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Online Inverse Reinforcement Learning via Bellman Gradient Iteration

Kun Li1, Joel W. Burdick1

Abstract— This paper develops an online inverse reinforce-
ment learning algorithm aimed at efficiently recovering a re-
ward function from ongoing observations of an agent’s actions.
To reduce the computation time and storage space in reward
estimation, this work assumes that each observed action implies
a change of the Q-value distribution, and relates the change to
the reward function via the gradient of Q-value with respect to
reward function parameter. The gradients are computed with
a novel Bellman Gradient Iteration method that allows the
reward function to be updated whenever a new observation
is available. The method’s convergence to a local optimum is
proved. This work tests the proposed method in two simulated
environments, and evaluates the algorithm’s performance under
a linear reward function and a non-linear reward function. The
results show that the proposed algorithm only requires a limited
computation time and storage space, but achieves an increasing
accuracy as the number of observations grows. We also present
a potential application to robot cleaners at home.

I. INTRODUCTION

Assuming that an agent’s motion in an environment is

described with a Markov Decision Process (MDP), the agent

may choose an optimal action in a given state based on the

reward function of the MDP, as described by reinforcement

learning algorithms [1]. However, in many cases, the agent’s

actions are observable, while the reward function is hidden

and needs to be estimated based on the observed actions,

hence the inverse reinforcement learning (IRL) problem.

The IRL problem arises in many applications. For example,

in robot imitation learning, inverse reinforcement learning

algorithms may learn a reward function that explains the

operator’s demonstrations, and use the reward function to

estimate an optimal control policy for the robot. Another

application is human motion analysis, where the reward

function that explains a human’s motion may also indicate

potential health problems of the subject.

Existing solutions to the IRL problem mainly work in an

off-line way, by collecting a set of observations for off-line

reward estimation. For example, the methods in [2], [3],

[4] estimate the agent’s policy from a set of observations,

and estimate a reward function that leads to the policy. The

method in [5] collects a set of trajectories of the agent, and

estimates a reward function that maximizes the likelihood of

the trajectories. This strategy is useful in applications where

the learned reward function does not need to be updated

frequently.

However, in many applications, such as long-term moni-

toring of human motion, the observations are available se-
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quentially over an infinite horizon, while the reward function

may be needed continuously. In this case, an offline solution

needs to store all the past observations and estimate the

reward function whenever it is required, which is compu-

tationally infeasible. Another scenario is employing a smart

service robot that customizes its service based on each user’s

preference. Such preferences cannot be modeled a priori, and

the preferences may change in a long run, thus an offline

solution is infeasible.

To solve the problem, this work formulates an online

inverse reinforcement learning algorithm, where the reward

function is updated whenever a new observation is available.

The proposed method uses an initial reward function to

predict the agent’s action distribution, and updates the reward

function by increasing the likelihood of the observed action

in the predicted distribution. This process is repeated on

every new observation, thus the reward function is learned in

an online way. This method only stores the latest observation

and reward function parameters, and updates the reward

parameters once for each new observation. The parameter

updating is done by associating the reward parameter and

the observation in a differentiable way via Bellman Gradient

Iteration. To the best of our knowledge, no previous work

solves the inverse reinforcement learning problem in such an

online way.

The paper is organized as follows. We review existing

methods on inverse reinforcement learning in Section II, and

formulate an online inverse reinforcement learning algorithm

in Section III. We adopt a Bellman Gradient Iteration method

to compute the gradients of Q-values with respect to the

reward function in Section IV. Several experiments are

shown in Section V, with conclusions in Section VI.

II. RELATED WORKS

The idea of inverse optimal control is proposed by Kalman

[6], while the Inverse Reinforcement Learning problem is

first formulated in [2], where the agent observes the states

resulting from an assumingly optimal policy, and tries to

learn a reward function that makes the policy better than

all alternatives. Since the goal can be achieved by multiple

reward functions, this paper tries to find one that maximizes

the difference between the observed policy and the second

best policy. This idea is extended by [7], in the name of

max-margin learning for inverse optimal control. Another

extension is proposed in [3], where the goal is not necessarily

to recover the actual reward function, but to find a reward

function that leads to a policy equivalent to the observed

one, measured by the total reward collected by following

that policy. These solutions cannot solve the IRL problem
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in an online way, because the policy needs to be estimated

from a set of observations.

Since a motion policy may be difficult to estimate from

observations, a behavior-based method is proposed in [5],

which models the distribution of behaviors as a maximum-

entropy model on the amount of reward collected from each

behavior. This model has many applications and extensions.

For example, Nguyen et al. [8] consider a sequence of chang-

ing reward functions instead of a single reward function.

Levine et al. [9] and Finn et al. [10] consider complex

reward functions, instead of linear ones, and use Gaussian

process and neural networks, respectively, to model the

reward function. Choi et al. [12] consider partially observed

environments, and combines a partially observed Markov

Decision Process with reward learning. Levine et al. [13]

model the behaviors based on the local optimality of a be-

havior, instead of the summation of rewards. Wulfmeier et al.

[14] use a multi-layer neural network to represent nonlinear

reward functions. These solutions update the reward function

based on the whole trajectory of an agent, thus it cannot solve

the IRL problem in an online way.

Another method is proposed in [15], which models the

probability of a behavior as the product of each state-action’s

probability, and learns the reward function via maximum a

posteriori estimation. However, due to the complex relation

between the reward function and the behavior distribu-

tion, the author uses computationally expensive Monte-Carlo

methods to sample the distribution. This work is extended

by [4], which uses sub-gradient methods to reduce the

computations. Another extensions is shown in [16], which

tries to find a reward function that matches the observed

behavior. For motions involving multiple tasks and varying

reward functions, methods are developed in [17] and [18],

which try to learn multiple reward functions. These solutions

also depend on the policy of the agent, thus an online

extension is difficult to formulate.

The method proposed in this paper models the distribution

of the state-action pairs based on Q-values, and updates the

reward for each observed action with gradient methods like

[4], but the proposed approach adopts two approximation

methods that improve the flexibility of action modeling,

and develops a Bellman Gradient Iteration algorithm that

computes the gradient of the optimal value function and the

optimal Q-function with respect to the reward function accu-

rately and efficiently. Besides, we show how the approximate

affects the learned reward function parameters, and give the

conditions for the approximation to be more accurate. This

work is an extension of our previous work [11].

III. ONLINE INVERSE REINFORCEMENT LEARNING

A. Markov Decision Process

We assume that an agent’s motion in an environment can

be described with a Markov Decision Process, defined by the

following variables:

• S = {s}, a set of states

• A = {a}, a set of actions

• Pa
ss′

, a state transition function that defines the probabil-

ity that state s becomes s′ after action a.

• R= {r(s)}, a reward function that defines the immediate

reward of state s.

• γ , a discount factor that ensures the convergence of the

MDP over an infinite horizon.

Given the observed actions of the agent, inverse rein-

forcement learning algorithms aim to recover the reward

function that explains the actions. In long-term applications,

the agent’s actions are often observed sequentially, and the

reward function needs to be estimated in an online way. This

work formulates the following online inverse reinforcement

learning algorithm:

• given reward function rt at moment t, observe current

state st and predict a distribution of actions P(at |rt ;st).
• observe the true action ât taken by the agent.

• update the reward function rt to rt+1 to increase the

likelihood P(ât |rt ;st) of action ât .

To model the distribution P(at |rt ;st ), it is necessary to

relate a state-action pair (s,a) with the reward function

r. This problem can be handled in reinforcement learning

algorithms by introducing the value function V (s) and the

Q-function Q(s,a), described by the Bellman Equation [1]:

V π(s) = ∑
s′|s,π(s)

P
π(s)
ss′

[r(s′)+ γ ∗V π(s′)], (1)

Qπ(s,a) = ∑
s′|s,a

Pa
ss′ [r(s

′)+ γ ∗V π(s′)] (2)

where V π and Qπ define the value function and the Q-

function under a policy π : S→A, defined as a mapping from

the set of states S to the set of actions A, which describes

the probabilities of actions to take in a state.

For an optimal policy π∗, the value function and the Q-

function should be optimized on every state. This is described

by the Bellman Optimality Equation [1]:

V ∗(s) = max
a∈A

∑
s′|s,a

Pa
ss′ [r(s

′)+ γ ∗V ∗(s′)], (3)

Q∗(s,a) = ∑
s′|s,a

Pa
ss′ [r(s

′)+ γ ∗max
a′∈A

Q∗(s′,a′)]. (4)

B. Online Reward Learning

We assume that reward function can be expressed as

a function of a finite dimensional parameter vector θt to

parameterize the reward function r(s,θt ) at time t, and the

reward function can be a linear or non-linear function. This

work models the predicted action distribution P(at |θt ;st )
with the method in [15], based on the optimal Q-value

Q∗(st ,at ,θt) under parameter θt :

P(at |θt ;st ) =
expb ∗Q∗(st ,at ,θt)

∑ã∈A expb ∗Q∗(st , ã,θt)
(5)

where b is a parameter controlling the degree of confidence

in the agent’s ability to choose actions based on Q values.

For simplification of notation, in the remaining sections,

Q(st ,at ,θt) denotes the optimal Q-value of the state-action

pair (st ,at) under reward parameter θt .



Under this prediction, the likelihood of the agent’s action

ât is given by:

P(ât |θt ;st) =
expb ∗Q(st , ât ,θt )

∑ã∈A expb ∗Q(st , ã,θt )
(6)

and its log-likelihood is given by:

L(θt ) = b ∗Q(st , ât ,θt)− log ∑
ã∈A

expb ∗Q(st , ã,θt ). (7)

To increase this log-likelihood, θt is improved by an

amount proportional to the gradient of the log-likelihood for

each new observation:

θt+1 = θt +α ∗∇L(θt) (8)

where α is the learning rate, and the gradient of the log-

likelihood is given by:

∇L(θt ) = b ∗∇Q(st , ât ,θt)

− b ∗ ∑
ã∈A

P(ã|θt ;st)∇Q(st , ã,θt). (9)

To compute the gradient, it is necessary to compute the

gradient of the Q-function ∇Q= ∂Q
∂θt

= ∂Q
∂ rt

· ∂ rt

∂θt
. The standard

way to compute the optimal Q-value is with the Bellman

Equation of Optimality in Equation (4).

However, the Q-value in Equation (4) is non-differentiable

with respect to rt or θt due to the max operator. Its gradient

∇Q(s,a,θt ) cannot be computed in a conventional way, and

the sub-gradient method in [4] cannot compute the gradients

everywhere in the parameter space. This work introduces

a method called Bellman Gradient Iteration to solve the

problem.

IV. BELLMAN GRADIENT ITERATION

To handle the non-differentiable max function in Equation

(4), this work adopts two approximation methods. After

introducing these approximations, we analyze their approxi-

mating qualities.

A. Approximation with a P-Norm Function

The first approximation is based on a p-norm:

max(a0, · · · ,an)≈ (
n

∑
i=0

ak
i )

1
k (10)

where k controls the level of approximation, and all the

values a0, · · · ,an are assumed to be positive. When k = ∞,

the approximation becomes exact. In the remaining sections,

this method is called a p-norm approximation.

Under this approximation, the Q-function in Equation (4)

can be rewritten as:

Qp,k(s,a,θt ,k)= ∑
s′|s,a

Pa
ss′ [r(s

′,θt)+γ ∗( ∑
a′∈A

Qp,k(s
′,a′,θt ,k))

1/k].

(11)

From Equation (11), we can construct an approxi-

mately optimal value function with p-norm approximation

Vp,k(s,θt ):

Vp,k(s,θt) = (∑
a∈A

Qp,k(s,a,θt ,k))
1/k. (12)

Equations (11) and (12) lead to an approximate Bellman

Optimality Equation to find the approximately optimal value

function and Q-function:

Qp,k(s,a,θt ) = ∑
s′|s,a

Pa
ss′ [r(s

′,θt)+ γ ∗Vp,k(s
′,θt)], (13)

Vp,k(s,θt ) = (∑
a∈A

( ∑
s′|s,a

Pa
ss′ [r(s

′,θt )+ γ ∗Vp,k(s
′,θt)]))

k)1/k.

(14)

Taking the derivative of both sides of Equation (12) and

Equation (13), the gradients of Vp,k(s,θt) and Qp,k(s,a,θt )
with respect to reward function parameter θ are:

∂Vp,k(s,θt)

∂θt

=
1

k
(∑

a∈A

Qp,k(s,a,θt))
1−k

k ∑
a∈A

k ∗Qp,k(s,a,θt)
k−1∗

∂Qp,k(s,a,θt )

∂θt

, (15)

∂Qp,k(s,a,θt )

∂θt

= ∑
s′|s,a

Pa
ss′(

∂ r(s′,θt )

∂θt

+ γ ∗
∂Vp,k(s

′,θt)

∂θt

).

(16)

For a p-norm approximation with non-negative Q-values,

the gap between the approximate value function and the

optimal value function is a function of k:

gp,k(k) = ( ∑
a′∈A

Qp,k(s
′,a′,θt)

k)
1
k −max

a′∈A
Qp,k(s

′,a′,θt).

The gap function gp,k(k) describes the error of the approxi-

mation, and it has two properties.

Proposition 1: Assuming Qp,k(s,a,θt) ≥ 0,∀s,∀a, the

tight lower bound of gp,k(k) is zero:

inf
∀k∈R

gp,k(k) = 0.

Proposition 2: Assuming all Q-values are non-negative,

Qp,k(s,a,θt)≥ 0,∀s,a, gp,k(k) is a decreasing function with

respect to increasing k:

g′p,k(k) ≤ 0,∀k ∈ R.
The proof is given in Appendix A.

B. Approximation with Generalized Soft-Maximum Function

The second approximation is based on a generalized soft-

maximum function:

max(a0, · · · ,an)≈
log(∑n

i=0 exp(kai))

k
(17)

where k controls the level of approximation. When k = ∞,

the approximation becomes exact. The remaining sections

refer to this method as g-soft approximation.

Under this approximation, the Q-function in Equation (4)

can be rewritten as:

Qg,k(s,a,θt)= ∑
s′|s,a

Pa
ss′ [r(s

′,θt)+γ ∗
log∑a′∈A exp(kQg,k(s

′,a′,θt ))

k
].

(18)

Based on Equation (18), an approximately optimal value

function with g-soft approximation takes the form:

Vg,k(s,θt ) =
log∑a∈A exp(kQg,k(s,a,θt ))

k
. (19)



Equations (18) and (19) leads to an approximate Bellman

Optimality Equation to find the approximately optimal value

function and Q-function:

Qg,k(s,a,θt) = ∑
s′|s,a

Pa
ss′ [r(s

′,θt )+ γ ∗Vg,k(s
′,θt)], (20)

Vg,k(s,θt ) =
log∑a∈A exp(k(∑s′|s,a Pa

ss′
[r(s′,θt)+ γ ∗Vg,k(s

′,θt))

k
).

(21)

Taking derivative of both sides of Equations (19) and (20)

yields a Bellman Gradient Equation to compute the gradients

of Vg,k(s,θt) and Qg,k(s,a,θt) with respect to the reward

function parameter θ :

∂Vg,k(s,θt )

∂θt

= ∑
a∈A

exp(kQg,k(s,a,θt ))

∑a′∈A exp(kQg,k(s,a′,θt))

∂Qg,k(s,a,θt )

∂θt

,

(22)

∂Qg,k(s,a,θt)

∂θt

= ∑
s′|s,a

Pa
ss′(

∂ r(s′,θt)

∂θt

+ γ ∗
∂Vg,k(s

′,θt)

∂θt

).

(23)

For a g-soft approximation, the gap between the approxi-

mate value function and the optimal value function is:

gg,k(k)=
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k
−max

a′∈A
Qg,k(s

′,a′,θt ).

The gap has the same two properties as the p-norm approx-

imation.

Proposition 3: The tight lower bound of gg,k(k) is zero:

inf
∀k∈R

gg,k(k) = 0.

Proposition 4: gg,k(k) is a decreasing function with re-

spect to increasing k:

g′g,k(k)< 0,∀k ∈R.

The proof is given in Appendix B.

Approximating properties of Bellman Gradient Iteration

shows that the gap between the approximated Q-value and

the exact Q-value decreases with larger k. Thus the value of

objective function in Equation (7) under approximation will

approach the true one with larger k.

Under the approximation, the objective function in Equa-

tion (7) converges to within some range of a locally optimal

value with the gradient method. Formally:

Proposition 5: Assuming θ ∗ is a local optimum of the

objective function under the true Q function and L(θ ∗,s,a) is

the locally optimal value, the gradient method θt+1 = θt +α ∗
∇L(θt ,k,s,a) from a starting point in basin of a θ ∗ under the

approximated gradient ∇L(θt ,k,s,a) will converge to θ k,∗,

∀ε << 1,∃k such that ||L(θ ∗,s,a)− L(θ k,∗,s,a)|| < ε and

limk→∞ ε = 0.

The proof is given in Appendix C. These proofs show that the

approximated gradient converges to a point whose distance

to the converged point under the true gradient is infinitesimal

with a sufficiently large approximation level k.

C. Bellman Gradient Iteration

Based on the Bellman Equations (13), (14), (20), and

(21), we can iteratively compute the value of each state

V (s,θt ) and the value of each state-action pair Q(s,a,θt )
under reward parameter θt , as shown in Algorithm 2. In the

algorithm, apprxMax means a p-norm approximation of the

max function for the first method, and a g-soft approximation

of the max function for the second method.

After computing the approximately optimal Q-function,

with the Bellman Gradient Equation (15), (16), (22), and

(23), we can iteratively compute ∂V
∂θt

and
∂Q(s,a,θt)

∂θt
with

respect to the reward function parameter θt , as shown in

Algorithm 3. In the algorithm,
∂apprxMax

∂Q[s,a,θt ]
corresponds to the

gradient of each approximate value function with respect to

the Q function, as shown in Equation (15) and Equation (22).

In these two approximations, the value of parameter b

depends on an agent’s ability to choose actions based on

the Q values. Without application-specific information, we

choose b = 1 as an uninformed parameter. Given a value for

parameter b, the motion model of the agent is defined on the

approximated Q values, where the Q-value of a state-action

pair depends on both the optimal path following the state-

action pair and other paths. When the approximation level k

is smaller, the Q-value of a state-action pair relies less on the

optimal path, and the motion model in Equation (5) is similar

to the model in [5]; When k → ∞, the Q-value approaches

the standard Q-value, and the motion model is similar to the

model in [15]. By choosing different k values, we can adapt

the algorithm to different types of motion models.

With empirically chosen application-dependent parameters

k and b, Algorithm 2 and Algorithm 3 are used compute

the gradient of each Q-value, Q[s,a,θt ], with respect to the

reward function parameter θt , and then the parameter is

learned with the gradient ascent method shown in Equation

(7) and Equation (8). A multi-start strategy handles local

optimum. This process is shown in Algorithm 1.

V. EXPERIMENTS

We test the proposed method in two benchmark environ-

ments to evaluate its accuracy, and then show a potential

application to a smart home cleaning robot.

A. Benchmark Environments

We evaluated the proposed method in two existing bench-

mark environments.

The first example environment is a parking space behind

a store, as shown in Figure 1a. At each moment, a mobile

robot tries to generate an estimation of the location of the

exit based on the observed motions of multiple agents, like

cars. Assuming that the true exit is in one corner of the

space, we can describe it with the gridworld mdp [2], and

solve the problem via online inverse reinforcement learning.

In this N ×N grid, the true but a-priori unknown rewards

for all states equal to zero, except for the upper-right corner

state, whose reward is one, corresponding to the true exit,

as shown in Figure 2a. Each agent starts from a random

state, and chooses in each step one of the following actions:



Algorithm 1: Online Inverse Reinforcement Learning

Data: S,A,P,R,γ ,k

Result: Reward function

1 choose the number of random starts nrs;

2 initialize θ0 = {θ i
0, i = 1, · · · ,nrs};

3 t=0;

4 while observation available do

5 observe (st ,at);
6 for i ∈ range(nrs) do

7 compute reward function based on θ i
t ;

8 run approximate value iteration with Algorithm

2;

9 run Bellman Gradient Iteration with Algorithm

3;

10 compute gradient ∇L(θ i
t ) with Equation (9);

11 gradient ascent:

θ i
t+1 = θ i

t + learning rate∗∇L(θ i
t );

12 compute reward function based on θ i
t+1;

13 compute the log-likelihood based on the reward

function;

14 end

15 identify the reward function with the highest

log-likelihood among nrs reward functions;

16 output the reward function;

17 t=t+1;

18 end

Algorithm 2: Approximate Value Iteration

Data: S,A,P,R,γ ,k

Result: optimal value V [S,θt ], optimal action value

Q[S,A,θt ]
1 assign V [S,θt ] arbitrarily;

2 while di f f > threshold do

3 initialize V ′[S,θt ] = {0};

4 for s ∈ S do

5 initialize T [A,θt ] = {0};

6 for a ∈ A do

7 T [a,θt ] = ∑s′∈S Pa
ss′
(R[s′,θt ]+ γ ∗V [s′,θt ]);

8 end

9 V ′[s,θt ] = apprxMax(T [A],k,θt );
10 end

11 di f f = abs(V [S,θt ]−V ′[S,θt ]);
12 V [S,θt ] =V ′[S,θt ];
13 end

14 initialize Q[S,A,θt ] = {0};

15 for s ∈ S do

16 for a ∈ A do

17 Q[s,a,θt ] =
Q[s,a,θt ]+∑s′∈S Pa

ss′
(R[s′,θt ]+ γ ∗V [s′,θt ])

18 end

19 end

Algorithm 3: Bellman Gradient Iteration

Data: S,A,P,R,V,Q,γ ,k

Result: value gradient Vg,k[S,θt ], Q-value gradient

Qg,k[S,A,θt ]
1 assign Vg,k[S,θt ] arbitrarily;

2 while di f f > threshold do

3 initialize V ′
g,k[S,θt ] = {0};

4 for s ∈ S do

5 initialize Tg,k[A,θt ] = {0};

6 for a ∈ A do

7 Tg,k[a,θt ] =
∂apprxMax
∂Q[s,a,θt ]

∑s′∈S Pa
ss′
( ∂R[s′,θt ]

∂θ + γ ∗Vg,k[s
′,θt ]);

8 end

9 V ′
g,k[s,θt ] = ∑Tg,k[A,θt ];

10 end

11 di f f = abs(Vg,k[S,θt ]−V ′
g,k[S,θt ]);

12 Vg,k[S,θt ] =V ′
g,k[S,θt ];

13 end

14 initialize Qg,k[S,A,θt ] = {0};

15 for s ∈ S do

16 for a ∈ A do

17 Qg,k[s,a,θt ] =

Qg,k[s,a,θt ]+∑s′∈S Pa
ss′
( ∂R[s′,θt ]

∂θ + γ ∗Vg,k[s
′,θt ])

18 end

19 end

up, down, left, and right. Some trajectories are shown in

Figure 1b. Each action has a 30% probability that a random

action from the set of actions is actually taken. For inverse

reinforcement learning, we compare a linear function and a

non-linear function to represent the reward, where the feature

of a state is a length-N2 vector indicating the position of the

grid represented by the state, e.g., the ith element of the

feature vector for the ith state equals to one and all other

elements are zeros. The non-linear function is given as a

neural network with two hidden layers, each with 10 nodes.

The second environment is an objectworld mdp [9]. It

is similar to the gridworld mdp, but with a set of objects

randomly placed on the grid. Each object has an inner color

and an outer color, selected from a set of possible colors, C.

The reward of a state is positive if it is within 3 cells of outer

color C1 and 2 cells of outer color C2, negative if it is within

3 cells of outer color C1, and zero otherwise. Other colors are

irrelevant to the ground truth reward. One example is shown

in Figure 2b. This work places two random objects on the

grid, and compares a linear function and a nonlinear function

to represent the reward, where the feature of a state indicates

its discrete distance to each inter color and outer color in C.

The non-linear function is given as a neural network with

two hidden layers, each with 10 nodes.

B. Results

To evaluate the utility of the proposed algorithm, we use

correlation coefficients to measure the similarity between the



(a) A testing environment:
in the encircled space, only
one exit exists, but the mo-
bile robot can only observe
the space within the dashed
lines, and it has to observe
the motions of cars, shown
as black dots in the figure, to
estimate the location of the
exit.
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(b) Example trajectories in Grid-
world MDP: each agent starts from
a random position, and follows an
optimal policy to approach the exit.
The black dots represent the initial
positions of the agents.

Fig. 1: A simulated environment
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(a) A reward table for the grid-
world mdp on a 10×10 grid.
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(b) An example of a reward table
for one objectworld mdp on a
10× 10 grid: it depends on ran-
domly placed objects.

Fig. 2: Examples of true reward tables

learned reward and the true rewards at each moment.

In each environment, 150,000 state-action pairs are gen-

erated based on the true rewards. To simulate a long-term

real world observation, we do not assume the environment

state to be static if without robot actions; instead, it is

randomly changed every three observations, and the agent

has to choose a sequence of actions reactively.

We run the proposed algorithm on the data collected

from each environment with 30 random initializations si-

multaneously, and for each new observation, the correlation

coefficient between the ground truth and the reward function

with the highest likelihood among the 30 candidates is

recorded. Besides, we test the algorithm with two approxima-

tion methods, pnorm and gsoft, and test each approximation

method with a linear reward function and a nonlinear reward

function. For the linear reward function, we manually choose

the learning rate as 0.00001 in both environments, and for

the nonlinear reward function, the learning rate is chosen

as 0.001. The approximation parameters are chosen as k =
100,b = 1. The results are plotted in Figure 3 and 4.

The results show that the accuracy of the learned reward

increases as the observation time increases. While the accu-

racy reaches the optimum point faster under a linear reward

function, the accuracy is higher under a non-linear reward
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Fig. 3: Online inverse reinforcement learning in gridworld:

in the figure, ”linear” and ”nonlinear” denote the linear

reward function and nonlinear reward function. ”pnorm” and

”gsoft” denote the approximation methods. The correlation

coefficient between the learned reward and the true reward

at each moment is plotted. It shows that the accuracy of

the reward function increases as the number of samples

increases, and the accuracy of nonlinear reward functions

increase faster than the linear reward functions.

function.

C. Smart Home Cleaning Robot

We create a simulated home environment with a person

inside and show how the proposed method improves the

efficiency of a home cleaning robot.

Many existing robot cleaners move around the home

uniformly, to make sure that every area is evenly covered.

However, this may be inefficient since some areas require

more attention while other areas need less work. To rank

different home areas, we assume that more cleaning should

be done in areas which are more frequently visited, and such

preference is learned by observing the human activity via

inverse reinforcement learning. Since the preference varies

among different users, the cleaning robot needs to learn it in

an online way after being employed.

The room environment is composed of walls and spaces,

and there are furnitures that affect the preference of the

person, as shown in Figure 5. This environment is discretized

into a 16 × 16 grid, where the robot can intermittently

observe the movement of the person, and update its internal

reward function based on each new observation. We simulate

5000 human actions, and the robot uses the g-soft approx-

imation with k = 100,b = 1 to learn the reward function.

A linear reward function and a nonlinear reward function

based on a three layer neural network, with twenty nodes in

each layer, are adopted during online inverse reinforcement

learning. Ten initial starting parameters are adopted for each

reward function, and at each step, the reward leading to

the highest likelihood is output. The online learned reward

function is visualized in the attached video.

Assuming that the floor’s dirt level is distributed as the

true reward function and the robot need to clean all the
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Fig. 4: Online inverse reinforcement learning in objectworld:

in the figure, ”linear” and ”nonlinear” denote the linear

reward function and nonlinear reward function. ”pnorm” and

”gsoft” denote the approximation methods. The correlation

coefficient between the learned reward and the true reward at

each moment is plotted. It shows that the accuracy of the re-

ward function increases as the number of samples increases,

and the accuracy of linear reward functions increase faster

than the nonlinear reward functions.

grids to make the dirt level equal to zero, we evaluate the

proposed method based on the consumed energy in cleaning.

The energy cost is computed based on how many times

the robot needs to sweep the whole area, with different dirt

distributions, to make every corner clean. We compare the

accumulated energy consumption by following the uniform

cleaning approach, the optimal approach with the true re-

ward, the proposed approach with a linear reward function,

and the proposed approach with a non-linear reward function.

The result in given in Figure 6.

It shows that with a non-linear reward function, the

cleaning robot consumes less energy than the typical uniform

approach. The amount of saved energy depends negatively

on the uniformity of the true reward function.

VI. CONCLUSIONS

This work formulates an online inverse reinforcement

learning algorithm to estimate a reward functions based

on sequentially observed actions of an agent. For each

new observation, a predicted action distribution is computed

based on previous reward function, and the reward function

is updated to increase the likelihood of the newly observed

action. The action distribution is formulated as a function of

the optimal Q-value, and the gradient of the optimal Q-value

with respect to the reward function is computed via Bellman

Gradient Iteration. The algorithm is tested in two simulated

environments based on two approximation methods. The

result shows that the proposed method gradually approaches

the true reward function as the number of samples increases,

but only requires limited storage space and computation

time. A potential application to home cleaning robots is

demonstrated.
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Fig. 5: Human movements at home: the home environment

is composed of spaces and walls (black lines), and the user,

represented with the black shape in the figure, moves around

at home non-uniformly, affected by home objects represented

with red and green squares in the figure.

In future work, we will explore different variants of

stochastic gradient descent for online inverse reinforcement

learning, and apply the method to several long-term applica-

tions, like human motion analysis.
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APPENDIX

A. P-Norm Approximation

Assuming Qp,k(s,a,θt) ≥ 0,∀s,∀a, the tight lower bound

of gp,k(k) is zero:

inf
∀k∈R

gp,k(k) = 0.

Proof: ∀k ∈ R, assuming amax =
argmaxa′ Qp,k(s

′,a′,θt),

gp,k(k) = ( ∑
a′∈A

Qp,k(s
′,a′,θt)

k)
1
k −max

a′∈A
Qp,k(s

′,a′,θt)

= ( ∑
a′∈A/amax

Qp,k(s
′,a′,θt)

k +Qp,k(s
′,amax,θt)

k)
1
k

−max
a′∈A

Qp,k(s
′,a′,θt).

Since Qp,k(s,a,θt )≥ 0 ⇒ ∑a′∈A/amax
Qp,k(s

′,a′,θt )
k ≥ 0,

gp,k(k)≥ (Qp,k(s
′,amax)

k,θt)
1
k −max

a′∈A
Qp,k(s

′,a′,θt)

= Qp,k(s
′,amax,θt)−max

a′∈A
Qp,k(s

′,a′,θt) = 0

When k = ∞:

gp,k(k) = ( ∑
a′∈A

Qp,k(s
′,a′,θt)

∞)
1
∞ −max

a′∈A
Qp,k(s

′,a′,θt )

= max
a′∈A

Qp,k(s
′,a′,θt)−max

a′∈A
Qp,k(s

′,a′,θt ) = 0

Assuming all Q-values are non-negative, Qp,k(s,a,θt ) ≥
0,∀s,a, gp,k(k) is a decreasing function with respect to

increasing k:

g′p,k(k) ≤ 0,∀k ∈ R.

Proof:

g′p,k(k) =
1

k
∗ ( ∑

a′∈A

Qp,k(s
′,a′,θt)

k)
1−k

k ∗ (

∑
a′∈A

Qp,k(s
′,a′,θt)

k log(Qp,k(s
′,a′,θt )))

+ ( ∑
a′∈A

Qp,k(s
′,a′,θt)

k)
1
k log( ∑

a′∈A

Qp,k(s
′,a′,θt )

k)
1

−k2

=
(∑a′∈A Qp,k(s

′,a′,θt )
k)

1
k

k2 ∑a′∈A Qp,k(s′,a′,θt)k
(

∑
a′∈A

Qp,k(s
′,a′,θt)

kk log(Qp,k(s
′,a′,θt ))

− ∑
a′∈A

Qp,k(s
′,a′,θt)

k log( ∑
a′∈A

Qp,k(s
′,a′,θt)

k)).

Since k log(Qp,k(s
′,a′,θt ))≤ log(∑a′∈A Qp,k(s

′,a′,θt)
k):

g′p,k(k)≤ 0.

B. G-Soft Approximation

The tight lower bound of gg,k(k) is zero:

inf
∀k∈R

gg,k(k) = 0.

Proof: ∀k ∈ R: assuming amax =
argmaxa′ Qg,k(s

′,a′,θt ),

gg,k(k) =
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k
−max

a′∈A
Qg,k(s

′,a′,θt)

=
log(∑a′∈A/amax

exp(kQg,k(s
′,a′,θt))+ exp(kQg,k(s

′,amax,θt)))

k

−max
a′∈A

Qg,k(s
′,a′,θt)

> Qg,k(s
′,amax,θt)−max

a′∈A
Qg,k(s

′,a′,θt) = 0

When k = ∞,

lim
k→∞

(
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k
−max

a′∈A
Qg,k(s

′,a′,θt ))

= lim
k→∞

(
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k
)−max

a′∈A
Qg,k(s

′,a′,θt)

= max
a′∈A

Qg,k(s
′,a′,θt )−max

a′∈A
Qg,k(s

′,a′,θt) = 0
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gg,k(k) is a decreasing function with respect to increasing

k:

g′g,k(k)< 0,∀k ∈R.

Proof:

g′g,k(k) =−
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k2

+
∑a′∈A Qg,k(s

′,a′,θt )exp(kQg,k(s
′,a′,θt))

k ∑a′∈A exp(kQg,k(s′,a′,θt ))
< 0

Since:

−
log(∑a′∈A exp(kQg,k(s

′,a′,θt)))

k2

+
∑a′∈A Qg,k(s

′,a′,θt )exp(kQg,k(s
′,a′,θt ))

k ∑a′∈A exp(kQg,k(s′,a′,θt))
< 0

⇐⇒ ∑
a′∈A

kQg,k(s
′,a′,θt)exp(kQg,k(s

′,a′,θt))<

∑
a′∈A

log( ∑
a′∈A

exp(kQg,k(s
′,a′,θt)))exp(kQg,k(s

′,a′,θt))

⇐= kQg,k(s
′,a′,θt )< log( ∑

a′∈A

exp(kQg,k(s
′,a′,θt))).

C. Convergence Analysis

Assuming θ ∗ is a local optimum of the objective function

under the true Q function and L(θ ∗,s,a) is the locally opti-

mal value, the gradient method θt+1 = θt +α ∗∇L(θt ,k,s,a)
from a starting point in basin of a θ ∗ under the approximated

gradient ∇L(θt ,k,s,a) will converge to θ k,∗, ∀ε << 1,∃k

such that ||L(θ ∗,s,a)−L(θ k,∗,s,a)||< ε and limk→∞ ε = 0.

Proof: First, we show that the gradient method will

converge to a point under the approximated gradient. We

consider the case when the objective function is defined on

one state-action pair, but the result can be easily applied to

general cases.

Stochastic gradient methods update the reward parameter

once for each observation. For a update step α ∗∇Lk(θt ,s,a),
we expand the updated objective function with first-order

Taylor series:

L(θt+1,s,a) = L(θt +α ∗∇Lk(θt ,s,a))

≈ L(θt ,s,a)+α ∗∇L(θt ,s,a) ·∇Lk(θt ,s,a)
(24)

where

∇L(θt ,s,a) = b ∗∇Q(s,a,θt)

− b ∗ ∑
ã∈A

P(ã|θt ;s)∇Q(s, ã,θt), (25)

∇Lk(θt ,s,a) = b ∗∇Qk(s,a,θt )

− b ∗ ∑
ã∈A

P(ã|θt ;s)∇Qk(s, ã,θt ). (26)

∇Qk(s,a,θt) denotes the approximate gradient under p-norm

approximation or g-soft approximation.

Due to the max-operation in Bellman Optimality Equation,

∇Q(s,a,θt ) is a piecewise smooth function of θt , and the

gradient is defined on the optimal paths following (s,a) under

current θt , while ∇Qk(s,a,θt ) is defined on both the optimal

path and all the other non-optimal paths following (s,a).
We describe ∇Qk(s,a,θt) as a weighted summation of the

optimal paths and the non-optimal paths, where the weight

is a function of k:

∇Qk(s,a,θt) =wA(k,θt )∗∇Q(s,a,θt)+

wB(k,θt ))∗∇Q(sr,ar,θt ) (27)

where (sr,ar) denotes the state action pairs in the non-

optimal paths, and

wA(k,θt) =
∂Qk(s,a,θt)

∂Q(s,a,θt )
,

wB(k,θt ) =
∂Qk(s,a,θt)

∂Q(sr,ar,θt )
.

As k increases, Qk(s,a,θt ) will depends more on the opti-

mal paths, thus wA(k,θt) will increase while wB(k,θt ) will

decrease. When k → ∞, wA(k,θt )→ 1 and wB(k,θt )→ 0.

This description is reasonable based on Equation (15),

(16) (22), and (23), where in each iteration, the approximate

gradient of a state-action pair is defined as a weighted

summation of the gradients of the resultant state-action

pairs, and the weights of the optimal ones approach 1 as

k increases, thus the final approximated gradient can be

described as a weighted summation of the optimal sequences

of state-action pairs and other sequences.

Substituting Equation (27) into Equation (24):

L(θt+1,s,a) = L(θt +α ∗∇Lk(θt ,s,a))

≈ L(θt ,s,a)+α ∗ (wA(k,θt )∗∇L(θt ,s,a) ·∇L(θt ,s,a)

+wB(k,θt )∗∇L(θt ,s,a) ·∇L(θt ,sr,ar)).
(28)

Assuming ||∇L(θt ,s,a)|| = NL, ||∇L(θt ,sr,ar)|| = Nr, in

the best case, if the two gradients have the same direction,

the improvement is α ∗ (wA(k,θt )∗N2
L +wB(k,θt )∗Nr ∗NL);

in the worst case, if they have the opposite directions,

the improvement is α ∗ (wA(k,θt )∗N2
L −wB(k,θt )∗Nr ∗NL).

Therefore, the improvement of the objective function de-

pends on
wA(k,θt)
wB(k,θt)

. If
wA(k,θt )
wB(k,θt )

> Nr
NL

for a sufficiently large k,

we can make sure that the objective function is converging:

L(θt+1,s,a)> L(θt ,s,a).

The convergence rate depends on wA(k,θt), wB(k,θt ), and

the MDP structure.

Second, we show that ∀ε,∃k > N such that ||L(θ ∗) −
L(θ k,∗)||< ε .

We construct an approximate objective function Lk(θt ,s,a)
by replacing the Q value in Equation (7) with an approxi-

mated Q value:

Lk(θt ,s,a) = b ∗Qk(s,a,θt)− log ∑
ã∈A

expb ∗Qk(s, ã,θt )

where Qk(s,a,θ ) denotes the approximate gradient under p-

norm approximation or g-soft approximation. Lk(θt ,s,a) is



a differentiable equation and a local optimum θ k,∗ can be

reached via gradient method.

Based on proposition 1, 2, 3, and 4, we propose that

∀η ,∀θ ,∃k such that ||Q(s,a,θ )−Qk(s,a,θ )||< η . Thus the

following inequality holds:

||L(θt ,s,a)−Lk(θt ,s,a)||= ||Q(s,a,θt)−Qk(s,a,θt)−

log
∑ã∈A expb ∗Q(s, ã,θt)

∑ã∈A expb ∗Qk(s, ã,θt )
||

≤ ||Q(s,a,θt)−Qk(s,a,θt)||+

|| log
∑ã∈A expb ∗Q(s, ã,θt)

∑ã∈A expb ∗Qk(s, ã,θt )
||

≤ η + b ∗η = (1+ b)∗η . (29)

Therefore, ∀ε , we may choose a k >N leading to η ≤ ε
1+b

.

This k will guarantee ||L(θt ,s,a)−Lk(θt ,s,a)||< ε for any θ .

Since θ ∗ and θ k,∗ represent two close local optimum points,

we deduce that ||L(θ ∗,s,a)− L(θ k,∗,s,a)|| ≤ ||L(θ ∗,s,a)−
Lk(θ

∗,s,a)|| ≤ ε .

Wih Taylor expansion,

L(θ ∗,s,a) = L(θ k,∗,s,a)+L′(θ k,∗,s,a)(θ ∗−θ k,∗).

Thus,

||L′(θ k,∗,s,a)||||(θ ∗−θ k,∗)||= ||L(θ ∗,s,a)−L(θ k,∗,s,a)|| ≤ ε,

and,

||(θ ∗−θ k,∗)|| ≤
ε

||L′(θ k,∗,s,a)||
.
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