄i = ν̄i of log-likelihood ratios (see, for example,
Lemma 1 in the Appendix).

As discussed in the introduction, it is natural to require the cost of information to be
increasing in the Blackwell order. For our main result, it is sufficient to require that any
two experiments that are Blackwell equivalent lead to the same cost. Nevertheless, it will
turn out that the cost function axiomatized in this paper will satisfy the stronger property
of Blackwell monotonicity (see Proposition 1).

Axiom 1. If µ and ν are Blackwell equivalent, then C(ν) = C(µ).

The lower envelope of a cost function assigns to each µ the minimum cost of producing
an experiment that is Blackwell equivalent to µ. If experiments are optimally chosen by a

6Throughout the paper, P(Θ) denotes the set of probability measures on Θ identified with their
representation in RΘ, so that for every q ∈ P(Θ), qi is the probability of the state i.
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decision maker then we can, without loss of generality, identify a cost function with its
lower envelope. This results in a cost function for which Axiom 1 is automatically satisfied.

For the next axiom, we study the cost of performing multiple independent experiments.
Given µ = (S, (µi)) and ν = (T, (νi)) we define the signal

µ⊗ ν = (S × T, (µi × νi))

where µi × νi denotes the product of the two measures.7 Under the experiment µ × ν,
the realizations of both experiments µ and ν are observed, and the two observations are
independent conditional on the state. To illustrate, suppose µ and ν consist of drawing a
random sample from two possible populations. Then µ⊗ ν is the experiment where two
independent samples, one for each population, are collected.

Our second axiom states that the cost function is additive with respect to independent
experiments:

Axiom 2. The cost of performing two independent experiments is the sum of their costs:

C(µ⊗ ν) = C(µ) + C(ν) for all µ and ν.

An immediate implication of Axioms 1 and 2 is that a completely uninformative signal
has zero cost. This follows from the fact that an uninformative experiment µ is Blackwell
equivalent to the product experiment µ⊗ µ.

In many settings an experiment can, with non-negligible probability, fail to produce new
evidence. The next axiom states that the cost of an experiment is linear in the probability
that the experiment will generate information. Given µ, we define a new experiment, which
we call a dilution of µ and denote by α · µ. In this new experiment, with probability α
the signal µ is produced, and with probability 1− α a completely uninformative signal is
observed. Formally, given µ = (S, (µi)), fix a new signal realization o /∈ S and α ∈ [0, 1].
We define

α · µ = (S ∪ {o}, (νi)),

where νi(E) = αµi(E) for every measurable E ⊆ S, and νi({o}) = 1− α. The next axiom
specifies the cost of such an experiment:

Axiom 3. The cost of a dilution α · µ is linear in the probability α:

C(α · µ) = αC(µ) for every µ and α ∈ [0, 1] .

Our final assumption is a continuity condition. We first introduce a (pseudo)-metric
over E . Recall that for every experiment µ, µ̄i denotes its distribution of log-likelihood

7When the set of signal realizations is finite, the measure µi × νi assigns to each realization (s, t) the
probability µi(s)νi(t).
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ratios conditional on state i. We denote by dtv the total-variation distance.8 Given a vector
α ∈ NΘ, let Mµ

i (α) =
∫
S |
∏
k 6=i `

αk
ik |dµi be the α-moment of the vector of log-likelihood

ratios (`ik)k 6=i. Given an upper bound N ≥ 1, we define the distance:

dN (µ, ν) = max
i∈Θ

dtv (µ̄i, ν̄i) + max
i∈Θ

max
α∈{0,...,N}n

|Mµ
i (α)−Mν

i (α)| .

According to the metric dN , two signals µ and ν are close if, for each state i, the induced
distributions of log-likelihood ratios are close in total-variation and, in addition, have
similar moments, for any moment α lower or equal to (N, . . . , N).

Axiom 4. For some N ≥ 1 the function C is uniformly continuous with respect to dN .

As is well known, convergence with respect to the total-variation distance is a demanding
requirement, as compared to other topologies such as the weak topology. So, continuity
with respect to dtv is a relatively weak assumption. Continuity with respect to the stronger
metric dN is, therefore, an even weaker assumption.9

2.2 Discussion

Additivity assumptions in the spirit of Axiom 2 have appeared in multiple parametric models
of information acquisition. A common assumption in Wald’s classic model of sequential
sampling and its variations (Wald, 1945; Arrow, Blackwell, and Girshick, 1949), is that
the cost of acquiring n independent samples from a population is linear in n.10 Likewise,
in models where information is acquired by means of normally distributed experiments,
a standard specification is that the cost of an experiment is inversely proportional to its
variance (see, e.g. Wilson, 1975; Van Nieuwerburgh and Veldkamp, 2010). This amounts to
an additivity assumption, since the product of two independent normal signals is Blackwell
equivalent to a normal signal whose precision (that is, the inverse of its variance) is equal
to the sum of the precisions of the two original signals.

Underlying these different models is the notion that the cost of an additional independent
experiment is constant. Axiom 2 captures this idea in a non-parametric context, where no
a priori restrictions are imposed over the domain of feasible experiments. As discussed in
the introduction, we focus on linear cost structures as we view those as a natural starting
point to reason about the cost of information, in the same way the assumption of constant

8That is, dtv(µ̄i, ν̄i) = sup |µ̄i(A)− ν̄i(A)|, where the supremum is over all measurable subsets of RΘ×Θ.
9We discuss this topology in detail in §A. Any information cost function that is continuous with respect

to the metric dN satisfies Axiom 1. For expositional clarity, we maintain the two axioms as separate
throughout the paper.

10A similar condition appears in the continuous-time formulation of the sequential sampling problem,
where the information structure consists of observing a signal with Brownian noise over a time period of
length t, under a cost that is linear in t (Dvoretzky, Kiefer, Wolfowitz, et al., 1953; Chan, Lizzeri, Suen,
and Yariv, 2017; Morris and Strack, 2018).
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marginal cost is a benchmark for the analysis of traditional commodities. Whether this
assumption fits a particular application well is inevitably an empirical question.

Axiom 3 expresses the idea that the marginal cost of increasing the probability of
success of an experiment is constant. The axiom admits an additional interpretation. In
an extended framework where the decision maker is allowed to randomize her choice of
experiment, the property

C(α · µ) ≤ αC(µ) (2)

ensures that the cost of the diluted experiment α · µ is not greater than the expected cost
of performing µ with probability α and collecting no information with probability 1− α.
Hence, if (2) was violated, the experiment α · µ could be replicated at a strictly lower cost
through a simple randomization by the decision maker. Now assume Axiom 2 holds. Then,
the converse inequality

C(α · µ) ≥ αC(µ)

ensures that the cost C(µ) of an experiment is not greater than the expected cost (1/α)C(α·
µ) of performing repeated independent copies of the diluted experiment α · µ until it
succeeds.11 Axiom 3 is thus automatically satisfied once one allows for dynamic and mixed
strategies of information acquisition.

3 Representation

Theorem 1. An information cost function C satisfies Axioms 1-4 if and only if there
exists a collection (βij)i,j∈Θ in R+ such that for every experiment µ = (S, (µi)),

C(µ) =
∑
i,j∈Θ

βij

∫
S

log dµi
dµj

(s) dµi(s). (3)

Moreover, the collection (βij)i 6=j is unique given C.

We refer to a cost function that satisfies Axioms 1-4 as a log-likelihood ratio (LLR) cost.
As shown by the theorem, this class of information cost functions is uniquely determined
up to the parameters (βij). The expression

∫
S log(dµi/dµj)dµi is the Kullback-Leibler

divergence DKL(µi‖µj) between the two distributions, a well understood and tractable
measure of informational content (Kullback and Leibler, 1951). This implies that (3) can
alternatively be formulated as

C(µ) =
∑
i,j∈Θ

βijDKL(µi‖µj).

11Implicit in this interpretation is the assumption, common in the literature on rational inattention, that
the decision maker’s cost of an experiment is expressed in the same unit as her payoffs.
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A higher value of DKL(µi‖µj) describes an experiment which, conditional on state i,
produces stronger evidence in favor of state i compared to j, as represented by a higher
expected value of the log-likelihood ratio dµi/dµj . The coefficient βij thus measures
the marginal cost of increasing the expected log-likelihood ratio between states i and j,
conditional on i, while keeping all other expected log-likelihood ratios fixed.12

The specification of the parameters (βij) must of course depend on the particular
application under consideration. Consider, for instance, a doctor who must choose a
treatment for a patient displaying a set of symptoms, and who faces uncertainty regrading
their cause. In this example, the state of the world i represents the pathology affecting the
patient. In order to distinguish between two possible diseases i and j it is necessary to
collect samples and run tests, whose costs will depend on factors that are specific to the
two conditions, such as their similarity, or the prominence of their physical manifestations.
These difference in costs can then be reflected by the coefficients βij and βji. For example,
if i and j are two types of viral infections, and k is a bacterial infection, then βij > βik if
it is harder to tell apart the two viral infection than to tell apart a viral infection from
a bacterial one. In §6 we discuss environments where the coefficients might naturally be
asymmetric, in the sense that βij 6= βji.

In environments where no pair of states is a priori harder to distinguish than another,13

a natural choice is to set all the coefficients (βij) to be equal. Finally, in §4 we propose a
specific functional form in the more structured case where states represent a one-dimensional
quantity.

Closed form solutions for the Kullback-Leibler divergence between standard distri-
butions, such as normal, exponential or binomial, are readily available. This makes it
immediate to compute the cost C(µ) of common parametric families of experiments.

Normal Signals. Consider a normal experiment µm,σ according to which the signal s is
given by

s = mi + ε

where the mean mi ∈ R depends on the true state i, and ε is state independent and
normally distributed with standard deviation σ. By substituting (3) with the well-known
expression for the Kullback-Leibler divergence between normal distributions, we obtain

12As we formally show in Lemma 2 in the Appendix, this operation of increasing a single expected log-
likelihood ratio while keeping all other expectations fixed is well-defined: for every experiment µ and every
ε > 0, if DKL(µi‖µj) > 0 then there exists a new experiment ν such that DKL(νi‖νj) = DKL(µi‖µj) + ε,
and all other divergences are equal. Hence the difference in cost between ν and the experiment µ is given by
βij times the difference ε in the expected log-likelihood ratio. The result formally justifies the interpretation
of each coefficient βij as a marginal cost.

13An example is that of a country that faces uncertainty regarding which of its political rivals is responsible
for a cyber attack.
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that the cost of such an experiment is given by

C(µm,σ) =
∑
i,j∈Θ

βij
(mj −mi)2

2σ2 . (4)

The cost is decreasing in the variance σ2, as one may expect. Increasing βij increases the
cost of a signal µm,σ by a factor that is proportional to the squared distance between the
two states.

Binary Signals. Another canonical example is the binary-binary setting in which the set
of states is Θ = {H,L}, and the signal νp = (S, (νi)) is also binary: S = {0, 1}, νH = B(p)
and νL = B(1− p) for some p > 1/2, where B(p) is the Bernoulli distribution on {0, 1}
assigning probability p to 1. In this case

C(νp) = (βHL + βLH)
[
p log p

1− p + (1− p) log 1− p
p

]
. (5)

Hence the cost is monotone in (βij) and p.

In the above examples more informative experiments are more costly. This is true for
for normal signals, since the cost is decreasing in σ, and for binary signals, where the cost
is increasing in p. The next result establishes that the a LLR cost function is monotone
with respect to the Blackwell order:

Proposition 1. Let µ and ν be experiments such that µ Blackwell dominates ν. Then
every LLR cost C satisfies C(µ) ≥ C(ν).

Bayesian Representation. The framework we considered so far makes no references
to subjective beliefs over the states of nature. Nevertheless, a LLR cost function can be
easily embedded in a standard Bayesian framework. Consider, to illustrate, a decision
maker endowed with a prior q ∈ P(Θ). Each experiment µ induces then a distribution
over posteriors πµ. As shown by the next result, the cost of an experiment C(µ) can be
reformulated in terms of the distribution πµ.

Proposition 2. Let C admit the representation (3) and fix a prior q ∈ P(Θ) with full
support. For every experiment µ inducing a distribution over posterior πµ,

C(µ) =
∫
P(Θ)

F (p)− F (q) dπµ(p) where F (p) =
∑
i,j∈Θ

βij
pi
qi

log pi
pj
. (6)

In this representation the cost of the experiment µ is expressed as the expected change
of the function F from the prior q to the realized posterior p. Each coefficient βij is
normalized by the prior probability of the state qi.
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Representations of the form (6) have been studied in the literature under the name of
“posterior separable” (Caplin, Dean, and Leahy, 2018, Definition 5). For example, Sims’
mutual information cost has the same functional form, but where F (p) is replaced by the
Shannon entropy H(p) = −

∑
i pi log pi. An important implication of Theorem 2 is that

general techniques for posterior separable costs functions, as developed by Caplin and
Dean (2013), can be applied to the LLR cost function.

4 One-Dimensional Information Acquisition Problems

Up to now we have been intentionally silent on how to specify the coefficients (βij). Each
parameter βij captures how costly it is to distinguish between particular states, and thus
will necesarrily be context dependent.

A commonly encountered context is that of learning about a one-dimensional charac-
teristic, so that each state i is a real number.14 In macroeconomic applications, the state
may represent the future level of interest rates. In perceptual experiments in neuroscience
and economics, the state can correspond to the number of red/blue dots on a screen (see
§5.1 below). More generally, i might represent a physical quantity to be measured.

In this section we propose a natural choice of parameters (βij) for one-dimensional
information acquisition problems. Given a problem where each state i ∈ Θ ⊂ R is a real
number, we propose to set each coefficient βij to be equal to κ

(i−j)2 for some constant κ ≥ 0.
So, each βij is inversely proportional to the squared distance between the corresponding
states i and j. Therefore, under this specification, two states that are closer to each other
are harder to distinguish.

The main result of this section shows that this choice of parameters captures two main
hypotheses: (a) the difficulty of producing a signal that allows to distinguish between
state i and j is a function only of the distance |i− j| between the two states, and (b) the
cost of a noisy measurement of the state with standard normal error is the same across
information acquisition problems. Both assumptions express the idea that the cost of
making a measurement depends only on its precision, and not on the other details of the
model, such as the set of states Θ. For example, the cost of measuring a person’s height
should depend only on the precision of the measurement instrument, but not on what
modeling assumptions are made about the set of possible heights.

We denote by T the collection of finite subsets of R with at least two elements. Each
set Θ ∈ T represents the set of states of nature in a different, one-dimensional, information
acquisition problem. To simplify the language, we refer to each Θ as a problem. For each
Θ ∈ T we are given an LLR cost function CΘ with coefficients (βΘ

ij ). The next two axioms
formalize the two hypotheses described above by imposing restrictions, across problems,

14We opt, in this section, to deviate from notational convention and use the letters i, j to refer to real
numbers, in order to maintain consistency with the rest of the paper.
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on the cost of information.
The first axiom states that βΘ

ij , the marginal cost of increasing the expected LLR
between two states i, j ∈ Θ, is a function of the distance between the two, and is unaffected
by changing the values of the other states.

Axiom a. For all Θ,Ξ ∈ T such that |Θ| = |Ξ|, and for all i, j ∈ Θ and k, l ∈ Ξ,

if |i− j| = |k − l| then βΘ
ij = βΞ

kl.

For each i ∈ R we denote by ζi a normal probability measure on the real line with
mean i and variance 1. Given a problem Θ, we denote by ζΘ the experiment (R, (ζi)i∈Θ).
Hence, ζΘ is the canonical experiment consisting of a noisy measurement of the state plus
standard normal error.15 The next axiom states that the cost of such a measurement does
not depend on the particular values that the state can take.

Axiom b. For all Θ,Ξ ∈ T , CΘ(ζΘ) = CΞ(ζΞ).

Axioms a and b lead to a simple parametrization for the coefficients of the LLR cost in
one-dimensional information acquisition problems:

Proposition 3. The collection CΘ,Θ ∈ T , satisfies Axioms a and b if and only if there
exists a constant κ > 0 such that for all i, j ∈ Θ and Θ ∈ T ,

βΘ
ij = κ

n(n− 1)
1

(i− j)2

where n is the cardinality of Θ.

Proposition 3 implies that for any Θ ∈ T , a normal signal with mean i and variance σ2

has cost κσ−2 proportional to its precision; this can be seen by applying (4), the expression
for the cost of normal signals. Thus, the functional form given in Proposition 3 generalizes
a specification often found in the literature, where the cost of a normal signal is assumed
to be proportional to its precision (Wilson, 1975; Van Nieuwerburgh and Veldkamp, 2010)
to arbitrary (non-normal) information structures.

5 Examples

5.1 Information Acquisition in Decision Problems

We now study the log-likelihood ratio cost in the context of decision problems. We consider
a decision maker choosing an action a from a finite set A of actions. The payoff from a

15Expressed differently, if i ∈ Θ is the true state, then the outcome of the experiment ζΘ is distributed
as s = i+ ε, where ε is normally distributed with mean zero and variance 1 independent of the state.
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depends on the state of nature i ∈ Θ and is given by u(a, i). The agent is endowed with a
prior q over the set of states.

Before making her choice, the agent can acquire a signal µ at cost C(µ). As is well
known, if the cost function C is monotone with respect to the Blackwell order, then it is
without loss of generality to restrict attention to signals where the set of realizations S
equals the set of actions A, and to assume that upon observing a signal s = a the decision
maker will choose the action recommended by the signal. We can then therefore identify
an experiment µ with a vector of probability measures (µi) in P(A).

An optimal signal µ? = (µ?i ) solves

µ? ∈ argmax
µ

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)
)
− C(µ)

 . (7)

Hence, action a is chosen in state i with probability µ?i (a). The maximization problem (7)
is strictly concave, provided all coefficients (βij) are strictly positive (Proposition 7 in the
Appendix). Thus, it admits a unique solution.

First Order Conditions. Denote the support of µ of by supp(µ): this is the set of
actions which are played with strictly positive probability under µ.16 The next result
characterizes the optimal choice probabilities under the LLR cost:

Proposition 4. Assume that βij 6= 0 for all i 6= j. Let µ = (µi)i∈Θ be a state-dependent
distribution over actions which solves the optimization problem (7). Then, for every state
i ∈ Θ and every pair of actions a1, a2 ∈ supp(µ) it holds that

qi [u(i, a1)− u(i, a2)] = c̃(i, a1)− c̃(i, a2) (8)

where
c̃(i, a) = −

∑
j 6=i

[
βij log µj(a)

µi(a) + βji
µj(a)
µi(a)

]
.

Condition (8) can be interpreted as follows. The expression qi [u(i, a1)− u(i, a2)]
measures the expected benefit of choosing action a1 instead of a2 in state i. Up to an
additive constant, c̃(i, a) is the informational cost of choosing action a marginally more often
in state i. This marginal cost is increasing in the probability µi(a), due to the convexity of
C. Hence the right-hand-side of (8) measures the change in information acquisition cost
necessary to choose action a1 marginally more often and action a2 marginally less often.

An Application to Perception Tasks. Consider a perception task (see, e.g. Dean and
Neligh, 2017) where subjects observe 100 dots of different colors on a screen. Each dot is

16supp(µ) = {a ∈ A : µi(a) > 0 for some i ∈ Θ} .
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either red or blue. A parameter r ∈ {1, . . . , 50} is fixed. Subjects are told the value of r and
that the number of blue dots i is drawn uniformly in Θ = {50− r, . . . , 49, 51, . . . , 50 + r}.
The state where the number of blue and red dots is equal to 50 is ruled out to simplify the
exposition.17

Subjects are asked to guess whether there are more blue or red dots, and get rewarded
if they guess correctly. So the set of actions is A = {R,B} and

u(a, i) =


1 if a = B and i > 50
1 if a = R and i < 50
0 otherwise.

For a tuple of distributions over actions (µi)i∈Θ, in state i an agent guesses correctly with
probability

m(i) =

µi(B) if i > 50
µi(R) if i < 50.

Intuitively, it should be harder to guess whether there are more blue or red dots when
the difference in the number of dots is small, i.e. when i is close to 50. Indeed, it is a
well established fact in the psychology18, neuroscience19, economics20 literatures that so
called psychometric functions—the relation between the strength of a stimulus offered to
a subject and the probability that the subject identifies this stimulus—are sigmoidal (or
S-shaped), so that the probability that a subject chooses B transitions smoothly from
values close to 0 to values close to 1 when the number of blue dots increases.

As Dean and Neligh (2017) note, under mutual information cost (and a uniform prior, as
in the experimental setup described above), the optimal signal µ∗ must induce a probability
of guessing correctly that is state-independent.21 As shown by Matějka and McKay (2015),
Caplin and Dean (2013), and Steiner, Stewart, and Matějka (2017), conditional on a
state i, the likelihood ratio µ∗i (B)/µ∗i (R) between the two actions must equal the ratio
eu(i,B)/eu(i,R). Hence, the probability that a subject chooses correctly must be the same
for any two states that lead to the same utility function over actions, such as the state in
which there are 51 blue dots and the state in which there are 99 blue dots.

This unrealistic prediction is driven by the fact that under mutual information the states
17This means that the prior is qi = 1

2r , for i ∈ Θ.
18See, e.g., Chapter 7 in Green and Swets (1966) or Chapter 4 in Gescheider (1997).
19E.g., Krajbich et al. (2010); Tavares et al. (2017).
20See, e.g., Mosteller and Nogee (1951).
21It is well known that under mutual information costs the physical features of the states (such as distance

or similarity) do not affect the cost of information acquisition. For instance, Mackowiak, Matějka, and
Wiederholt (2018) write “[..] entropy does not depend on a metric, i.e., the distance between states does
not matter. With entropy, it is as difficult to distinguish the temperature of 10oC from 20oC, as 1oC from
2oC. In each case the agent needs to ask one binary question, resolve the uncertainty of one bit.”
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Figure 1: Predicted probability of guessing that there are more red dots as a function of
the state for LLR cost with βij = 1/(i− j)2 (in blue) and mutual information cost (in red).

are devoid of meaning and thus equally hard to distinguish. Indeed, the same conclusion
holds for any cost function C in (7) that, like mutual information, is invariant with respect
to a permutation of the states and is convex as a function of the state-dependent action
distributions (µi).

Our model accounts for the difficulty of distinguishing different states through the
coefficients β. As this is a one-dimensional information acquisition problem, we apply the
specification βij = κ/(i− j)2 of the LLR cost described in §4. As can be seen in Figure 1,
the LLR cost predicts a sigmoidal relation between the state and the choice probabilities.

Continuous Choice. The main insight emerging from the above example is that under
the LLR cost closer states are harder to distinguish, in the sense that acquiring information
that finely discriminates between them is more costly. This, in turn, implies that the choice
probabilities cannot vary abruptly across nearby states.

We now extend this intuition to more general decision problems. We assume that the
state space Θ is endowed with a distance d : Θ×Θ→ R. In the previous example, d is
simply the difference |i− j| in the number of blue dots.

We say that nearby states are hard to distinguish if for all i, j ∈ Θ

min{βij , βji} ≥
1

d(i, j)2 . (9)

So, the cost of acquiring information that discriminates between states i and j is high for
states that are close to each other.22 Our next result shows that when nearby states are
hard to distinguish, the optimal choice probabilities are Lipschitz continuous in the state:
the agent will choose actions with similar probabilities in similar states. For this result, we

22As we show in the proof of the next proposition, the results of this section extend with minor variations
to the case where the exponent in (9) is taken to be some γ > 0 rather than 2.
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denote by ‖u‖ = maxa,i |u(a, i)| the norm of the decision maker’s utility function.

Proposition 5 (Continuity of Choice). Suppose that nearby states are hard to distinguish.
Then the optimal choice probabilities µ? solving (7) are uniformly Lipschitz continuous with
constant

√
‖u‖, i.e. satisfy∣∣∣µ?i (a)− µ?j (a)

∣∣∣ ≤ √‖u‖ d(i, j) for all a ∈ A and i, j ∈ Θ. (10)

Lipschitz continuity is a standard notion of continuity in discrete settings, such as
the one of this paper, where the relevant variable i takes finitely many values. A crucial
feature of the bound (10) is that the Lipschitz constant depends only on the norm ‖u‖ of
the utility function, independently of the exact form of the coefficients (βij), and of the
number of states.23

This result highlights a contrast between the predictions of mutual information cost
and LLR cost. Mutual information predicts behavior that displays counter-intuitive
discontinuities with respect to the state. Under the log-likelihood ratio cost, when nearby
states are harder to distinguish, the change in choice probabilities across states can be
bounded by the distance between them.

This difference has stark implications in coordination games. Morris and Yang (2016)
study information acquisition in coordination problems. In their model, continuity of the
choice probabilities with respect to the state leads to a unique equilibrium; if continuity fails,
then there are multiple equilibria. This suggests that mutual information and LLR costs
lead to very different predictions in coordination games and their economic applications
(bank-runs, currency attacks, models of regime change, etc).

5.2 Acquiring Precise Information

In this section we use a simple example to illustrate how our additivity axiom captures
constant marginal costs, a principle that is natural in settings of physical production of
information, and contrast it with the sub-additivity—i.e., decreasing marginal costs—of
mutual information.

Consider, for instance, the classical problem of learning the bias of a coin by flipping it
multiple times. In this context, mutual information and LLR cost behave quite differently.
Suppose the coin either yields heads 80% of the time or tails 80% of the time and either
bias is equally likely. We are interested in comparing the cost of observing a single coin
flip versus a long sequence of coin flips.

23Proposition 5 suggests that the analysis of choices probabilities might be extended to the case where
the set of states Θ is an interval in R, or, more generally, a metric space. Given a (possibly infinite) state
space Θ endowed with a metric, and a sequence of finite discretizations (Θn) converging to Θ, the bound
(10) implies that if the corresponding sequence of choice probabilities converges, then it must converge to a
collection of choice probabilities that are continuous, and moreover Lipschitz.
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Under LLR cost, the additivity axiom implies that the cost of observing k coin flips is
linear in k. Hence the cost of observing a sequence of k flips goes to infinity with k. Under
mutual information cost with constant λ > 0 the cost of a single coin flip equals[

{0.8 log (0.8) + 0.2 log (0.2)} − log 1
2

]
λ ≈ 0.19λ .

Seeing an infinite sequence of coins reveals the state and thus leads to a posterior of 0 or 1.
The cost of seeing an infinite sequence of coin flips and thus learning the state is given by

lim
p→1

[
{p log p+ (1− p) log (1− p)} − log 1

2

]
λ = log(2)λ ≈ 0.69λ .

Thus, the cost of observing infinitely many coin flips is only approximately 3.6 times
the cost of observing a single coin flip. The low—and arguably in many applications
unrealistic—cost of acquiring perfect information is caused by the sub-additivity of mutual
information as a cost function, which contrasts with the additivity of the log-likelihood
ratio cost we propose (see Figure 2).
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Figure 2: The LLR cost (in red) and the mutual information cost (in blue) of observing
multiple independent coin flips/binary signals.

These simple calculations suggest that using Sims’ mutual information cost as a model
of information production rather than information processing (as originally intended by
Sims) may lead to counterintuitive predictions.

This difference in the marginal cost of information is not merely a mathematical
difference, but could lead to substantially different predictions in economic applications.
For example, it might lead to different predictions about whether investors tend to learn and
ultimately invest in domestic or foreign stocks, as shown in Section 2.5 of Van Nieuwerburgh
and Veldkamp (2010), for the case where signals are exogenously restricted to be normal.
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5.3 Hypothesis Testing

In this section we apply the log-likelihood ratio cost to a standard hypothesis testing
problem. We consider a decision maker performing an experiment with the goal of learning
about an hypothesis, i.e. whether the state is in a subset24

H ⊂ Θ .

We consider an experiment that reveals with some probability whether the hypothesis is
true or not, and study how its cost depends on the structure of H. For a given hypothesis
H and a precision α consider the binary signal µ, with signal realizations S = {H,Hc}

µi(s) =

α for i ∈ s
1− α for i /∈ s

(11)

Conditional on each state i, this experiment yields a correct signal with probability α.
Under LLR cost, the cost of such a signal is given by ∑

i∈H,j∈Hc

βij + βji

(α log α

1− α + (1− α) log 1− α
α

)
(12)

The first term captures the difficulty of discerning between H and Hc. The harder the
states in H and Hc are to distinguish, the larger the coefficients βij and βji will be, and
the more costly it will thus be to learn whether the hypothesis H is true. The second term
is monotone in the signal precision α and is independent of the hypothesis.

Learning about the GDP. For concreteness, consider the case where the state is
represented by a natural number i in the interval Θ = {20000, . . . , 80000}, representing, for
instance, the current US GDP per capita. Consider the following two different hypotheses:25

(H1) The GDP is above 50000.

(H2) The GDP is an even number.

Intuitively, producing enough information to answer with high accuracy whether (H1) is
true should be less expensive than producing enough information to answer whether (H2)
is true, a practically impossible task. Our model captures this intuition. As the state is
one-dimensional we set βij = κ/(i− j)2, following §4. Then,∑

i∈H1 ,j∈H1 c
βij + βji ≈ 22κ

∑
i∈H2 ,j∈H2 c

βij + βji ≈ 148033κ.

24We denote the complement of H by Hc = Θ \H.
25Formally, H1 = {i ∈ Θ: i > 50000} and H2 = {i ∈ Θ: i even}
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That is, learning whether the GDP is even or odd is by an order of magnitude more costly
than learning whether the GDP is above or below 50000.

It is useful to compare these observations with the results that would be obtained under
mutual information and a uniform prior on Θ. In such a model, the cost of a symmetric
binary signal with precision α is determined solely by the cardinality of H. In particular,
under mutual information learning whether the GDP is above or below 50000 is equally
costly as learning whether it is even or odd. This follows from the fact that the mutual
information cost is invariant with respect to a relabelling of the states.

This example demonstrates that the LLR cost function can capture different phenomena
from mutual information cost. Rational inattention theory models the cost of paying
attention to information that is freely available. In the above example, it is equally costly
to read the last digit and the first digit of the per capita GDP in a newspaper. In contrast
to rational inattention, we aim at modeling the cost of generating information, and capture
the intuitive fact that measuring the most significant digit of the GDP is much easier than
measuring the least significant one.

6 Verification and Falsification

It is well understood that verification and falsification are fundamentally different forms of
empirical research. This can be seen most clearly through Karl Popper’s famous example
of the statement “all swans are white.” Regardless of how many white swans are observed,
no amount of evidence can imply that the next one will be white. However, observing a
single black swan is enough to prove the statement false.

Popper’s argument highlights a crucial asymmetry between verification and falsification.
A given experiment, such as the observation of swans, can make it feasible to reject an
hypothesis, yet have no power to prove that the same hypothesis is true.

This principle extends from science to everyday life. In a legal case, the type of evidence
necessary to prove that a person is guilty can be quite different from the the type of evidence
necessary to demonstrate that a person is innocent. In a similar way, corroborating the
claim “Ann has a sibling” might require empirical evidence (such as the outcome of a
DNA test) that is distinct from the sort of evidence necessary to prove that she has no
siblings. These examples lead to the question of how to capture Popper’s distinction
between verification and falsification in a formal model of information acquisition.

In this section we show that the asymmetry between verification and falsification can
be captured by the LLR cost. As an example, we consider a state space Θ = {a, e} that
consists of two hypotheses. For simplicity, let a corresponds to the hypothesis “all swans
are white” and e to the event “there exists a nonwhite swan.” Imagine a decision maker
who attaches equal probability to the each state, and consider the experiments described
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s1 s2

a 1− ε2 ε2

e 1− ε ε

(a) Experiment I

s1 s2

a 1− ε ε

e 1− ε2 ε2

(b) Experiment II

Table 1: The set of states is Θ = {a, e}. In both experiments S = {s, t}. Under experiment
I, observing the signal realization t rejects the hypothesis that the state is a (up to a small
probability of error ε2). Under experiment II, observing t verifies the same hypothesis.

in Table 1:26

• In experiment I, regardless of the state, an uninformative signal realization s1 occurs
with probability greater than 1 − ε, where ε is positive and small. If a nonwhite
swan exists, then one is observed with probability ε. Formally, this corresponds to
observing the signal realization s2. If all swans are white, then signal s1 is observed,
up to an infinitesimal probability of error ε2. Hence, conditional on observing s2, the
decision maker’s belief in state a approaches zero, while conditional on observing s1

the decision maker’s belief remains close to the prior. So, the experiment can reject
the hypothesis that the state is a, but cannot verify it.27

• In experiment II the roles of the two states are reversed: if all swans are white,
then this fact is revealed to the decision maker with probability ε. If there is a
non-white swan, then the uninformative signal s1 is observed (up to an infinitesimal
probability of error ε2). Conditional on observing s2, the decision maker’s belief in
state a approaches one, and conditional on observing s1 the decision maker’s belief is
essentially unchanged. Thus, the experiment can verify the hypothesis that the state
is a, but cannot reject it.

As shown by the example, permuting the state-dependent distributions of an experiment
may affect its power to verify or falsify an hypothesis. However, permuting the role of the
states may, in reality, correspond to a completely different type of empirical investigation.
For instance, experiment I can be easily implemented in practice: as an extreme example,

26Popper (1959) intended verification and falsifications as deterministic procedures, which exclude even
small probabilities of error. In our informal discussion we do not distinguish between events that are
deemed extremely unlikely (such as thinking of having observed a black swan in world where all swans
are white) and events that have zero probability. We refer the reader to (Popper, 1959, chapter 8) and
Olszewski and Sandroni (2011) for a discussion of falsifiability and small probability events.

27The error term ε2 can be interpreted as small noise in the observation. Its role is simply to ensure that
log-likelihood ratios are finite for each observation.
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the decision maker may look up in the sky. There is a small chance a nonwhite swan will
be observed; if not, the decision maker’s belief will not change by much. It is not obvious
exactly what tests or samples would be necessary to implement experiment II, let along to
conclude that the two experiments should be equally costly to perform.

We conclude that in order for a model of information acquisition to capture the difference
between verification and falsification, the cost of an experiment should not necessarily be
invariant with respect to a permutation of the states. In our model, this can be captured
by assuming that the coefficients (βij) are non-symmetric, i.e. that βij and βji are are
not necessarily equal. For instance, the cost of experiments I and II in Table 1 will differ
whenever the coefficients of the LLR cost satisfy βae 6= βea. For example, if we set βae = κ

and βea = 0, and if we consider small ε, then the cost of experiment I is κε, to first order
in ε. In comparison, the cost of experiment II is—again to first order—a factor of log(1/ε)
higher. Hence the ratio between the costs of these experiments is arbitrarily high for small
ε.

We note that a difference between the costs of these experiments is impossible under
mutual information and a uniform prior, since in that model the cost of an experiment is
invariant with respect to a permutation of the states.

7 Related Literature

The question of how to quantify the amount of information provided by an experiment is
the subject of a long-standing and interdisciplinary literature. Kullback and Leibler (1951)
introduced the notion of Kullback-Leibler divergence as a measure of distance between
statistical populations. Kelly (1956), Lindley (1956), Marschak (1959) and Arrow (1971)
apply Shannon’s entropy to the problem of ordering information structures.

More recently, Hansen and Sargent (2001) and Strzalecki (2011) adopted KL-divergence
as a tool to model robust decision criteria under uncertainty. Cabrales, Gossner, and
Serrano (2013) derive Shannon entropy as an index of informativeness for experiments in
the context of portfolio choice problems (see also Cabrales, Gossner, and Serrano, 2017).
Frankel and Kamenica (2018) put forward an axiomatic framework for quantifying the
value and the amount of information in an experiment.

Rational Inattention. As discussed in the introduction, our work is also motivated by
the recent literature on rational inattention and models of costly information acquisition
based on Shannon’s entropy. A complete survey of this area is beyond the scope of this
paper; we instead refer the interested reader to Caplin (2016) and Mackowiak, Matějka,
and Wiederholt (2018) for perspectives on this growing literature.
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Decision Theory. Our axiomatic approach differs both in terms of motivation and
techniques from other results in the literature. Caplin and Dean (2015) study the revealed
preference implications of rational inattention models, taking as a primitive state-dependent
random choice data. Within the same framework, Caplin, Dean, and Leahy (2018)
characterize mutual information cost, Chambers, Liu, and Rehbeck (2017) study non-
separable models of costly information acquisition, and Denti (2018) provides a revealed
preference of posterior separability. Decision theoretic foundations for models of information
acquisition have been put forward by de Oliveira (2014), De Oliveira, Denti, Mihm, and
Ozbek (2017), and Ellis (2018). Mensch (2018) provides an axiomatic characterization of
posterior-separable cost functions.

The Wald Model of Sequential Sampling. The notion of constant marginal costs
over independent experiments goes back to Wald’s (1945) classic sequential sampling model;
our axioms extend some of Wald’s ideas to a model of flexible information acquisition. In
its most general form, Wald’s model considers a decision maker who acquires information
by collecting multiple independent copies of a fixed experiment, and incurs a cost equal to
number of repetitions. In this model, every stopping strategy corresponds to an experiment,
and so every such model defines a cost over some family of experiments. It is easy to see
that such a cost satisfies our axioms.

Morris and Strack (2018) consider a continuous-time version where the decision maker
observes a one-dimensional diffusion process whose drift depends on the state, and incurs
a cost proportional to the expected time spent observing. This cost is again easily seen
to satisfy our axioms, and indeed, for the experiments that can be generated using this
sampling process, they show that the expected cost of a given distribution over posteriors
is of the form obtained in Proposition 3. Outside of the binary state case, only a restricted
family of distributions over posteriors can be implemented by means of a sampling strategy.
This has to be expected, since in Wald’s model the decision maker has in each period a
single, exogenously fixed, signal at their disposal.

One could imagine modifying the exercise in their paper by considering families of
processes other than one-dimensional diffusion processes; for example, one could take
Poisson processes with rates depending on the state. One of the contributions of our
paper is to abstract away from such parametric assumptions, and show that a few simple
axioms which capture the most basic intuition behind Wald’s model suffice to pin down a
specific family of cost functions over experiments. Nevertheless, one may view the result in
Morris and Strack (2018) as complementary evidence that the cost function obtained in
Proposition 3 is a natural choice for one-dimensional information acquisition problems.

Dynamic Information Acquisition Models. Hébert and Woodford (2018), Zhong
(2017, 2019), and Morris and Strack (2018) relate cost functions over experiments and
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sequential models of costly information acquisition. In these papers, the cost C(µ) is the
minimum expected cost of generating the experiment µ by means of a dynamic sequential
sampling strategy.

Hébert and Woodford (2018) analyze a continuous-time model where the decision
maker’s beliefs follow a diffusion process and the decision maker can acquire information
by varying its volatility. They propose and characterize a family of “neighborhood-based”
cost functions that generalize mutual information, and allow for the cost of learning about
states to be affected by their proximity. In a perception task, these cost are flexible enough
to accommodate optimal response probabilities that are S-shaped, similarly to our analysis
in §5.1. The LLR cost does not generalize mutual information, but has a structure similar
to a neighborhood-based cost where the neighboring structure consists of all pairs of states.

Zhong (2017) provides general conditions for a cost function over experiments to be
induced by some dynamic model of information acquisition. Zhong (2019) studies a dynamic
model of non-parametric information acquisition, where a decision maker can choose any
dynamic signal process as an information source, and pays a flow cost that is a function of
the informativeness of the process. A key assumption is discounting of delayed payoffs.
The paper shows that the optimal strategy corresponds to a Poisson signal.

Information Theory. This paper is also related to the axiomatic literature in informa-
tion theory characterizing different notions of entropy and information measures. Ebanks,
Sahoo, and Sander (1998) and Csiszár (2008) survey and summarize the literature in the
field. In the special case where |Θ| = 2 and the coefficients (βij) are set to 1, the function
(1) is also known as J-divergence. Kannappan and Rathie (1988) provide an axiomatization
of J-divergence, under axioms very different from the ones in this paper. A more general
representation appears in Zanardo (2017).

Ebanks, Sahoo, and Sander (1998) characterize functions over tuples of measures with
finite support. They show that a condition equivalent to our additivity axiom leads to a
functional form similar to (1). Their analysis is however quite different from ours: their
starting point is an assumption which, in the notation of this paper, states the existence of
a map F : RΘ → R such that the cost of an experiment (S, (µi)) with finite support takes
the form C(µ) =

∑
s∈S F ((µi(s))i∈Θ). This assumption of additive separability does not

seem to have an obvious economic interpretation, nor to be related to our motivation of
capturing constant marginal costs in information production.

Probability Theory. The results in Mattner (1999, 2004) have, perhaps, the closest
connection with this paper. Mattner studies functionals over the space probability measures
over R that are additive with respect to convolution. As we explain in the next section,
additivity with respect to convolution is a property that is closely related to Axiom 2. We
draw inspiration from Mattner (1999) in applying the study of cumulants to the proof of
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Theorem 1. However, the difference in domain makes the techniques in Mattner (1999,
2004) not applicable to this paper.

8 Proof Sketch

In this section we informally describe some of the ideas involved in the proof of Theorem 1.
We consider the binary case where Θ = {0, 1} and so there is only one relevant log-likelihood
ratio ` = `10. The proof of the general case is more involved, but conceptually similar.
Step 1. Let C satisfy Axioms 1-4. Conditional on each state i, an experiment µ induces a
distribution σi for `. Two experiments that induce the same pair of distributions (σ0, σ1)
are equivalent in the Blackwell order. Thus, by Axiom 1, C can be identified with a map
c(σ0, σ1) defined over all pairs of distributions induced by some experiment µ.
Step 2. Axioms 2 and 3 translate into the following properties of c. The product µ⊗ ν
of two experiments induces, conditional on i, a distribution for ` that is the convolution
of the distributions induced by the two experiments. Axiom 2 is equivalent to c being
additive with respect to convolution, i.e.

c(σ0 ∗ τ0, σ1 ∗ τ1) = c(σ0, σ1) + c(τ0, τ1)

Axiom 3 is equivalent to c satisfying for all α ∈ [0, 1],

c(ασ0 + (1− α)δ0, ασ1 + (1− α)δ0) = αc(σ0, σ1)

where δ0 is the degenerate measure at 0. Axiom 4 translates into continuity of c with
respect to total variation and the first N moments of σ0 and σ1.
Step 3. As is well known, many properties of a probability distribution can be analyzed by
studying its moments. We apply this idea to the study of experiments, and show that under
our axioms the cost c(σ0, σ1) is a function of the first N moments of the two measures, for
some (arbitrarily large) N . Given an experiment µ, we consider the experiment

µn = 1
n
· (µ⊗ · · · ⊗ µ)

in which with probability 1/n no information is produced, and with the remaining proba-
bility the experiment µ is carried out n times. By Axioms 2 and 3, the cost of µn is equal
to the cost of µ.28 We show that these properties, together with the continuity axiom,
imply that the cost of an experiment is a function G of the moments of (σ0, σ1):

c(σ0, σ1) = G [mσ0(1), . . . ,mσ0(N),mσ1(1), . . . ,mσ1(N)] (13)
28For n large, the experiment µn has a very simple structure: With high probability it is uninformative,

and with probability 1/n is highly revealing about the states.
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where mσi(n) is the n-th moment of σi. Each mσi(n) is affine in σi, hence Step 2 implies
that G is affine with respect to mixtures with the zero vector.
Step 4. It will be useful to analyze a distribution not only through its moments but
also through its cumulants. The n-th cumulant κσ(n) of a probability measure σ is the
n-th derivative at 0 of the logarithm of its characteristic function. By a combinatorial
characterization due to Leonov and Shiryaev (1959), κσ(n) is a polynomial function of
the first n moments mσ(1), . . . ,mσ(n). For example, the first cumulant is the expectation
κσ(1) = mσ(1), the second is the variance, and the third is κσ(3) = mσ(3)−2mσ(2)mσ(1)+
2mσ(1)3. Step 3 and the result by Leonov and Shiryaev (1959) imply that the cost of an
experiment is a function H of the cumulants of (σ0, σ1):

c(σ0, σ1) = H [κσ0(1), . . . , κσ0(N), κσ1(1), . . . , κσ1(N)] (14)

where κσi(n) is the n-th cumulant of σi.
Step 5. Cumulants satisfy a crucial property: the cumulant of a sum of two independent
random variables is the sum of their cumulants. So, they are additive with respect to
convolution. By Step 2, this implies that H is additive. We show that H is in fact a
linear funtion. This step is reminiscent of the classic Cauchy equation problem. That
is, understanding under what conditions a function φ : R → R that satisfies φ(x + y) =
φ(x) + φ(y) must be linear. In Theorem 4 we show, very generally, that any additive
function from a subset K ⊂ Rd to R+ is linear, provided K is closed under addition and has
a non-empty interior. We then proceed to show that both of these conditions are satisfied
if K is taken to be the domain of H, and thus deduce that H is linear.
Step 6. In the last step we study the implications of (13) and (14). We apply the
characterization by Leonov and Shiryaev (1959) and show that the affinity with respect
to the origin of the map G, and the linearity of H, imply that H must be a function
solely of the first cumulants κσ0(1) and κσ1(1). That is, C must be a weighted sum of the
expectations of the log-likelihood ratio ` conditional on each state.

9 Conclusions

In this paper we put forward an axiomatic approach to modeling the cost of information
acquisition, characterizing a family of cost functions that capture a notion of constant
marginal returns in the production of information. We study the predictions implied
by our assumptions in various settings, and compare them to the predictions of mutual
information costs.

We propose a number of possible avenues for future research, all of which would
require the solution of some non-trivial technical challenges: The first is an extension
of our framework beyond the setting of a finite set of states to a continuum of states.
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In particular, this is natural in the context of one-dimensional problems we study in §4.
Second, one could consider a generalization of the study of one-dimensional problems in §4
to multidimensional problems in which Θ is a subset of Rd. This would constitute a rather
general, widely applicable setting. Third, there are a number of important additional
settings which have been modeled using mutual information cost, where it may be of
interest to understand the sensitivity of the conclusions to this assumption, and how it may
change if we assume constant marginal costs (see, e.g., Van Nieuwerburgh and Veldkamp,
2010).

Finally, if one accepts our axioms (and hence LLR costs) as capturing constant marginal
costs, a natural definition for convex cost is a cost that given by the supremum over a
family of LLR costs. Likewise, concave costs would be infima over LLR costs. It may
be interesting to understand if such costs are characterized by simple axioms (e.g., by
substituting the appropriate inequalities in our axioms) and whether they admit a simple
functional form.
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Appendix A Discussion of the Continuity Axiom

Our continuity axiom may seem technical, and in a sense it is. However, there are some
interesting technical subtleties involved with its choice. Indeed, it seems that a more
natural choice of topology would be the topology of weak convergence of likelihood ratios.
Under that topology, two experiments would be close if they had close expected utilities
for decision problems with continuous bounded utilities. The disadvantage of this topology
is that no cost that satisfies the rest of the axioms is continuous in this topology. To see
this, consider the sequence of experiments in which a coin (whose bias depends on the
state) is tossed n times with probability 1/n, and otherwise is not tossed at all. Under
our axioms these experiments all have the same cost—the cost of tossing the coin once.
However, in the weak topology these experiments converge to the trivial experiment that
yields no information and therefore has zero cost.

In fact, even the stronger total variation topology suffers from the same problem, which
is demonstrated using the same sequence of experiments. Therefore, one must consider a
finer topology (which makes for a weaker continuity assumption), which we do by also
requiring the first N moments to converge. Note that increasing N makes for a finer
topology and therefore a weaker continuity assumption, and that our results hold for all
N > 0. An even stronger topology (which requires the convergence of all moments) is used
by Mattner (1999, 2004) to find additive linear functionals on the space of all random
variables on R.

Nevertheless, the continuity axiom is technical. We state here without proof that it is
not required when there are only two states, and we conjecture that it is not required in
general.

Appendix B Preliminaries

For the rest of this section, in order to simplify the notation, we let Θ = {0, 1, . . . , n}, so
that |Θ| = n+ 1.

B.1 Properties of the Kullback-Leibler Divergence

In this section we summarize some well known properties of the Kullback-Leibler divergence,
and derive from them straightforward properties of the LLR cost.

Given a measurable space (X,Σ) we denote by P(X,Σ) the space of probability
measures on (X,Σ). If X = Rd for some d ∈ N then Σ is implicitly assumed to be the
corresponding Borel σ-algebra and we simply write P(Rd).

For the next result, given two measurable spaces (Ω,Σ) and (Ω′,Σ′), a measurable
map F : Ω → Ω′, and a measure η ∈ P(Ω,Σ), we can define the push-forward measure
F∗η ∈ P(Ω′,Σ′) by [F∗η](A) = η(F−1(A)) for all A ∈ Σ′.
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Proposition 6. Let ν1, ν2, η1, η2 be measures in P(Ω,Σ), and let µ1, µ2 be probability
measures in P(Ω′,Σ′). Assume that DKL(ν1‖ν2), DKL(η1‖η2) and DKL(µ1‖µ2) are all
finite. Let F : Ω→ Ω′ be measurable. Then:

1. DKL(ν1‖ν2) ≥ 0 with equality if and only if ν1 = ν2.

2. DKL(ν1 × µ1‖ν2 × µ2) = DKL(ν1‖ν2) +DKL(µ1‖µ2).

3. For all α ∈ (0, 1),

DKL(αν1 + (1− α)η1‖αν2 + (1− α)η2) ≤ αDKL(ν1‖ν2) + (1− α)DKL(η1‖η2).

and this equality is strict unless ν1 = η1 and ν2 = η2.

4. DKL(F∗ν1‖F∗µ1) ≤ DKL(ν1‖µ1).

It is well known that KL-divergence satisfies the first three properties in the statement
of the proposition. We refer the reader to (Austin, 2006, Proposition 2.4) for a proof of
the last property.

Lemma 1. Two experiments µ = (S, (µi)) and ν = (T, (νi)) that satisfy µ̄i = ν̄i for every
i ∈ Θ are equivalent in the Blackwell order.

Proof. The result is standard, but we include a proof for completeness. Suppose µ̄i = ν̄i for
every i ∈ Θ. Given the experiment µ and a uniform prior on Θ, the posterior probability
of state i conditional on s is given almost surely by

pi(s) = dµi
d
∑
j∈Θ µj

(s) = 1∑
j∈Θ

dµj
dµi (s)

= 1∑
j∈Θ e`ji

(15)

and the corresponding expression applies to experiment ν. By assumption, conditional on
each state the two experiments induce the same distribution of log-likelihood ratios (`ij).
Hence, by (15) they must induce the same distribution over posteriors, hence be equivalent
in the Blackwell order.

A consequence of Proposition 6 is that the LLR cost is monotone with respect to the
Blackwell order.

Proof of Proposition 1. Let C be a LLR cost. It is immediate that if µ̄i = ν̄i for every i
then C(µ) = C(ν). We can assume without loss of generality that S = T = P(Θ), endowed
with the Borel σ-algebra. This follows from the fact that we can define a new experiment
ρ = (P(Θ), (ρi)) such that µ̄i = ρ̄i for every i (see, e.g. Le Cam (1996)), and apply the
same result to ν . By Blackwell’s Theorem there exists a probability space (R, λ) and
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a “garbling” map G : S × R → T such that for each i ∈ Θ it holds that νi = G∗(µi × λ).
Hence, by the first, second and fourth statements in Proposition 6,

DKL(νi‖νj) = DKL(G∗(µi × λ)‖G∗(µj × λ))
≤ DKL(µi × λ‖µj × λ)
= DKL(µi‖µj) +DKL(λ‖λ)
= DKL(µi‖µj).

Therefore, by Theorem 1, we have

C(ν) =
∑
i,j∈Θ

βijDKL(νi‖νj) ≤
∑
i,j∈Θ

βijDKL(µi‖µj) = C (µ) .

We note that a similar argument shows that if all the coefficients βij are positive then
C(µ) > C(ν) whenever µ Blackwell dominates ν but ν does not dominate µ.

An additional direct consequence of Proposition 6 is that the LLR cost is convex:

Proposition 7. Let µ = (S, (µi)) and ν = (S, (νi)) be experiments in E. Given α ∈ (0, 1),
define the experiment η = (S, (νi)) as ηi = ανi + (1− α)µi for each i. Then any LLR cost
C satisfies

C(η) ≤ αC(ν) + (1− α)C(µ).

The follows immediately from the third statement in Proposition 6. We note that if
ν and µ are not Blackwell equivalent, and if all the coefficients βij are positive, then the
inequality above is strict.

We now study the set

D = {(DKL(µi‖µj))i 6=j : µ ∈ E} ⊆ R(n+1)n
+

of all possible pairs of expected log-likelihood ratios induced by some experiment µ. The
next result shows that D contains the strictly positive orthant.

Lemma 2. R(n+1)n
++ ⊆ D

Proof. The set D is convex. To see this, let µ = (S, (µi)) and ν = (T, (νi)) be two
experiments. Without loss of generality, we can suppose that S = T , and S = S1 ∪ S2,
where S1, S2 are disjoint, and µi(S1) = νi(S2) = 1 for every i.

Fix α ∈ (0, 1) and define the new experiment τ = (S, (τi)) where τi = αµi + (1− α)νi
for every i. It can be verified that τi-almost surely, dτi

dτj satisfies dτi
dτj (s) = dµi

dµj (s) if s ∈ S1

and dτi
dτj (s) = dνi

dνj (s) if s ∈ S2. It then follows that

DKL(τi‖τj) = αDKL(µi‖µj) + (1− α)DKL(νi‖νj)
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Hence D is convex. We now show D is a convex cone. First notice that the zero vector
belongs to D, since it corresponds to the totally uninformative experiment. In addition
(see §B.1),

DKL((µ⊗ µ)i‖(µ⊗ µ)j) = DKL(µi × µi‖µj × µj) = 2DKL(µi‖µj)

Hence D is closed under addition. Because D is also convex and contains the zero vector,
it follows that it is a convex cone.

Suppose, by way of contradiction, that the inclusion R(n+1)n
++ ⊆ D does not hold. This

implies we can find a vector z ∈ R(n+1)n
+ that does not belong to the closure of D. Therefore,

there exists a nonzero vector w ∈ R(n+1)n and t ∈ R such that w · z > t ≥ w · y for all
y ∈ D. Because D is a cone, then t ≥ 0 and 0 ≥ w ·y for all y ∈ D. Let iojo be a coordinate
such that wiojo > 0.

Consider the following three cumulative distribution functions on [2,∞):

F1(x) = 1− 2
x

F2(x) = 1− log2 2
log2 x

F3(x) = 1− log 2
log x,

and denote by π1, π2, π3 the corresponding measures. A simple calculation shows that
DKL(π3‖π1) =∞, whereas DKL(πa‖πb) <∞ for any other choice of a, b ∈ {1, 2, 3}.

Let πεa = (1− ε) δ2 + επa for every a ∈ {1, 2, 3}, where δ2 is the point mass at 2. Then
still DKL(πε3‖πε1) = ∞, but, for any other choice of a and b in {1, 2, 3}, the divergence
D(πεa‖πεb) vanishes as ε goes to zero. Let πε,Ma be the measure πεa conditioned on [2,M ].
Then DKL(πε,Ma ‖πε,Mb ) tends to DKL(πεa‖πεb) as M tends to infinity, for any a, b. It
follows that for every N ∈ N there exist ε small enough and M large enough such that
DKL(πε,M3 ‖πε,M1 ) > N and, for any other choice of a, b, DKL(πε,Ma ‖πε,Mb ) < 1/N .

Consider the experiment µ = (R, (µi)) where µi0 = πε,M3 , µj0 = πε,M1 and µk = πε,M2
for all k 6∈ {i0, j0} and with ε and M so that the above holds for N large enough. Then
µ ∈ E since all measures have bounded support. It satisfies DKL(µio‖µjo) > N and
DKL(µi‖µj) < 1/N for every other pair ij.

Now let y ∈ D be the vector defined by µ. Then w · y > 0 for N large enough. A
contradiction.

B.2 Experiments and Log-likelihood Ratios

It will be convenient to consider, for each experiment, the distribution over log-likelihood
ratios with respect to the state i = 0 conditional on a state j. Given an experiment, we
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define `i = `i0 for every i ∈ Θ. We say that a vector σ = (σ0, σ1, . . . , σn) ∈ P(Rn)n+1 of
measures is derived from the experiment (S, (µi)) if for every i = 0, 1, . . . , n,

σi(E) = µi ({s : (`1(s), . . . , `n(s)) ∈ E}) for all measurable E ⊆ Rn

That is, σi is the distribution of the vector (`1, . . . , `n) of log-likelihood ratios (with respect
to state 0) conditional on state i. There is a one-to-one relation between the vector σ and
the collection (µ̄i) of distributions defined in the main text. Notice that `ij = `i0−`j0 almost
surely, hence knowing the distribution of (`0i)i∈Θ is enough to recover the distribution
of (`ij)i,j∈Θ. Nevertheless, working directly with σ (rather than (µ̄i)) will simplify the
notation considerably.

We call a vector σ ∈ P(Rn)n+1 admissible if it is derived from some experiment. The
next result provides a straightforward characterization of admissible vectors of measures.

Lemma 3. A vector of measures σ = (σ0, σ1, . . . , σn) is admissible if and only if the
measures are mutually absolutely continuous and, for every i, satisfy dσi

dσ0
(ξ) = eξi for

σi-almost every ξ ∈ Rn.

Proof. If (σ0, σ1, . . . , σn) is admissible then there exists an experiment µ = (S, (µi)) such
that for any measurable E ⊆ Rn∫

E
eξi dσ0(ξ) =

∫
1E ((`1(s), . . . `n(s))) e`i(s) dµ0(s)

=
∫

1E ((`1(s), . . . `n(s))) dµi(s)

where 1E is the indicator function of E. So,
∫
E e

ξi dσ0(ξ) = σi(E) for every E ⊆ Rn. Hence
eξi is a version of dµi

dµ0
.

Conversely, assume dσi
dσ0

(ξ) = eξi for σi-almost every ξ ∈ Rn. Define an experiment
(Rn+1, (µi)) where µi = σi for every i. The experiment (Rn+1, (µi)) is such that `i (ξ) = ξi

for every i > 0. Hence, for i > 0, µi ({ξ : (`1(ξ), . . . , `n(ξ)) ∈ E}) is equal to∫
1E ((`1 (ξ) , . . . `n (ξ))) exi dσ0(t) =

∫
1E(ξ)exi dσ0 = σi(E)

and similarly µ0 ({ξ : (`1 (ξ) , . . . , `n (ξ)) ∈ E}) = σ0 (E). So (σ0, . . . , σn) is admissible.

B.3 Properties of Cumulants

The purpose of this section is to formally describe cumulants and their relation to moments.
We follow Leonov and Shiryaev (1959) and (Shiryaev, 1996, p. 289). Given a vector
ξ ∈ Rn and an integral vector α ∈ Nn we write ξα = ξα1

1 ξα2
2 · · · ξαnn and use the notational

conventions α! = α1!α2! · · ·αn! and |α| = α1 + · · ·αn.
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Let A = {0, . . . , N}n\{0, . . . , 0}, for some constant N ∈ N greater or equal than 1. For
every probability measure σ1 ∈ P(Rn) and ξ ∈ Rn, let ϕσ1(ξ) =

∫
Rn e

i〈z,ξ〉 dσ1(z) denote
the characteristic function of σ1 evaluated at ξ. We denote by PA ⊆ P(Rn) the subset of
measures σ1 such that

∫
Rn |ξα| dσ1(ξ) <∞ for every α ∈ A. Every σ1 ∈ PA is such that

in a neighborhood of 0 ∈ Rn the cumulant generating function logϕσ1(z) is well defined
and the partial derivatives

∂|α|

∂ξα1
1 ∂ξα2

2 · · · ∂ξ
αn
n

logϕσ1(ξ)

exists and are continuous for every α ∈ Nn.
For every σ1 ∈ PA and α ∈ A let κσ1(α) be defined as

κσ1(α) = i−|α|
∂|α|

∂ξα1
1 ∂ξα2

2 · · · ∂ξ
αn
n

logϕσ1(0)

With slight abuse of terminology, we refer to κσ1 ∈ RA as the vector of cumulants of σ1.
In addition, for every σ1 ∈ PA and α ∈ A we denote by mσ1(α) =

∫
Rn ξ

α dσ1(ξ) the mixed
moment of σ1 of order α and refer to mσ1 ∈ RA as the vector of moments of σ1.

Given two measures σ1, σ2 ∈ P(Rn) we denote by σ1 ∗ σ2 ∈ P(Rn) the corresponding
convolution.

Lemma 4. For every σ1, σ2 ∈ PA, and α ∈ A, κσ1∗σ2(α) = κσ1(α) + κσ2(α).

Proof. The result follows from the well known fact that ϕσ1∗σ2(ξ) = ϕσ1(ξ)ϕσ2(ξ) for every
ξ ∈ Rn.

The next result, due to Leonov and Shiryaev (1959), establishes a one-to-one relation
between the moments {mσ1(α) : α ∈ A} and the cumulants {κσ1(α) : α ∈ A} of a
probability measure σ1 ∈ PA. Given α ∈ A, let Λ(α) be the set of all ordered collections(
λ1, . . . , λq

)
of non-zero vectors in Nn such that

∑q
p=1 λ

p = α.

Theorem 2. For every σ1 ∈ PA and α ∈ A,

1. mσ1(α) =
∑

(λ1,...,λq)∈Λ(α)
1
q!

α!
λ1!···λq !

∏q
p=1 κσ1(λp)

2. κσ1(α) =
∑

(λ1,...,λq)∈Λ(α)
(−1)q−1

q
α!

λ1!···λq !
∏q
p=1mσ1(λp)

B.4 Admissible Measures and the Cumulants Manifold

We denote by A the set of vectors of measures σ = (σ0, σ1, . . . , σn) that are admissible and
such that σi ∈ PA for every i. To each σ ∈ A we associate the vector

mσ = (mσ0 ,mσ1 , . . . ,mσn) ∈ Rd
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of dimension d = (n+ 1) |A|. Similarly, we define

κσ = (κσ0 , κσ1 , . . . , κσn) ∈ Rd.

In this section we study properties of the setsM = {mσ : σ ∈ A} and K = {κσ : σ ∈ A}.

Lemma 5. Let I and J be disjoint finite sets and let (φk)k∈I∪J be a collection of real
valued functions defined on Rn. Assume {φk : k ∈ I ∪ J} ∪ {1Rn} are linearly independent
and the unit vector (1, . . . , 1) ∈ RJ belongs to the the interior of

{
(φk (ξ))k∈J : ξ ∈ Rn

}
.

Then

C =
{(∫

Rn
φk dσ1

)
k∈I

: σ1 ∈ P(Rn) has finite support and
∫
Rn
φk dσ1 = 1 for all k ∈ J

}

is a convex subset of RI with nonempty interior.

Proof. To ease the notation, let Y = Rn and denote by Po be the set of probability measures
on Y with finite support. Consider F = {φk : k ∈ I ∪ J} ∪ {1Rd} as a subset of the vector
space RY , where the latter is endowed with the topology of pointwise convergence. The
topological dual of RY is the vector space of signed measures on Y with finite support. Let

D =
{(∫

Rn
φk dσ1

)
k∈I∪J

: σ1 ∈ Po
}
⊆ RI∪J .

Fix k ∈ I∪J . Since φk does not belong to the linear space V generated by {φ ∈ F : φ 6= φk},
then there exists a signed measure

ρ = ασ1 − βσ2

where α, β ≥ 0, α+ β > 0 and σ1, σ2 ∈ Po, such that ρ satisfies
∫
φk dρ > 0 ≥

∫
φdρ for

every φ ∈ V .
This implies

∫
φdρ = 0 for every φ ∈ V . By taking φ = 1Rn , we obtain ρ(Rn) = 0.

Hence, α = β. Therefore,
∫
φk dσ1 >

∫
φk dσ2 and

∫
φm dσ1 =

∫
φm dσ2 for every φm in F

that is distinct from φk. Because k is arbitrary, it follows that the linear space generated
by D equals RI∪J . Because D is convex and spans RI∪J , then D has nonempty interior.

Now consider the hyperplane

H = {z ∈ RI∪J : zk = 1 for all k ∈ J}

Let Do be the interior of D. It remains to show that the hyperplane H satisfies H ∩Do 6= ∅.
This will imply that the projection of H ∩D on RI , which equals C, has non-empty interior.

Let w ∈ Do. By assumption, (1, . . . , 1) ∈ RJ is in the interior of {(φk(ξ))k∈J : ξ ∈ Y }.
Hence, there exists α ∈ (0, 1) small enough and ξ ∈ Y such that φk(ξ) = 1

1−α −
α

1−αwk for
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every k ∈ J . Define z = αw + (1− α)(φk(ξ))k∈I∪J ∈ D. Then zk = 1 for every k ∈ J . In
addition, because w ∈ Do then z ∈ Do as well. Hence z ∈ H ∩Do.

Lemma 6. The setM = {mσ : σ ∈ A} has nonempty interior.

Proof. For every α ∈ A define the functions (φi,α)i∈Θ as

φ0,α (ξ) = ξα and φi,α (ξ) = ξαeξi for all i > 0.

Define ψ0 = 1Rn and ψi(ξ) = eξi for all i > 0. It is immediate to verify that

{φi,α : i ∈ Θ, α ∈ A} ∪ {ψi : i ∈ Θ}

is a linearly independent set of functions. In addition, (1, . . . , 1) ∈ Rn is in the interior of
{(eξ1 , . . . , eξn) : ξ ∈ Rn}. Lemma 5 implies that the set

C =


(∫

Rn
φi,α dσ0

)
i∈Θ
α∈A

: σ0 ∈ P(Rn) has finite support and
∫
Rn
eξi dσ0(ξ) = 1 for all i


has nonempty interior. Given σ0 as in the definition of C, construct a vector σ =
(σ0, σ1, . . . , σn) where for each i > 0 the measure σi is defined so that (dσi/dσ0)(ξ) = eξi ,
σ0-almost surely. Then, Lemma 3 implies σ is admissible. Because each σi has finite
support then σ ∈ A. In addition,

mσ =
(∫

Rn
φi,α dσ0

)
i∈Θ
α∈A

hence C ⊆M. Thus,M has nonempty interior.

Theorem 3. The set K = {κσ : σ ∈ A} has nonempty interior.

Proof. Theorem 2 establishes the existence of a continuous one-to-one map mσ0 7→ κσ0 ,
σ0 ∈ PA. Therefore, we can define a one-to-one function H : M → Rd such that
H (mσ) = κσ for every σ ∈ A. Lemma 6 shows there exists an open set U ⊆ Rd included
in M. Let HU be the restriction of H on U . Then HU satisfies all the assumptions of
Brouwer’s Invariance of Domain Theorem,29 which implies that HU (U) is an open subset
of Rd. Since H(M) ⊆ K, it follows that K has nonempty interior.

29Brouwer (1911). See also (Tao, 2011, Theorem 2).
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Appendix C Automatic continuity in the Cauchy problem for subsemi-
groups of Rd.

A subsemigroup of Rd is a subset S ⊆ Rd that is closed under addition, so that x+ y ∈ S
for all x, y ∈ S. We say that a map F : S → R+ is additive if F (x + y) = F (x) + F (y)
for all x, y, x+ y ∈ S. We say that F is linear if there exists (a1, . . . , ad) ∈ Rd such that
F (x) = F (x1, . . . , xd) = a1x1 + · · ·+ adxd for all x ∈ S.

We can now state the main result of this section:

Theorem 4. Let S be a subsemigroup of Rd with a nonempty interior. Then every additive
function F : S → R+ is linear.

Before proving the theorem we will establish a number of claims.

Claim 1. Let S be a subsemigroup of Rd with a nonempty interior. Then there exists an
open ball B ⊂ Rd such that aB ⊂ S for all real a ≥ 1.

Proof. Let B0 be an open ball contained in S, with center x0 and radius r. Given a positive
integer k, note that kB0 is the ball of radius kr centered at kr0, and that it is contained in
S, since S is a semigroup. Choose a positive integer M ≥ 4 such that 2

3Mr > ‖x0‖, and
let B be the open ball with center at Mx0 and radius r (see Figure 3). Fix any a ≥ 1, and
write a = 1

M (n+ γ) for some integer n ≥M and γ ∈ [0, 1). Then n
MB is the ball of radius

n
M r centered at nx0, which is contained in nB0, since nB0 also has center nx0, but has
a larger radius nr. So n

MB ⊂ nB0. We claim that furthermore n+1
M B is also contained

in nB0. To see this, observe that the center of n+1
M B is (n+ 1)x0 and its radius is n+1

M r.
Hence the center of n+1

M B is at distance ‖x0‖ from the center of nB0, and so the furthest
point in n+1

M B is at distance ‖x0‖+ n+1
M r from the center of nB0. But the radius of nB0 is

nr = 2
3nr + 1

3nr ≥
2
3Mr + 1

3nr > ‖x0‖+ n+ 1
M

r,

where the first inequality follows since n ≥ M , and the second since 2
3Mr > ‖x0‖ and

M ≥ 4. So nB0 indeed contains both n
MB and n+1

M B. Thus it also contains aB, and so S
contains aB.
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B0

2B0

MB0

B

Figure 3: Illustration of the proof of Claim 1. The dark ball B is contained in the light
ones, and it is apparent from this image that so is any multiple of B by a ≥ 1.

Claim 2. Let S be a subsemigroup of Rd with a nonempty interior. Let F : S → R+ be
additive and satisfy F (ay) = aF (y) for every y ∈ S and a ∈ R+ such that ay ∈ S. Then
F is linear.

Proof. If S does not include zero, then without loss of generality we add zero to it and set
F (0) = 0. Let B be an open ball such that aB ⊂ S for all a ≥ 1; the existence of such a
ball is guaranteed by Claim 1. Choose a basis {b1, . . . , bd} of Rd that is a subset of B, and
let x = β1b

1 + · · ·+ βdb
d be an arbitrary element of S. Let b = max {1/|βi| : βi 6= 0}, and

let a = max {1, b}. Then

F (ax) = F (aβ1b
1 + · · ·+ aβdb

d).

Assume without loss of generality that for some 0 ≤ k ≤ d it holds that the first k coefficients
βi are non-negative, and the rest are negative. Then for i ≤ k it holds that aβibi ∈ S and
for i > k it holds that −aβibi ∈ S; this follows from the defining property of the ball B,
since each bi is in B, and since |aβi| ≥ 1. Hence we can add F (−aβk+1b

k+1 − · · · − aβdbd)
to both sides of the above displayed equation, and then by additivity,

F (ax) + F (−aβk+1b
k+1 − · · · − aβdbd)

= F (aβ1b
1 + · · ·+ aβdb

d) + F (−aβk+1b
k+1 − · · · − aβdbd)

= F (aβ1b
1 + · · ·+ aβkb

k).
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Using additivity again yields

F (ax) + F (−aβk+1b
k+1) + · · ·+ F (−aβdbd) = F (aβ1b

1) + · · ·+ F (aβkbk).

Applying now the claim hypothesis that F (ay) = aF (y) whenever y, ay ∈ S yields

aF (x) + (−aβk+1)F (bk+1) + · · ·+ (−aβd)F (bd) = aβ1F (b1) + · · ·+ aβkF (bk).

Rearranging and dividing by a, we arrive at

F (x) = β1F (b1) + · · ·+ βdF (bd).

We can therefore extend F to a function that satisfies this on all of Rd, which is then
clearly linear.

Claim 3. Let B be an open ball in Rd, and let B be the semigroup given by ∪a≥1aB. Then
every additive F : B → R+ is linear.

Proof. Fix any x ∈ B, and assume ax ∈ B for some a ∈ R+. Since B is open, by Claim
2 it suffices to show that F (ax) = aF (x). The defining property of B implies that the
intersection of B and the ray {bx : b ≥ 0} is of the form {bx : b > a0} for some a0 ≥ 0.
By the additive property of F , we have that F (qx) = qF (x) for every rational q > a0.

Furthermore, if b > b′ > a0 then n(b− b′)x ∈ S for n large enough. Hence

F (bx) = 1
n
F (nbx)

= 1
n
F
(
nb′x+ (n(b− b′)x)

)
= 1
n
F
(
nb′x

)
+ 1
n
F
(
n(b− b′)x

)
= F (b′x) + 1

n
F
(
n(b− b′)x

)
≥ F (b′x).

Thus the map f : (a0,∞) → R+ given by f(b) = F (bx) is monotone increasing, and its
restriction to the rationals is linear. So f must be linear, and hence F (ax) = aF (x).

Given these claims, we are ready to prove our theorem.

Proof of Theorem 4. Fix any x ∈ S, and assume ax ∈ S for some a ∈ R+. By Claim 2 it
suffices to show that F (ax) = aF (x). Let B be a ball with the property described in Claim
1, and denote its center by x0 and its radius by r. As in Claim 3, let B be the semigroup
given by ∪a≥1aB; note that B ⊆ S. Then there is some y such that x+y, a(x+y), y, ay ∈ B;
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in fact, we can take y = bx0 for b = max {a, 1/a, |x|/r} (see Figure 4). Then, on the one
hand, by additivity,

F (ax+ ay) = F (ax) + F (ay).

On the other hand, since x+ y, a(x+ y), y, ay ∈ B,and since, by Claim 3, the restriction of
F to B is linear, we have that

F (ax+ ay) = F (a(x+ y)) = aF (x+ y) = aF (x) + aF (y) = aF (x) + F (ay),

thus
F (ax) + F (ay) = aF (x) + F (ay)

and so F (ax) = aF (x).

B
x

ax

y

ay

x+ y

a(x+ y)

Figure 4: An illustration of the proof of Theorem 4.

Appendix D Proof of Theorem 1

Throughout this section we maintain the notation and terminology introduced in §B. It
follows from the results in §B.1 that a LLR cost satisfies Axioms 1-4. For the rest of this
section, we denote by C a cost function that satisfies the axioms. Let N be such that C is
uniformly continuous with respect to the distance dN . We use the same N to define the
set A = {0, . . . , N}n\{0, . . . , 0} introduced in §B.3.
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Lemma 7. Let µ and ν be two experiments that induce the same vector σ ∈ A. Then
C(µ) = C(ν).

Proof. Conditional on each k ∈ Θ, the two experiments induce the same distribution for
(`0i)i∈Θ. Because `ij = `i0 − `j0 almost surely, it follows that conditional on each state
the two experiments induce the same distribution over the vector of all log-likelihood
ratios (`ij)i,j∈Θ. Hence, µ̄i = ν̄i for every i. Hence, by Lemma 1 the two experiments are
equivalent in the Blackwell order. The result now follows directly from Axiom 1.

Lemma 7 implies we can define a function c : A → R+ as c(σ) = C(µ) where µ is an
experiment inducing σ.

Lemma 8. Consider two experiments µ = (S, (µi)) and ν = (T, (νi)) inducing σ and τ in
A, respectively. Then

1. The experiment µ⊗ ν induces the vector (σ0 ∗ τ0, . . . , σn ∗ τn) ∈ A;

2. The experiment α · µ induces the measure ασ + (1− α)δ0.

Proof. (1) For every E ⊆ Rn and every state i,

(µi × νi) ({(s, t) : (`1(s, t), . . . `n(s, t)) ∈ E})

= (µi × νi)
({

(s, t) :
(

log dµ1
dµ0

(s) + log dν1
dν0

(t), . . . , log dµn
dµ0

(s) + log dν1
dνn

(t)
)
∈ E

})
= (σi ∗ τi)(E)

where the last equality follows from the definition of σi and τi. This concludes the proof of
the claim.

(2) Immediate from the definition of α · µ.

Lemma 9. The function c : A → R satisfies, for all σ, τ ∈ A and α ∈ [0, 1]:

1. c(σ0 ∗ τ0, . . . , σn ∗ τn) = c(σ) + c(τ);

2. c(ασ + (1− α)δ0) = αc(σ).

Proof. (1) Suppose µ induces σ and ν induces τ . Then C(µ) = c(σ), C(ν) = c(τ) and, by
Axiom 2 and Lemma 8, c(σ0 ∗ τ0, . . . , σn ∗ τn) = C(µ⊗ ν) = c(σ) + c(τ). Claim (2) follows
directly from Axiom 3 and Lemma 8.

Lemma 10. If σ, τ ∈ A satisfy mσ = mτ then c(σ) = c(τ).

Proof. Let µ be and ν be two experiments inducing σ and τ , respectively. Let µ⊗r =
µ⊗ . . .⊗ µ be the experiment obtained as the r-th fold independent product of µ. Axioms
2 and 3 imply

C((1/r) · µ⊗r) = C(µ) and C((1/r) · ν⊗r) = C(ν)
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In order to show that C(µ) = C(ν) we now prove that C((1/r) · µ⊗r)−C((1/r) · ν⊗r)→ 0
as r →∞. To simplify the notation let, for every r ∈ N,

µ[r] = (1/r) · µ⊗r and ν[r] = (1/r) · ν⊗r

Let σ[r] = (σ[r]0, . . . , σ[r]n) and τ [r] = (τ [r]0, . . . , τ [r]n) in A be the vectors of measures
induced by µ[r] and ν[r].

We claim that dN (µ[r], ν[r]) → 0 as r → ∞. First, notice that µ[r]i and ν[r]i assign
probability (r − 1)/r to the zero vector 0 ∈ R(n+1)2 . Hence

dtv(µ[r]i, ν[r]i) = sup
E

1
r

∣∣∣µ⊗ri(E)− ν⊗ri(E)
∣∣∣ ≤ 1

r
.

For every α ∈ A we have

M
µ[r]
i (α) =

∫
`α1
10 . . . `

αn
n0 dµ[r]i =

∫
Rn
ξα1

1 · · · ξ
αn
n dσ[r]i(ξ) = mσ[r]i(α) (16)

We claim that mσ[r] = mτ [r]. Theorem 2 shows the existence of a bijection H : M →
K such that H(mυ) = κυ for every υ ∈ A. The experiment µ⊗r induces the vector
(σ∗r0 , . . . , σ

∗r
n ) ∈ A, where σ∗ri denotes the r-th fold convolution of σi with itself. Denote

such a vector as σ∗r. Let τ∗r ∈ A be the corresponding vector induced by ν⊗r. Thus we
have κσ = H(mσ) = H(mτ ) = κτ , and

H(mµ∗r) = κσ∗r = (κ∗rσ0 , . . . , κ
∗r
σn) = (rκσ0 , . . . , rκσn) = rκσ = rκτ = κτ∗r = H(mτ∗r)

Hence mσ∗r = mτ∗r . It now follows from

mσ[r]i(α) = 1
r
mσ∗ri

(α) + r − 1
r

0

that mσ[r] = mτ [r], concluding the proof of the claim.
Equation (16) therefore implies that Mµ[r]

i (α) = M
ν[r]
i (α). Thus

dN (µ[r], ν[r]) = max
i
dtv(µ[r]i, ν[r]i) ≤

1
r
.

Hence dN (µ[r], ν[r]) converges to 0. Since C is uniformly continuous, then C(µ[r]) −
C(ν[r]) = 0. So, C(µ) = C(ν).

Lemma 11. There exists an additive function F : K → R such that c(σ) = F (κσ).

Proof. It follows from Lemma 10 that we can define a map G : M → R such that
c(σ) = G(mσ) for every µ ∈ A. We can use Theorem 2 to define a bijection H :M→K
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such that H(mσ) = κσ. Hence F = G ◦H−1 satisfies c(σ) = F (κσ) for every σ. For every
σ, τ ∈ A, Lemmas 8 and 9 imply

F (κσ)+F (κτ ) = c(σ)+ c(τ) = c(σ0 ∗τ0, . . . , σn ∗τn) = F (κσ0∗τ0 , . . . , κσn∗τn) = F (κσ +κτ )

where the last equality follows from the additivity of the cumulants with respect to
convolution.

Lemma 12. There exist (λi,α)i∈Θ\{0},α∈A in R such that

c(σ) =
∑
i∈Θ

∑
α∈A

λi,ακσi(α) for every σ ∈ A.

Proof. As implied by Theorem 3, the set K ⊆ Rd has nonempty interior. It is closed under
addition, i.e. a subsemigroup. We can therefore apply Theorem 4 and conclude that the
function F in Lemma 11 is linear.

Lemma 13. Let (λi,α)i∈Θ\{0},α∈A be as in Lemma 12. Then

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi (α) for every σ ∈ A

Proof. Fix σ ∈ A. Given t ∈ (0, 1), the Leonov-Shirayev identity implies

c (tσ + (1− t)δ0) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

(−1)q−1

q

α!
λ1! · · ·λq!

q∏
p=1

mtσi+(1−t)δ0 (λp)


=

∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

(−1)q−1

q

α!
λ1! · · ·λq! t

q
q∏
p=1

mσi (λp)


=

∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

ρ (λ) tq
q∏
p=1

mσi (λp)


where for every tuple λ =

(
λ1, . . . , λq

)
∈ Λ(α) we let

ρ (λ) = (−1)q−1

q

α!
λ1! · · ·λq!

Lemma 9 implies c(σ) = 1
t c(tµ+ (1− t) δ0) for every t. Hence

c(σ) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

ρ(λ)tq−1
q∏
p=1

mσi(λp)

 for all t ∈ (0, 1).
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By considering the limit t ↓ 0, we have tq−1 → 0 whenever q 6= 1. Therefore

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi(α) for all σ ∈ A.

Lemma 14. Let (λi,α)i∈Θ\{0},α∈A be as in Lemmas 12 and 13. Then, for every i, if |α| > 1
then λi,α = 0.

Proof. Let γ = max {|α| : λi,α 6= 0 for some i} . Assume, as a way of contradiction, that
γ > 1. Fix σ ∈ A. Theorem 2 implies

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi(α)

=
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1
q!

α!
λ1! · · ·λq!

q∏
p=1

κσi(λp)


Let σ∗r = (σ∗r0 , . . . , σ

∗r
0 ), where each σ∗ri is the r-th fold convolution of σi with itself. Hence,

using the fact that κσ∗ri = rκσi for all r ∈ N,

c(σ∗r) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1
q!

α!
λ1! · · ·λq!r

q
q∏
p=1

κσi(λp)

 (17)

By the additivity of c, c(σ∗r) = rc(σ). Hence, because γ > 1, c(σ∗r)/rγ → 0 as r → ∞.
Therefore, diving (17) by rγ we obtain

∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1
q!

α!
λ1! · · ·λq!r

q−γ
q∏
p=1

κσi(λp)

→ 0 as r →∞. (18)

We now show that (18) leads to a contradiction. By construction, if
(
λ1, . . . , λq

)
∈ Λ(α)

then q ≤ |α|. Hence q ≤ γ whenever λi,α 6= 0. So, in equation (18) we have rq−γ → 0 as
r →∞ whenever q < γ. Hence (18) implies

∑
i∈Θ

∑
α∈A:|α|=γ

λi,α

 ∑
(λ1,...,λq)∈Λ(α),q=γ

1
q!

α!
λ1! · · ·λq!

q∏
p=1

κσi (λp)

 = 0.

If q = γ and λi,α > 0 then γ = |α|. In this case, in order for λ =
(
λ1, . . . , λq

)
to satisfy
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∑q
p=1 λ

p = α, it must be that each λp is a unit vector. Every such λ satisfies30

q∏
p=1

κσi(λp) =
(∫

Rn
ξ1 dσi (ξ)

)α1

· · ·
(∫

Rn
ξn dσi (ξ)

)αn
and ∑

(λ1,...,λq)∈Λ(α),q=|α|

1
q!

α!
λ1! · · ·λq! =

∑
(λ1,...,λq)∈Λ(α),q=|α|

α!
|α|! = 1

so we obtain that∑
i∈Θ

∑
α∈A:|α|=γ

λi,α

(∫
Rn
ξ1 dσi (ξ)

)α1

· · ·
(∫

Rn
ξn dσi (ξ)

)αn
= 0. (19)

By replicating the argument in the proof of Lemma 6 we obtain that the set{(∫
Rn
ξj dσi(ξ)

)
i,j∈Θ,j>0

: σ ∈ A
}
⊆ R(n+1)n

contains an open set U . Consider now the function f : R(n+1)n → R defined as

f(z) =
∑
i∈Θ

∑
α∈A:|α|=γ

λi,αz
α1
i,1 · · · z

αn
i,n , z ∈ R(n+1)n

Then (19) implies that f equals 0 on U . Hence, for every z ∈ U ,i ∈ Θ and α ∈ A such that
|α| = γ,

λi,α = ∂γ

∂α1zi,1 · · · ∂αnzi,n
f(z) = 0

This contradicts the assumption that γ > 1 and concludes the proof.

For every j ∈ {1, . . . , n} let 1j ∈ A be the corresponding unit vector. We write λij
for λi,j . Lemma 14 implies that for every distribution σ ∈ A induced by an experiment
(S, (µi)), the function c satisfies

c(σ) =
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
Rn
ξj dσi(ξ)

=
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log dµj
dµ0

(s) dµi(s)

=
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log dµj
dµ0

(s) + log dµ0
dµi

(s)− log dµ0
dµi

(s) dµi(s)tec

30It follows from the definition of cumulant that for every unit vector 1j ∈ Rn, κσi (1j) =
∫
Rn ξj dσi(ξ).
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Hence

c(σ) =
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log dµj
dµi

dµi(s) +
∑
i∈Θ

− ∑
j∈{1,...,n}

λij

∫
S

log dµ0
dµi

(s) dµi(s)

=
∑
i,j∈Θ

βij

∫
S

log dµi
dµj

(s) dµi(s)

where in the last step, for every i, we set βij = −λij if j 6= 0 and βi0 =
∑
j 6=0 λij .

It remains to show that the coefficients (βij) are positive and unique. Because C takes
positive values, Lemma 2 immediately implies βij ≥ 0 for all i, j. The same Lemma easily
implies that the coefficients are unique given C.

Appendix E Additional Proofs

Proof of Proposition 2. Consider a signal (S, (µi)). Recall that by `i = dµi
dµ0

. The posterior
probability of state i given a signal realizations s is, almost surely,

pi(s) = qidµi
d
∑
j∈Θ µj

(s) = qi`i(s)∑
j∈Θ qj`j(s)

.

Thus pi(s)
pj(s) = qi`i(s)

qj`j(s) . We denote by µ̄ =
∑
i∈Θ qiµi the unconditional distribution over S.

Letting γij = βij/qi we have

C(µ) =
∑
i,j∈Θ

γij qi

∫
S

log dµi
dµj

(s) dµi(s)

=
∫
S

∑
i,j∈Θ

γij log `i(s)
`j(s)

qi `i(s) dµ0(s)

=
∫
S

∑
i,j∈Θ

γij log
(
pi(s)qj
pj(s)qi

)
qi `i(s)∑
k qk `k(s)

dµ̄(s)

which equals

∫
S

∑
i,j∈Θ

γij

[
log pi(s)

pj(s)
− log qi

qj

]
qi `i(s)∑
k qk `k(s)︸ ︷︷ ︸
pi(s)

dµ̄(s)

=
∫
S

∑
i,j∈Θ

γij pi(s) log pi(s)
pj(s)

dµ̄(s)−
∫
S

∑
i,j∈Θ

γij pi(s) log qi
qj

dµ̄(s)

=
∫
S

∑
i,j∈Θ

γij pi log pi
pj

dπµ(p)−
∑
i,j∈Θ

βijqi log qi
qj
.
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The proof is then concluded by applying the definition of F .

Proof of Proposition 5. We prove a slightly stronger result: Suppose min{βij , βji} ≥ 1
d(i,j)γ

for any i, j ∈ Θ. Then for every action a, and every pair of states i, j,∣∣∣µ?i (a)− µ?j (a)
∣∣∣ ≤ √‖u‖ d(i, j)γ/2 .

Clearly, the cost of the optimal experiment C(µ?) cannot exceed ‖u‖∞. Thus for any
action â ∈ A and any pair of states k,m

‖u‖ ≥ C(µ?) =
∑
i,j

βij
∑
a∈A

µi(a) log µi(a)
µj(a)

≥
∑
i,j

min{βij , βji}
∑
a∈A

(
µi(a) log µi(a)

µj(a) + µj(a) log µj(a)
µi(a)

)

=
∑
i,j

min{βij , βji}
∑
a∈A
|µi(a)− µj(a)| ×

∣∣∣∣∣log
(
µi(a)
µj(a)

)∣∣∣∣∣
≥
∑
i,j

min{βij , βji} |µi(â)− µj(â)| × |logµi(â)− logµj(â)|

Thus

‖u‖ ≥ min{βkm, βmk} |µk(â)− µm(â)| × |logµk(â)− logµm(â)|
≥ min{βkm, βkm} |µk(â)− µm(â)|2

≥ 1
d(k,m)γ |µk(â)− µm(â)|2 .

Proof of Proposition 3. Let |Θ| = n. By Axiom a there exists a function f : R+ → R+ such
that βΘ

ij = f(|i − j|). Let g : R+ → R+ be given by g(t) = f(t)t2. The Kullback-Leibler
divergence between two normal distributions with unit variance and expectations i and j
is (i− j)2/2. Hence, by Axiom b there exists a constant κ ≥ 0, independent of n, so that
for each Θ ∈ T

κ = CΘ(νΘ) =
∑

i 6=j∈Θ
βΘ
ij

(i− j)2

2 =
∑

i 6=j∈Θ
g(|i− j|). (20)

We show that g must be constant, which will complete the proof. The case n = 2 is
immediate, since then Θ = {i, j} and so (20) reduces to

κ = g(|i− j|).
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For n > 2, let Θ = {i1, i2, . . . , in−1, x} with i1 < i2 < · · · < in−1 < x. Then (20)
implies

κ =
n−1∑
`=1

g(x− i`) +
n−1∑
k=1

k−1∑
`=1

g(ik − i`).

Taking the difference between this equation and the analogous one corresponding to
Θ′ = {i1, i2, . . . , in−1, y} with y > in−1 yields

0 =
n−1∑
`=1

g(x− i`)− g(y − i`).

Denoting i1 = −z, we can write this as

0 = g(x+ z)− g(y + z) +
n−1∑
`=2

g(x− i`)− g(y − i`).

Again taking a difference, this time of this equation with the analogous one obtained by
setting i1 = −w, we get

g(x+ w)− g(y + w) = g(x+ z)− g(y + z),

which by construction holds for all x, y > −z,−w. Consider in particular the case that
x, y > 0, w = 0 and z > 0. Then

g(x)− g(y) = g(x+ z)− g(y + z) for all x, y, z > 0. (21)

Since g is non-negative, it follows from (20) that g is bounded by κ. Let

A = sup
t>0

g(t) ≤ κ

and
B = inf

t>0
g(t) ≥ 0.

For every ε > 0, there are some x, y > 0 such that g(x) ≥ A− ε/2 and g(y) ≤ B+ ε/2, and
so g(x)−g(y) ≥ A−B−ε. By (21) it holds for all z > 0 that g(x+z)−g(y+z) ≥ A−B−ε.
For this to hold, since A and B are, respectively, the supremum and infimum of g, it must
be that g(x + z) ≥ A − ε and that g(y + z) ≤ B − ε for every z > 0. By choosing z
appropriately, it follows that A− ε ≤ g(max{x, y}+ 1) ≥ B − ε. Since this holds for any
ε > 0, we have shown that A = B and so g is constant.
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Proof of Proposition 4. Let µ? be an optimal experiment. As argued in the text, µ? is
such that S = A, so that it reveals to the decision maker what actions to play. Let
A? = supp(µ?) be the set of actions played in µ?. It solves

max
µ∈R|Θ|×|A

?|
+

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)
)
−
∑
i,j∈Θ

βij
∑
a∈A?

µi(a) log µi(a)
µj(a)

 (22)

subject to
∑
a∈A?

µi(a) = 1 for all i ∈ Θ. (23)

Reasoning as in (Cover and Thomas, 2012, Theorem 2.7.2) the Log-sum inequality implies
that the function DKL is convex when its domain is extended from pairs of probability
distrubutions to pairs of positive measures. Moreover, expected utility is linear in the
choice probabilities. It then follows that the objective function in (22) is concave over
R|Θ|×|A

?|
+ .
As (22) equals −∞ whenever µi(a) = 0 for some i and µj(a) > 0 for some j 6= i we

have that µ?i (a) > 0 for all i ∈ Θ, a ∈ A?. For every λ ∈ R|Θ| we define the Lagrangian
Lλ(µ) as

Lλ(µ) =

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)
)
−
∑
i,j∈Θ

βij
∑
a∈A

µi(a) log µi(a)
µj(a)

−∑
i∈Θ

λi
∑
a∈A

µi(a) .

As µ? is an interior maximizer it follows from the Karush-Kuhn-Tucker conditions that
there exists Lagrange multipliers λ ∈ R|Θ| such that µ? maximizes Lλ(·) over R|Θ|×|A

?|
+ . As

µ? is interior it satisfies the first order condition

∇Lλ(µ?) = 0 .

We thus have that for every state i ∈ Θ and every action a ∈ A?

0 = qiui(a)− λi −
∑
j 6=i

{
βij

[
log

(
µ?i (a)
µ?j (a)

)
− 1

]
− βji

µ?j (a)
µ?i (a)

}
. (24)

Subtracting (24) evaluated at a′ from (24) evaluated at a yields that (8) is a necessary
condition for the optimality of µ?.
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