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Abstract

Foliated fracton order is a qualitatively new kind of phase of matter. It is similar
to topological order, but with the fundamental difference that a layered structure,
referred to as a foliation, plays an essential role and determines the mobility
restrictions of the topological excitations. In this work, we introduce a new kind
of field theory to describe these phases: a foliated field theory. We also introduce a
new lattice model and string-membrane-net condensation picture of these phases,
which is analogous to the string-net condensation picture of topological order.
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1 Introduction

Fracton order [1, 2] is a recently theorized and remarkable type of phase of matter which is
characterized by topological excitations with various kinds of mobility constraints. Fracton
order has garnered much attention from the community recently, likely because the field
is motivated from many different directions. Motivational examples include: analytically
tractable models of glassy physics and localization (which results from the mobility constraints
of the particles) [3–8]; dualities to elasticity theory of two-dimensional crystals [9–13];
quantum information [14–21]; connections to quantum gravity [22] and holography [23]; and
classification and characterization of exotic phases of matter [1, 24–32]. Fractons have also
been studied from a wide variety of perspectives, including gauging and ungauging [33–39];
generalizations of symmetry protected topological (SPT) order [40–43]; entanglement [44–47];
deconfined criticality [48]; and the search for more experimentally relevant models [49–52].

There are currently three known kinds of (robust or gauged) fracton models, which are
summarized in the table below:
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U(1) symmetric tensor foliated
type-II

gauge theory (type-I)

example

models

X-cube [37], Haah’s code [14],

scalar charge [53] string-membrane-net Yoshida’s

(Sec. 3) fractal liquids [54]

spectrum gapless gapped gapped

charge conserved conserved on stacks conserved on

conservation dipole moment of 2D surfaces fractal subsets

spacetime
Einstein manifolds [55] foliated manifolds discrete groups? [56]

structure

The above models are gauge theories, and have been argued [53, 57] or proven [14, 37, 58] to
be stable to arbitrary perturbations as non-trivial zero-temperature phases of matter (in the
sense of Ref. [59]). Ungauged versions of the above models also exist [10,33–37]; such models
require global, subsystem, or fractal symmetries to protect from perturbations that could lead
to a trivial (e.g. a direct product state) phase of matter.

The type-II fracton models [14, 37, 54] remain the most mysterious. They have mostly
consisted of exactly-solvable ZN qudit models with a gapped energy spectrum. Fractons can
be created at corners of fractal operators, and the fracton number is conversed (modulo N)
on fractal subsets of the system [37]. Most type-II models do not have any mobile excitations,
which allows them to be a partially self-correcting quantum memory [15,18,60]. (Some models,
e.g. the Sierpinski prism model [54, 61], mix characteristics of type-I and type-II models and
have both fractal and string operators.) Recently, these models have been generalized to
gapless U(1) models with a proposed field theory description [62]. The fractons are even
less mobile in these models, which, unlike the gapped type-II models, may allow for a self-
correcting quantum memory [63]. The spacetime structure of the type-II fracton models may
have recently been generalized beyond flat space in Ref. [56]; however, an explicit example of
a generalized type-II model is currently lacking.

The U(1) symmetric tensor gauge theory models [53, 57, 64–67] generalize U(1) Maxwell
gauge theory. This is done by breaking Lorentz-invariance to impose higher moments of
charge conservation, such as conservation of dipole or quadropole moments, or by generalizing
scalar charges to e.g. vector charges. These models often (but not always [65]) respect
spatial rotation symmetry. As a generalization of U(1) gauge theory, symmetric tensor gauge
theories are naturally written as field theories, often with an E2+B2 kind of Hamiltonian. The
stabilility of these theories to spatial curvature was recently studied in Ref. [55]. The traceless
scalar charge theory was found to be the most stable to spatial curvature and maintained gauge
invariance on Einstein manifolds. Other theories required Einstein manifolds with constant
or no curvature. The loss of gauge invariance on manifolds with forbidden kinds of curvature
physically manifests itself as lifting the mobility constraints of the subdimensional particles,
making all particles fully mobile on generically curved manifolds.

Foliated (type-I) fracton models [1, 3, 32, 68, 69] can be characterized by their
subdimensional particle excitations and a foliation structure [24], which is specified by stacks
of layers in various directions. Subdimensional excitations are particles that have mobility
restrictions when isolated from other particles. There are three kinds of subdimensional
particles in foliated models in 3D:
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• planons, which can only move along the 2D layers;

• lineons, which move along the intersection of two layers; and

• fractons, which are stuck at the intersection of three layers.

The layers in the foliation structure can be curved, which results in curved lattice models
[24,70].

The type-I models have mostly consisted of exactly-solvable ZN qudit lattice Hamiltonians.
Recently, field theories for the X-cube model and a 2-foliated lineon model have been derived
in Ref. [71] and Appendix B of Ref. [27]. However, these field theories can only be applied
to flat foliation structures (e.g. cubic lattices with no curvature).

In this work, we introduce a generalized field theory description of foliated fracton phases
with curved foliations. The field theory can describe a large class of abelian foliated fracton
phases (see Tab. 1 for examples). This is a new kind of field theory, which couples to the
foliation structure instead of a Riemann metric. The foliation structure is described by a set
of closed one-forms.

The field theory is inspired by a string-membrane-net model1 of foliated fracton order,
which generalizes the X-cube model. The string-membrane-net model is presented in a similar
spirit to the Levin and Wen string-net models [72,73]. Indeed, the ground state wavefunction
can be pictured as a large superposition of 1) strings bound to the two-dimensional layers of
the foliation and 2) membranes permeating the three-dimensional bulk, where the strings and
membranes are subject to various constraints.

One can view the string-membrane-net model and field theory as a 3D toric code (or 3+1D
BF theory) that is penetrated by and strongly coupled to multiple stacks of 2D toric code (or
2+1D BF theory) layers (arranged as in Fig. 1, for example). The coupling of the 3D toric
code to the 2D layers results in the mobility constraints of the excitations. For example, when
a 3D toric code charge passes through a 2D layer, it leaves behind a 2D toric code charge on
the 2D layer. As a result, it costs energy each time a 3D toric code charge moves through a
layer, which makes it an immobile fracton at low energy (when there are at least three stacks
of layers).2 In the magnetic sector, 2D toric code fluxes are attached to the end-points of 3D
toric code flux string excitations. As a result, a pair of 2D fluxes on two intersecting layers
behaves as a lineon since the two fluxes must move along the intersection of the layers since
they are bound together by a high-energy 3D toric code flux string.

In Sec. 2, we introduce and study the foliated field theory from a purely field theoretic
perspective. In Sec. 3, we introduce a string-membrane-net picture of foliated fracton order
and a dual coupled-string-net picture. In Appendix A, we generalize the string-membrane-net
model to (ZM , ZN ) qudits on generic lattices (analogous to Refs. [24, 70]). Both sections are
self contained.

1.1 Notational Conventions

We always work in three spatial dimensions, i.e. 3+1 spacetime dimensions. Greek letters
µ, ν, ρ, σ = 0, 1, 2, 3 denote spacetime indices. Repeated spacetime indices are implicitly

1 An equivalent model was independently derived in Section III.B of Ref. [39] by gauging the subsystem
symmetries corresponding to stacks of membrane logical operators of 3+1D toric code.

2 This is depicted in Fig. 3, where the 3D toric code charge is sourced by jµ and the 2D toric code charge is
sourced by Jµk. We refer to the 2D toric code charge as a dipole because it can decay into a pair of oppositely
charged (in a ZN model) 3D toric code charges on opposite sides of the layer.
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(a) (b)

Figure 1: (a) A foliation structure consisting of three stacks of layers (red, green, and blue),
which are often referred to as leaves. In the coarse-grained continuum limit, we will think of
the layers as being infinitesimally close to each other. If the layers have a finite separation, then
the intersections of the layers results in a cubic lattice. (b) A foliation structure consisting of
four stacks of layers (red, green, blue, and yellow), which results in a stack of kagome lattices
when the layers have finite separation.

summed over. The foliation index k is never implicitly summed over; sums over k are always
explicitly written. δµν denotes a Kronecker delta where δµν = 1 if µ = ν, and δµν = 0 if µ 6= ν.
We index some of the gauge fields using the foliation index k as a superscript: e.g. Akµ. When
e.g. k = 2, this appears as A2

µ, which should not be confused with the square of Aµ; we have
not used integer superscripts to denote powers of gauge fields in this work.

In lattice models, X and Z denote anticommuting Pauli σx and σz operators.

2 Foliated Field Theory

Before we can write down a foliated field theory, we must first understand how to describe
the foliation structure. Since our focus is on the case of three spatial dimensions, a foliation
structure corresponds to a layering structure of one or more stacks of two-dimensional surfaces,
exemplified in Fig. 1.

To describe a foliation structure, we introduce a 1-form foliation field ekµ for each
k = 1, 2, .., nf . k indexes the different foliations (stack of layers), µ is a spacetime index,
and nf is the number of foliations. Each eµ covector points orthogonal to the foliation layer
so that a line integral ∫

p
ek ≡

∫
p
ekµdxµ (1)

of ekµ over some path p schematically counts the number of layers that the path p crosses; see
Fig. 2. However, in the field theory, the layers are spaced infinitesimally close to each other.
A cutoff can be added to give a physical meaning to this integral.3 (On the left-hand-side of
the above equality, we are using differential form notation.)

If the path p is open (i.e. is not a closed loop), then the integral
∫
p e

k ∈ R could be

any real number. If the path is closed and contractible, then
∮
p e

k = 0 must vanish (Fig. 2).

3 We elaborate upon this later in Sec. 4.1.1.
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eμ

∫e=+2

∫e=-2

Figure 2: A 2D slice of 3D space showing a single foliation of 2D layers, which appear as
red lines in this cross-section. The foliation field eµ points orthogonal to the layers such that∫
p e

k ≡
∫
p e

k
µdxµ counts the number of layers that the path p crosses. In the figure, we show

two paths and the resulting integrals. A contractible closed path, e.g. the composition of the
cyan and purple paths, results in

∮
p e

k = 0. In the field theory, the (red) foliating layers are
infinitesimally close to each other. A cutoff can be added to allow for a notion of finite layer
spacing.

Therefore, ekµ must be a closed 1-form (dek = 0):

∂µe
k
ν − ∂νekµ = 0 . (2)

Physically, this implies that the lattice has no dislocations (where a layer ends), or from
another point of view, that spacetime geometry has no torsion [74].

We can now write down the Lagrangian for a foliated field theory4:

L =
N

2π

[∑
k

ek ∧Bk ∧ dAk + b ∧ da−
∑
k

ek ∧ b ∧Ak
]

=
N

2π

[ nf∑
k=1

ekµB
k
ν∂ρA

k
σ + bµν∂ρaσ −

nf∑
k=1

ekµbνρA
k
σ

]
εµνρσ .

(3)

The first line is written in differential form notation, while the second is written with indices.
Akµ, Bk

µ, and aµ are 1-form dynamical gauge fields, and bµν = −bνµ is a 2-form dynamical
gauge field. µ, ν, ρ, σ = 0, 1, 2, 3 are spacetime indices which are implicitly summed over.
k = 1, 2, .., nf indexes the different foliations. After quantization, we expect that N should
correspond to the level such that the appropriate lattice model is composed of ZN qudits.

The first term in the Lagrangian describes a (continuous) stack of 2+1D ZN gauge theories
for each foliation. The second term describes a 3+1D ZN gauge theory.5 The third term
couples the 2+1D layers to the 3+1D gauge theory.

ekµ is static (i.e. nondynamical) and describes the foliation structure of space. The above

field theory is a foliated field theory since it couples to the foliation structure ekµ instead of
e.g. a metric gµν , to which most field theories couple. When we want to describe the foliation

4 In Sec. 3.3.3, we explain how this field theory was derived.
5 The first two terms of the Lagrangian utilize 2+1D and 3+1D ZN BF theory L = N

2π
B ∧ dA, which are

continuum descriptions of 2+1D and 3+1D toric code, as reviewed in Appendix A and B of Ref. [71].
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nf 1 2 3 4

charge mobility planon lineon fracton fracton

example stack of anisotropic
X-cube [37]

Chamon’s

lattice models toric codes lineon model [27] model? [3]

Table 1: Charge mobility (to be derived in Sec. 2.1.1) and example models that can be
described by different numbers of foliations. It is expected [27] that nf = 4 foliations can
describe Chamon’s model [3]. (The checkerboard model is equivalent to two copies of the
X-cube model [25], and can therefore be described by two copies of the nf = 3 foliated field
theory.)

structure ekµ using a lattice model Hamiltonian, we will require that ekµ has no time component
and is constant in time:

ek0 = 0 , ∂0e
k
µ = 0 . (4)

In Sec. 2.1.1, we show that the number of foliations nf greatly affects the mobility of the
charge excitations that couple to aµ. Typical examples include are shown in Tab. 1. Lattice
models typically consider flat foliations, for which ∂µe

k
ν = 0. When nf ≤ 3, it is convenient

to choose ekµ = δkµ, where δkµ denotes a Kronecker delta. Fig. 1 (a) and (b) show foliation
examples where nf = 3 and nf = 4, respectively.

The field theory has a subextensive ground state degeneracy, which we discuss in
Appendix B.

2.1 Gauge Symmetry and Mobility Constraints

The most interesting aspect of foliated fracton theories is the mobility constraints on their
excitations, and that is what we study first. To study excitations, we must first couple the
Lagrangian to matter currents (Jµk, Iµk, jµ, and iµν):

L′ = L−
∑
k

JµkAkµ −
∑
k

IµkBk
µ − jµaµ − iµνbµν . (5)

The original Lagrangian [Eq. (3)] is invariant under the following gauge symmetries

Akµ → Akµ + ∂µζ
k + αkekµ , aµ → aµ + ∂µσ −

∑
k

ζkekµ ,

Bk
µ → Bk

µ + ∂µχ
k + λµ + βkekµ , bµν → bµν + 1

2∂µλν −
1
2∂νλµ , (6)

where χk, ζk, σ, λµ, αk, and βk are arbitrary functions of the space-time coordinates. It
is noteworthy that when bµν is transformed by ∂µλν , Bk

µ also transforms; similarly, aµ also

transforms when Akµ is transformed by ∂µζ
k. This results from the third term in Eq. (3),

which strongly couples the Akµ and bµν fields.6

6 As explained around Eq. A12 (and 12) of Ref. [71], the gauge transformations of BF-like field theories can
be derived from the equations of motion for the currents [Eq. (11) and (12)]. The mixing of aµ and Akµ (and
also bµν and Bkµ) fields under gauge transformations can then be thought of as resulting from the fact that
the currents also mix the gauge fields. In the lattice model [Sec. 3.3], this mixing corresponds to Hamiltonian
terms that mix link and plaquette operators.
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When we require that L′ is invariant under these gauge transformations, we have to impose
constraints on the currents:

∂µJ
µk ζ

= −ekµjµ , ∂µj
µ σ

= 0 , ekµJ
µk α

= 0 , (7)

∂µI
µk χ

= 0 , ∂νi
νµ λ

=
∑
k

Iµk , ekµI
µk β

= 0 . (8)

The symbol over each equality sign above denotes which gauge transformation imposes the
constraint.

2.1.1 Fracton/Charge Mobility

Let us now consider the constraints imposed on the currents Jµk and jµ in Eq. (7). We refer
to jµ as a charge current, and Jµk as a dipole current, for reasons that are explained below.
When there are at least three (linearly independent) foliating layers (nf ≥ 3), then jµ will
correspond to a fracton current while Jµk will describe a planon current.

∂µj
µ = 0 tells us that the charge current jµ must be conserved. However, ∂µJ

µk = −ekµjµ

implies that for a given foliation k, the divergence of Jµk must be equal to minus the amount
of charge current passing through the foliation k. This implies that the Jµk current can be
converted into a dipole of charge current jµ.

As an explicit example, if a stack of yz-planes is one of the foliations, e.g. if e1
µ = δ1

µ, then
the following currents satisfy the continuity current constraints [Eq. (7)]:

jµ = −Θ(t)∂xδ
3(x)δµ0 + δ(t)δ3(x)δµ1 ,

Jµ1 = Θ(−t)δ3(x)δµ0 ,
(9)

where Θ is the Heaviside step function, which obeys ∂tΘ(t) = δ(t). The above currents
describe a particle of Jµ1 current being transformed (at time t = 0) into an x-axis dipole of
jµ.7 Therefore, it makes sense to call Jµk a dipole current since it can be interchanged for a
dipole of charge current jµ.8

ekµJ
µk = 0 implies that for each foliation k, the dipole current Jµk must be orthogonal to

ekµ, which means that the dipole current is constrained to only move along a layer.

Let us now consider the charge current jµ in more detail. Recall that ∂µJ
µk = −ekµjµ

implies that for a given foliation k, the amount of charge current passing through the foliation
k must equal the divergence of the dipole current Jµk. Therefore, in order for charge (jµ) to
pass through a foliation layer k, dipoles (Jµk) must be created or absorbed, as depicted in
Fig. 3.

If we do not allow the creation of additional particles, this implies that the charge current
jµ can not pass through foliation layers. If space is foliated by at least three linearly
independent foliations, then this implies that the charges are immobile fractons. With only
one or two foliations, the charges are planons or lineons, respectively, and as claimed in Tab. 1.

7 For t > 0, the electric dipole moment is given by p =
∫
j0x = x̂.

8 We can translate Eq. (9) into the lattice model that we introduce later in Sec. 3. Jµ1 = Θ(−t)δ3(x)δµ0
describes an excitation of the plaquette term [Eq. (21)] for time t < 0. δ(t)δ3(x)δµ1 says that at time t = 0,

we act with a Z̃ operator on the plaquette, which annihilates the plaquette excitation, but creates two cube
excitations [Eq. (20)] on the two sides of the plaquette. The two cube excitations that exist for t > 0 are
described by −Θ(t)∂xδ

3(x)δµ0 . In the dual coupled-string-net language, this corresponds to taking Fig. 8(c) to
Fig. 8(b).
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j μ

Jμ,1

(a)

→
j μ

(b)

Figure 3: A 2D slice of 3D space showing two foliations (red and blue). (a) When in isolation,
a charge (sourced byjµ) cannot move through a foliation layer, which results in the mobility
constraints tabulated in Tab. 1. However, a dipole Jµ1 can move along a red layer and be
absorbed by the charge to move the charge to the right, as depicted in (b).

Alternatively, if we start with the vacuum, we can create four charges in the following way.
Create a dipole particle (sourced by (Jµk)) and two charges on opposite sides of a layer. The
dipole, which is a planon, can then move along the layer and decay into two charges elsewhere.
In this way, we see that charges can be created in groups of four, just like the fractons in the
X-cube model.

2.1.2 Lineon Mobility

Now consider the constraints imposed on the flux currents Iµk and iµν . We will see that Iµk

describes a conserved flux particle current; but the fluxes will be bound together into lineons,
which can only move along the intersection of two foliation layers. iµν will describe flux string
excitations which are less important due to their high energy cost.

∂µI
µk = 0 implies that the flux Iµk is conserved, while ekµI

µk = 0 says that for each

foliation k, the flux can only move along a layer. However, ∂νi
νµ =

∑
k I

µk tells us that the
sum of flux currents (for the different foliations) must be equal to the divergence of the string
current iµν .9 However, it costs a lot of energy to make large string excitations. Therefore,
we can understand the low-energy mobility restrictions of the particles by only considering
small string excitations. If we consider the simplest case of no string excitations, then iµν = 0,
which implies that 0 = ∂νi

νµ =
∑

k I
µk. Therefore, the sum of charge currents for the different

foliations must cancel. This implies that the only way a charge on one layer can move is if
there is an opposite charge moving along with it on an intersecting layer.

For example, if there are at least two foliations (nf ≥ 2) and ekµ = δkµ for k = 1, 2, then
the following currents describe a lineon excitation at the origin:

Iµ1 = −Iµ2 = δ3(x)δµ0 . (10)

The lineon can’t move in the x or y direction because ekµI
µk = 0 forbids the Iµ1 (or Iµ2)

current from moving in the x (or y) direction, and ∂νi
νµ =

∑
k I

µk keeps the Iµ1 and Iµ2

9 Since iµν = −iνµ is an antisymmetric tensor with two indices, it describes the current of moving strings.
For example, if Iµk = 0, then i10 = −i01 = δ(y)δ(z) (and all other iµν = 0) satisfies ∂νi

νµ =
∑
k I

µk and
describes a motionless string excitation along the x-axis.
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currents bound close together (in the absence of high-energy string excitations iµν). In other
words, Iµk describes what would be a planon current (along the yz and zx axis for k = 1 and
2), but ∂νi

νµ =
∑

k I
µk confines these planons together into a lineon that can only move in

the z-direction.

2.2 Equations of Motion

The equations of motion for the foliated field theory [Eq. (3)] coupled to source fields [Eq. (5)]
are

εµνρσekν (−∂ρBk
σ + bρσ)

Ak
=

EoM

2π

N
Jµk , εµνρσ∂νbρσ

a
=

EoM

2π

N
jµ , (11)

−εµνρσekν∂ρAkσ
Bk
=

EoM

2π

N
Iµk , εµνρσ

(
∂ρaσ −

∑
k

ekρA
k
σ

)
b
=

EoM

2π

N
iµν . (12)

By “
Ak
=

EoM
”, we mean that the equality only holds as an equation of motion for the Ak field,

and similar for the other equations.
The equations of motion for Bk and b [Eq. (12)] can be thought of as imposing the string-

membrane-net picture [Eq. (18) and (19), or Eq. (15)], which we introduce in the next section.
The equations of motion for Ak and a [Eq. (11)] impose the dual string-net picture, which we
describe in Sec. 3.4.

3 String-Membrane-Net

After reviewing the string-net condensation picture of topological order in Sec. 3.1, we
introduce a string-membrane-net picture of foliated fracton order.

3.1 String-Net Review

In Ref. [73], Levin and Wen introduced a string-net condensation picture for a wide class of
2+1D topological orders. In this picture, the ground state is given by a weighted superposition
over allowed string configurations. In the string-net lattice models, the allowed string
configurations and weights are determined by some algebraic data known as a fusion category.
Rather than giving a detailed description of this class of models in terms of abstract algebraic
data, we demonstrate the construction through a simple example: the toric code, a lattice
model for Z2 gauge theory.

The string configurations for toric code are given by coloring the edges of a 2D lattice with
Z2 variables. The coloring is “allowed” if the colored edges form closed loops. The ground
state wavefunction is given by an equal-weight superposition of all closed loop configurations:

|Ψ〉 = · · ·+ + + + · · · . (13)

10



Figure 4: A graphical representation of the two types terms appearing in the toric code
Hamiltonian [Eq. (14)]. We use a red cross to represent a product of four Z operators on the
edges around a vertex and a red zig-zag to represent a product of four X operators around a
plaquette.

The resulting topological order is known as the quantum double of Z2, sometimes written as
D(Z2) [72].

One can specify a Hamiltonian (the toric code [72]) that realizes this wavefunction as its
ground state. One can arrive at the Hamiltonian by defining projectors that enforce the two
required conditions of the ground state wavefunction: (i) the strings form closed loops, and (ii)
all possible closed loops appear with equal weight. To keep track of the string configurations,
we place a qubit on every edge and identify the presence of a string with the qubit’s eigenvalue
under the Z operator (short-hand for σz). If Z = −1 on an edge, then we say there is a string
on that edge. Condition (i) is enforced by requiring every vertex has an even number of
strings entering it, equivalently that Av =

∏
e∈v Ze (shown in Fig. 4) has eigenvalue +1 on

every vertex. Condition (ii) requires all strings fluctuate and “condense”; this is done by
adding a term to the Hamiltonian that creates, destroys, and deforms closed strings. Such
operations are generated by the plaquette operator Bp =

∏
e∈pXe (also shown in Fig. 4), and

thus the ground state wave function must be a +1 eigenstate of Bp on every plaquette. Hence
the Hamiltonian is given by a sum of commuting terms:

H = −
∑
p

Bp −
∑
v

Av, (14)

where the first sum is over all plaquettes, and the second is over all vertices. Violations of
these terms correspond to local excitations. For example, a charge excitation will have an odd
number of strings terminating at a vertex, violating Av, while a flux excitation corresponds
to a violation of Bp.

3.2 String-Membrane-Net

Similar to the toric code example, we begin by introducing the allowed string-membrane-net
configurations as an ansatz for the ground state wavefunctions of a fracton model. We then
construct a lattice model by writing down a Hilbert space to keep track of these configurations
and a Hamiltonian that fluctuates over all allowed configurations. For a certain 3-foliation,
the resulting model is equivalent to the X-cube model (up to trivial degrees of freedom and a
local unitary), which we show in Sec. 3.3.2.10

10 In Refs. [69] and [26], p-string condensation and loop condensation pictures of the X-cube model [37] model
were presented. Here, we present a similar picture using a string-membrane-net condensation. Our picture
has the advantage that it can be realized explicitly as an exactly-solvable lattice model, while the previous

11



For expository purposes, we view the cubic lattice as a foliation of either R3 or T 3,
depending on context. Following Refs. [24] and [70], we extend this model to any foliated
3-manifold in Appendix A. The leaves (i.e. layers) of the foliation are given by stacks of xy,
yz, and zx planes. The edges of the cubic lattice correspond to the intersections of two leaves,
while the vertices are given by intersection points of three leaves, as shown in Fig. 1.

A string-membrane-net is given by specifying both a membrane configuration associated
with the plaquettes, and a string-net configuration associated with the leaves of the foliation.
Here, we focus on the case where the membranes and nets are labeled by Z2 variables; see
Appendix A for the more general construction. Thus, a membrane configuration is specified
by an assignment of either +1 or −1 to each plaquette, indicating the absence or presence of a
membrane, respectively. For each leaf, a string configuration is specified by an assignment of
+1 or −1 to each edge in that leaf, which corresponds to the absence or presence of a string on
those edges. Since the edges always occur at the intersection of two planes, one must specify
a pair of Z2 values on each edge to specify the entire string-net configuration.

Let M be the set of all possible membrane configurations and S be the set of all possible
string configurations residing on the leaves. A string-membrane-net (m, s) ∈ M × S is
“allowed” if it satisfies:

∂m =
leaves∑
`

s` and ∂s` = 0 , (15)

where ` runs over all leaves of the foliation, and s` is the string configuration on leaf `. The
first equation says that all edges with an odd11 number of strings (sl) must be attached to the
boundary of a membrane (∂m). The second equation requires that the strings on each leaf
form closed loops (similar to toric code). These constraints are equivalent to the field theory
equations of motion in Eq. (12).

In analogy to the toric code, we now stipulate that the ground state wavefunction is given
by an equal-weight superposition of all allowed string-membrane-net configurations. Hence,
the (un-normalized) ground state wavefunction is given by:

|Ψ〉 =
allowed∑
m,s

|(m, s)〉. (16)

In a very similar way to Eq. (13), we can picture this (unnormalized) wavefunction as

|Ψ〉 = · · ·+ + + + · · · , (17)

condensation pictures were understood perturbatively. We achieve this by introducing quantum degrees of
freedom on the faces of the lattice to track the p-strings/loops in the previous condensation pictures.

11 Here, since there can be at most two strings on an edge, an odd number of strings means exactly one
string. In Appendix A, we consider lattice generalizations where multiple leaves can intersect along the same
edge so that there can be three or more strings on an edge.
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where the red, green and blue strings belong to the xy, yz, and zx planes, respectively. Edges
with a single string always appear at the boundary of a membrane, shown by the shaded purple
area. When two different-colored strings overlap on an edge, a membrane does not need to
terminate on the edge; one can imagine that there is an infintesimal membrane connecting
the two strings.

The excitations in this model correspond to configurations which either do not satisfy
the constraint [Eq. (15)] or are not equal-weight superpositions of all possible nets. Before
describing the various kinds of excitations, we first define a Hamiltonian.

3.3 Lattice Model

We now define a Hamiltonian whose ground state is exactly given by Eq. (17). We first
introduce a Hilbert space that allows us to keep track of the string-membrane-nets. We place
one qubit on each plaquette p and identify the presence of a membrane with the eigenvalue
under Zp. If Zp = −1, then a membrane is present on plaquette p. Each edge lives at
the intersection of two leaves and therefore requires two qubits to keep track of the string
configurations coming from the two leaves. It is convenient to denote the operators acting on
this Hilbert space with a superscript that indicates which layer they belong to. For example,
an edge e parallel to the x-axis will have two Z operators denoted Zzx

e and Zxy
e . If Zzx

e = −1
then we say there is a string present the edge e where the string belongs to an zx plane.

The Hamiltonian has four types of terms. The first two enforce the condition that
we have an allowed string-membrane-net. The latter two give these string-membrane-nets
dynamics and require the ground state is an equal weight superposition over all allowed
string-membrane-nets.

Let’s first look at the terms that force each layer of the foliation to have a valid net. This
is done by the familiar vertex term from the toric code, but applied to every leaf:

Hvert = −
∑
v

+ + (18)

= −
∑
v

[
Zxy
v+x̂Z

xy
v+ŷZ

xy
v−x̂Z

xy
v−ŷ + Zyz

v+ŷZ
yz
v+ẑZ

yz
v−ŷZ

yz
v−ẑ + Zzx

v+x̂Z
zx
v+ẑZ

zx
v−x̂Z

zx
v−ẑ

]
where a colored edge corresponds to a Z operator acting on that edge in the plane denoted
by the superscript of Av. In the second line, we have written out the operators explicitly.
The Hamiltonian is a sum over all vertices (

∑
v), and at each vertex we have a cross operator

oriented in one of three directions. The cross operator is a product of four Z operators
neighboring the vertex. Zxy

v+x̂ denotes a Zxy operator on the edge in the +x̂ direction from
the vertex v.

We now define the terms enforcing the constraint ∂m =
∑

` s`. This constraint can be
implemented by requiring that the number of membranes whose boundary coincides with a

13



given edge is equal to the number of strings on that edge modulo two. Hence,

Hedge = −
x-edge∑
e

−
y-edge∑
e

−
z-edge∑
e

(19)

= −
x-edge∑
e

Zzx
e Z

xy
e Z̃e+ŷZ̃e+ẑZ̃e−ŷZ̃e−ẑ −

y-edge∑
e

Zxy
e Z

yz
e Z̃e+x̂Z̃e+ẑZ̃e−x̂Z̃e−ẑ

−
z-edge∑
e

Zyz
e Z

zx
e Z̃e+x̂Z̃e+ŷZ̃e−x̂Z̃e−ŷ .

The colored lines denote Z operators acting on the edges from the appropriate leaves, and
the purple squares denote Z-operators acting on the plaquettes adjacent to each edge.

We now add terms to the Hamiltonian that force the ground state wavefunction to be an
equal weight superposition of the allowed string-membrane-net configurations. We do so by
adding terms to the Hamiltonian that fluctuate and condense the allowed string-membrane-
nets by creating, destroying, and deforming the strings and membranes. These are generated
by two types of terms. The first wraps a membrane over a cube and is given by,

Hvol = −
∑
c

= −
∑
c

∏
p∈c

X̃p . (20)

where the orange sheets represent the action of an X operator on the corresponding plaquette.∏
p∈c is a product over the six plaquettes around the cube c. The second type of term lives

on the plaquettes in the xy, yz, and zx planes, and is given by,

Hplaq = −
xy-plane∑

p

−
yz-plane∑

p

−
zx-plane∑

p

(21)

= −
xy-plane∑

p

X̃p

∏
e∈p

Xxy
e −

yz-plane∑
p

X̃p

∏
e∈p

Xyz
e −

zx-plane∑
p

X̃p

∏
e∈p

Xzx
e .

We have used a notation where a red, green, or blue squiggly line denotes a Pauli Xxy, Xyz,
or Xzx operator on that edge, respectively.

Altogether, the Hamiltonian is a sum of four types of terms12:

H = Hvert +Hedge +Hplaq +Hvol. (22)

Next, we describe the excitations found by violating various subsets of these terms.

12 For reference use, we show all of the terms together in Appendix D.
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3.3.1 Excitations

In this subsection, we analyze the excitations of the string-membrane-net model.
Let us first consider the string-membrane-net configuration in Fig. 5(a), which shows two

overlapping strings along a straight line. The strings end at a point, which violates the closed
string constraint [Eq. (18)]. This excitation is a lineon excitation (equivalent to the one in the
X-cube model [37]). Lineons can only move along straight lines. If the lineon tries to turn a
corner, it will leave behind another lineon excitation at the corner, as shown in Fig. 5(b). If
the two different-colored strings try to separate, this will violate the edge term in Eq. (19),
which requires that single strings are attached to membranes.

(a) (b)

Figure 5: (a) A lineon excitation: two different-colored strings that end at a point. (b) The
lineon can only move in a straight line since if its path bends, another lineon excitation is left
behind at the corner. This occurs because the red string cannot follow the blue string in the
z-direction as the red string is not allowed on edges in the z-direction. The green string is
then necessary to avoid excitations of the edge term [Eq. (19)]. But an excitation remains at
the corner since the red and green strings both have endpoints there.

A pair of lineons can form a planon, which can move along a two-dimensional plane. This
scenario is depicted in two different ways in Fig. 6.

Excitations of the cube operator [Eq. (20)] correspond to fracton excitations, which are
immobile in isolation. In the string-membrane-net picture, fracton excitations correspond
to string-membrane-net configurations where negative amplitudes are present in the
wavefunction [Eq. (17)]. The fracton excitation is easier to understand in the dual coupled-
string-net picture, which we discuss in Sec. 3.4.

A pair of adjacent cube excitations (often called a fracton dipole) is a planon, which can
move in the 2D plane straddled by the pair of cubes. This excitation is equivalent to one
which only violates the plaquette straddled by the adjacent two cubes [Eq. (21)].

3.3.2 Equivalence to X-cube

In this subsection, we show that the low-energy physics of the string-membrane-net model is
equivalent to that of the X-cube model [37] by explicitly constructing a local unitary circuit
that maps between the two models. In Appendix A, we carry out a similar mapping of the
once and twice foliated string-membrane-net model on a cubic lattice and show that they are
equivalent to a stack of toric codes and the anisotropic lineon model [27], respectively.
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(a) (b) (c)

Figure 6: (a) A pair of displaced lineons at the two endpoints of the red/green strings. The
pair of lineons is a planon, which can move along a two-dimensional plane. This is because, as
shown in (b), they can turn a corner (without leaving any excitations behind) by exchanging
a blue/green lineon. (c) A string-membrane-net configuration that is equivalent to (b) and
can be obtained from (b) by applying the string-membrane fluctuation operators in Eq. (21).

(a) (b) (c)

Figure 7: The three components of the unitary transformation given in Eq. (23). The solid
dot in the center of each plaquette represents the control qubit for the target qubits on the
edges.

Consider the unitary circuit

U =

(
xy-plane∏

p

∏
e∈p

CpX
xy
e

)(
yz-plane∏

p

∏
e∈p

CpX
yz
e

)(
zx-plane∏

p

∏
e∈p

CpX
zx
e

)
, (23)

The components of this unitary are depicted graphically in Fig. 7. CiXj is the controlled-X
gate that applies a Pauli X operation to qubit j controlled by the state of qubit i, i.e. if
Zi = −1. CiXj can also be defined by the following commutation relations:

(CiXj)Xj (CiXj)
† = Xj , (CiXj)Xi (CiXj)

† = XiXj , (24)

(CiXj)Zi (CiXj)
† = Zi , (CiXj)Zj (CiXj)

† = ZiZj .
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The unitary U acts on the string-membrane-net Hamiltonian [Eq. (18)-(22)] as follows:

UHvertU
† = Hvert , (25)

UHedgeU
† = −

x-edge∑
e

Zzx
e Z

xy
e −

y-edge∑
e

Zxy
e Z

yz
e −

z-edge∑
e

Zyz
e Z

zx
e , (26)

UHvolU
† = −

∑
c

∏
p∈c
Bp = −

∑
c

∏
p∈c

(
X̃p

∏
e∈p

Xk(p)
e

)
, (27)

UHplaqU
† = −

xy-plane∑
p

X̃p −
yz-plane∑

p

X̃p −
zx-plane∑

p

X̃p . (28)

In Eq. (27), k(p) denotes the xy, yz, or zx plane parallel to the plaquette p.
Since Eq. (26) and (28) are sums of terms that each only act locally on a single edge or

plaquette, we can view these terms as local constraints that impose

Zzx
e Z

xy
e = 1 , Zxy

e Z
yz
e = 1 , Zyz

e Z
zx
e = 1 , X̃p = 1 . (29)

After imposing these constraints, we are left with a Hilbert space consisting of one effective
qubit per edge. The two operators on each edge can be then be mapped to a single operator
as follows:

Zxy
e 7→ Ze , Zzx

e 7→ Ze , Xzx
e X

xy
e 7→ Xe , (30)

for an x-edge e, and similar for y and z-edges.
Within this subspace, we recover the X-cube Hamiltonian from Eq. (25) and (27):

UHU † 7→HX-cube (31)

=−
∑
v

[Zv+x̂Zv+ŷZv−x̂Zv−ŷ + Zv+ŷZv+ẑZv−ŷZv−ẑ + Zv+x̂Zv+ẑZv−x̂Zv−ẑ]

−
∑
c

∏
e∈c

Xe .

In Eq. (29), we imposed local constraints on the Hilbert space. This is allowed since we
are only trying to show that the string-membrane-net model is in the same phase (as defined
in Ref. [59]) as the X-cube model. That is, one can interpolate between the string-membrane-
net and X-cube models without passing through a phase transition. If we did not impose the
constraints, then we would just be adding trivial gapped degrees of freedom to the X-cube
Hamiltonian.

3.3.3 Connection to Field Theory

We can make a connection between the lattice model and field theory in the same style as
Ref. [71]. See Appendix A of Ref. [71] for the analogous connection between toric code and
BF or Chern-Simons theory.

We begin by assuming a rough correspondence between fields and Pauli operators:

Zke ∼ exp

(
i

∫
ê
Ak
)
, Xk

e ∼ exp

(
i

∫
e
Bk

)
,

Z̃p ∼ exp

(
i

∫
p̂
a

)
, X̃p ∼ exp

(
i

∫
p
b

)
. (32)
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Zke and Xk
e are the Pauli operators on the edges e of a cubic lattice where k labels the

different foliations. In this section, we continue to use k = yz, zx, xy as an informal version of
the k = 1, 2, 3 labelling of the foliations on a cubic lattice. Z̃p and X̃p are the Pauli operators
on the plaquettes. The integrals in Eq. (32) denote small integrals over the appropriate edges
e, dual (on the k-plane) edges ê, plaquettes p, and dual edges p̂ that are dual to the plaquette
p.

To make a connection to the lattice Hamiltonian, we expand the Lagrangian [Eq. (3)] by
separating the time and space parts of the index contractions:

L = +
N

2π

(∑
k

ekaB
k
b ∂0A

k
c + bab∂0ac

)
εabc︸ ︷︷ ︸

conjugate fields

+
∑
k

Ak0
N

2π
eka

(
− ∂bBk

c + bbc

)
εabc︸ ︷︷ ︸

J0k

+a0
N

2π
∂abbcε

abc︸ ︷︷ ︸
j0

+ 2b0a
N

2π

(
∂bac −

∑
k

ekbA
k
c

)
εabc︸ ︷︷ ︸

i0a

−
∑
k

Bk
0

N

2π
eka∂bA

k
c ε
abc︸ ︷︷ ︸

−I0k

]
,

(33)

where we have made use of the fact that ek is closed [Eq. (2)] and ek0 = ∂0e
k
µ = 0 from Eq. (4).

The a, b, c = 1, 2, 3 superscripts and subscripts denote spatial indices (which should not be
confused with the aµ and bµν fields).

The first line in Eq. (33) implies that A and B are conjugate fields and that a and b are
also conjugate fields. More precisely, if e.g. e1

a = δ1
a (where δab denotes a Kronecker delta),

then B1
2 and A1

3 are conjugate fields, and similar for B1
3 and A1

2.13

The last four terms are Lagrange multipliers (Ak0, a0, b0a, B
k
0 ) multiplied by expressions

that are equal to the equations of motion for the current densities (J0k, j0, i0a, I0k) in Eqs. (11)
and (12). When the Lagrange multipliers are integrated out, this results in a constraint that
all of these currents are zero. Nonzero currents correspond to excitations. Therefore, the
Lagrangian [without coupling to currents in Eq. (5)] describes the ground state Hilbert space
with no excitations. Roughly, nonzero currents correspond to excitations of the following
operators in the lattice model:

Bk ∼ exp

(
i

∫
J0k

)
, B̃ ∼ exp

(
i

∫
j0

)
,

Ã ∼ exp

(
i

∫
i0a
)
, Ak ∼ exp

(
i

∫
I0k

)
. (34)

The integrals above integrate over small spatial regions.
For example, we can view the right-hand-side of the below equation as a continuum version

13 A simple example of similarly conjugate variables is the Lagrangian for a single Harmonic oscillator where
x and p are conjugate variables: L = p ∂tx− 1

2
p2 − 1

2
x2.
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of the B operator on an zx-plane plaquette when k = 2:

∼ exp

[
i

∫
eka

(
∂bB

k
c + bbc

)
εabc︸ ︷︷ ︸

J0k∼Bk

]
, when k = 2 and e2

a = δ2
a . (35)

B is a product of Xzx operators on the edges around a zx-plane plaquette and an X̃ operator
at the center of the plaquette. eka∂bB

k
c ε
abc gives the curl of Bk in the y-direction for k = 2

(since e2
a = δ2

a), which corresponds to a product of Xzx operators around a zx-plaquette on
a lattice [since Xzx ∼ exp

(
i
∫
Bk=2

)
in Eq. (32)]. ekabbc corresponds to an X̃ operator at the

center of the plaquette.
We actually originally derived the foliated field theory by making use of the above

connection. That is, we first wrote down the string-membrane-net model, and then used
relations like Eq. (35) in order to systematically discover the field theory.

3.4 Dual Coupled-String-Net Picture

The string-membrane-net picture also has a dual coupled-string-net picture. In this dual
picture, we replace the membranes on the direct lattice by strings on the dual lattice. We
refer to the strings dual to membranes as “3D strings”. Similarly, on each leaf we dualize the
strings on the direct square lattice to strings on the dual square lattice. We refer to strings
on the 2D leaves as “2D strings”. In this dual picture, if X = −1 (instead of Z = −1) on a
edge we say there is a string on that edge. Thus Eqs. (20) and (21) become constraints for
the dual coupled-string-net picture. The constraint in Eq. (20) says that the dual 3D strings
on the dual cubic lattice must form closed loops. The constraint in Eq. (21) says that the
number of dual 2D strings meeting at a vertex from each leaf must equal the number of bulk
3D strings transverse to that vertex modulo two. Eqs. (18) and (19) provide the nets with
dynamics and force the ground state to be an equal-weight superposition of all possible nets
satisfying the constraints.

In a nutshell, in the dual picture, we have strings on the 2D leaves, and strings describing
the 3D toric code; but the 3D toric code strings have to be bound to the endpoint of a 2D
string whenever it passes through a layer. This results in a nice picture for the ground state
wavefunction:

|Ψ̃〉 = · · ·+ + + + · · · . (36)

The purple 3D strings live on the dual cubic lattice and must always form closed loops. The
colored red, green, and blue 2D strings live on the dual square lattice within each leaf. A
plaquette can be penetrated by a purple string if and only if a red, green, or blue string ends
at the plaquette. This model is equivalent to the string-membrane net, but written in terms
of the dual variables.14

14 The coupled-string-net picture can also be viewed as a “p-loop condensate” [69] where the p-loops are
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(a) (b) (c) (d)

Figure 8: (a) An open string (dual to the membranes), which corresponds to a fracton
excitation. (b) A fracton diople given by two fractons seperated by a plane. It is mobile in
the plane orthogonal to the green strings and is therefore a planon. (c) A fracton dipole that
differs from (b) by only local excitations. (d) A planon given by an open string in a 2D plane.
This is an equivalent excitation to (c) since both break the constraint that a plaquette can be
penetrated by a purple string if and only if a red, green, or blue string ends at the plaquette.

3.4.1 Fracton Excitation

These dual variables give a nice picture of the fracton excitation, and the fracton dipoles. In
Fig. 8(a), we see that fractons are given by the nets that don’t satisfy the closed loop condition
of the dual 3D toric code strings. In Fig. 8(b), we show a fracton dipole, which is mobile in the
plane transverse to the dipole moment. Two of these dipoles can be created locally from the
vacuum, which shows that fractons can be created in groups of four, just like in the X-cube
model. In Fig. 8(d), we show a gauge-equivalent15 planon given by a 2D string that is not
bound to a 3D string.

4 Conclusion

We have introduced a new foliated field theory and string-membrane-net model of foliated
fracton order. The field theory and lattice model (after generalization in Appendix A) both
seem to be capable of describing all currently-known abelian foliated fracton orders, such as
the ones shown in Tab. 1.

The novel fracton physics of the foliated field theory results from the static foliation
spacetime structure, which is described by the foliation fields ekµ. This is in contrast to most
other field theories which couple to a Riemannian metric gµν (e.g. U(1) Maxwell gauge theory
L = −1

4g
µρgνσFµνFρσ where Fµν = ∂µAν − ∂νAµ).

It is interesting to note that a foliated field theory can result from a singular limit of the
tetradic Palatini field theory of gravity, which we elaborate upon in Appendix C.

A Chern-Simons-like term, which is somewhat similar to the first term of the foliated field
theory, also occurs in the topological response of Weyl semimetals [75].

given by closed loops of toric code vertex excitations from each layer, rather than plaquette excitations as
originally presented in Ref. [69].

15 In this context, the gauge transformation is generated by the operators that fluctuate the strings: Eqs. (18)
and (19) after dualizing the edges and plaquettes, as explained at the beginning of Sec. 3.4.
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4.1 Future Directions

4.1.1 Quantization

One issue that we have left open concerns how to properly quantize the foliated field theory.
(The field theory in Ref. [71] also has this issue.) For instance, the field theory naturally
describes a continuum of infinitesimally spaced layers along each foliation. But if there is a
continuum of layers, it is not clear how to interpret integrals of the foliation field

∫
p e

k (Fig. 2).

Note that the integral
∫
p e

k is dimensionless if we take ek to have units of inverse length, and

it is therefore tempting to interpret noncontractible integrals
∮
p e

k as an integer number of
layers. But this does not make sense if there is a continuum of layers. The tendency for a
continuum of layers can be seen from Eq. (77), which describes a continuum of degenerate
degrees of freedom in the ground state Hilbert space. One could also consider the braiding
statistics of the particles (e.g. as in Ref. [71]), and see that there is a continuum of planon
particles with nontrivial braiding.

In Appendix B, we show that introducing a cutoff can be used to calculate a finite ground
state degeneracy. However, the cutoff methods used in Appendix B was not rigorous. It would
be desirable if the ground state degeneracy could be calculated more rigorously.

4.1.2 Lattice Model Generalizations

The string-membrane-net picture developed here suggests a generalization by coupling a
(3+1)D TQFT to layers of (2+1)D TQFTs. This could be achieved on the lattice by coupling
a generalized Walker-Wang model [76–78] to layers of string-net models. This construction
includes models equivalent to the recently introduced cage-net models [32]. The construction
can also be viewed as a 3D TQFT with 2D defects, which could provide a possible framework
for the future classification of fracton phases. We plan to elaborate on these directions in a
forthcoming work.

4.1.3 Field Theory Generalizations

One could also imagine generalizing the foliated field theory. For example, we could introduce
another 3+1D ZN gauge theory and couple it to Bk instead of Ak:

L =
N

2π

[∑
k

ek ∧Bk ∧ dAk + b ∧ da+ b′ ∧ da′ −
∑
k

ek ∧
(
b ∧Ak + a′ ∧Bk

)]
(37)

In the above, a′ is a new 2-form gauge field, while b′ is a new 1-form gauge field. It is not
clear if the above Lagrangian can be described by an exactly-solvable lattice model of qubits
using the method in Sec. 3.3.3. One could also consider further generalizing the Lagrangian
by adding MIJ , NI , and PIJ matrices and vectors as follows:

L =
1

2π

[∑
IJk

MIJ e
k ∧AkI ∧ dAkJ +

∑
I

NI bI ∧ daI −
∑
IJk

PIJ e
k ∧ bI ∧AkJ

]
(38)

Studying these Lagrangians would be an interesting direction for future work. These
Lagrangians may be capable of describing the (abelian) twisted fracton lattice models [31,41].
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4.1.4 Dynamical Foliations

The field theory allows us to consider dynamical foliations; i.e. we can consider integrating
over all configurations of the foliation field ekµ. This can be done by adding an additional

term with a new gauge field fkµν to the Lagrangian L [Eq. (3)] in order impose the torsion-free
constraint [Eq. (2)]:

L′ =
N

2π

∑
k

εµνρσfkµν∂ρe
k
σ . (39)

We emphasize that we are now considering both fkµν and ekµ as dynamical gauge fields that
are integrated over in the path integral. L + L′ is not a foliated field theory. Instead, it
appears to be a topological quantum field theory (TQFT), similar to the ones studied in
e.g. Refs. [79–81]. However, L + L′ does not appear to fit into the framework of these
works since e.g. the foliation form ekµ does not appear to have a gauge symmetry of the form

ekµ → ekµ + ∂µξ
k, even when the other fields are also allowed to transform under ξk.

4.1.5 More General Foliations

In the math community, it is known that a 1-form foliation field e actually only needs to
satisfy

de = e ∧ β (40)

for some 1-form β. In many simple cases, β can be chosen to be zero, which we assumed in
Eq. (2). But in some exotic cases, β must be nonzero [82,83]. In fact, the cohomology class of
β ∧ dβ is an invariant of the foliation, which is known as the Godbillon-Vey invariant [84,85].
We leave for future work the generalization of the foliated field theory to foliations with
nonzero β.
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A Generalized String-Membrane-Net Model

In this appendix, we extend the string-membrane-net model introduced in Sec. 3 to include
more general lattice geometries with ZN membranes in the 3D bulk and abelian ZM`

strings
on each leaf. The model is defined on a 3D lattice of vertices, edges, and plaquettes, together
with a specified set of layers ` in the lattice.
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More formally, the model is defined on any sufficiently-nice16 cellulation C of 3D space
with a specified family of sufficiently-nice17 cellulated 2D layers ` ⊂ C2 embedded in the
2-skeleton C2 of C. In many cases of interest, the layers ` are the leaves of a foliation. We
furthermore require that the edges in the 1-skeleton K1 are directed, and that an orientation
of the total 3D space, as well as all 2D layers, has been specified.

The Hilbert space is given by a ZN qudit on each plaquette and a ZM`
qudit on each edge

of each layer (i.e. an edge has a qudit from each layer that contains it):

H =
⊗
p∈C

CN
⊗
`

⊗
e∈`

CM` . (41)

In the above equation p runs over plaquettes in C, ` runs over layers, and e runs over edges
in the `th layer. Similar to the main text, Z̃p and X̃p Pauli operators act on the plaquettes p,
and Ze` and Xe` act on the edge e from layer `.18 The nontrivial commutation relations are

Z̃pX̃p = e2πi/N X̃pZ̃p ,

Ze`Xe` = e2πi/M` Xe`Ze` .
(42)

The Hamiltonian is roughly given by coupling together a 3D ZN toric code on the
cellulation C with a 2D ZM`

toric code on each layer `. To define such couplings, we take as
input an integer n` for each layer such that

n`M` = m`N mod M`N , (43)

for some integer m` so that the terms in the resulting model commute with each other.
Let us elaborate on the origin of Eq. (43). We want to allow a subset of the ZN membranes

to terminate on the ZM`
strings. Let this subset be determined by a map

φ` : ZM`
→ ZN , (44)

so that if x ∈ ZM`
labels a string residing in layer `, then it must live at the boundary of

a membrane labeled by φ`(x) ∈ ZN . The map φ` is not arbitrary, but must be compatible
with the fusion rules of the strings and membranes. In particular, the trivial membrane can
always terminate on the trivial string, which implies that φ`(0) = 0 mod N . More generally,
we must have φ`(a)+φ`(b) = φ`(a+ b) mod N . These two relations tell us that φ` is a group
homomorphism.19 The kernel of this group homomorphism is composed of the strings in ZM

16 We require a regular CW complex [86] partitioning space into cells, isomorphic to open balls, such that
the boundary of any cell contains a finite number of lower dimensional cells, and any cell only appears in the
boundary of finitely many higher dimensional cells.

17 We assume that each layer is also a CW complex embedded into C, which allows the layers to intersect
one another, but not themselves. Generalizing to the case of self intersections along edges is straightforward.
Unlike Refs. [24, 70], we allow more than two layers to intersect along an edge and more than three layers to
intersect at a vertex.

18 Similar to the main text, there can be multiple qudits on an edge, which are distinguished by the layer
they belong to. In the main text, we used a superscript to denote which foliation the qudit acts on; in this
appendix, we instead use a subscript for the edge label so that we can reserve the superscript for multiplicative
powers.

19 Specifying a group homomorphism is equivalent to Eq. (43) because, in order to be a homomorphism, φ`
must satisfy φ`(M`) = 0 where φ`(x) = n`x mod N ; this implies that n`M` = m`N for some integer m`,
which satisfies Eq. (43).
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that do not need to be attached to a bulk membrane. The image of this group homomorphism
is composed of the membranes that are allowed to terminate (on an appropriate string).

Similar to Eq. (22), the Hamiltonian is given by20

H = Hvert +Hedge +Hplaq +Hvol , (45)

with Eq. (18)-(21) generalized as follows:

Hvert =−
∑
`

∑
v∈`

∏
e3v
e∈`

Zσ
e
v

e`
+ h.c. , (46)

Hedge =−
∑
e

∏
`3e

Z−m`e`

∏
p3e

Z̃σ
p
e

p + h.c. , (47)

Hplaq =−
∑
`

∑
p∈`

X̃n`
p

∏
e∈p

Xσpe
e`

+ h.c. , (48)

Hvol =−
3-cells∑
c

∏
p∈c

X̃
σcp
p + h.c. (49)

σba = ±1 is 1 if the orientation on a matches the one induced by b. By convention, we take
all vertices to be positively oriented, which means that σev = 1 if e is directed towards v; but
this choice does not affect the Hamiltonian. “h.c.” denotes the Hermitian conjugate of the
preceding terms. e` denotes the qudit on edge e of the layer `, p denotes a plaquette, and c
denotes a 3-cell (i.e. a volume enclosed by plaquettes). v ∈ ` denotes a vertex in the layer `.
` 3 e denotes a layer that contains the edge e. e ∈ p denotes an edge e at the boundary of
the plaquette p. p 3 e denotes a plaquette p that has the edge e at its boundary. e ∈ `, p ∈ `,
p ∈ c, e 3 v and p ∈ c are similar.

A.1 Examples

In this subsection, we consider some examples of the string-membrane-net model and show
that they map onto previously known models for certain simple foliations. In Sec. 3.3.2, we
showed that the string-membrane-net model maps to the X-cube model for nf = 3 orthogonal
foliations. More generally, when there are nf = 3 orthogonal foliations with M` = N and
m` = n` = 1, the model is equivalent to ZN X-cube [26]. Another simple example is obtained
by setting m` = n` = 0, in which case the model reduces to a 3D ZN toric code and decoupled
layers of 2D ZM`

toric codes.

A.1.1 Planon model (nf = 1)

In this subsection, we show that a cubic lattice with a single (nf = 1) foliation given by a
stack of xy planes with M` = N = 2 and m` = n` = 1 [defined in Eqs. (42) and (47)-(48)] is
equivalent to a stack of decoupled 2D toric codes.

20 When some of the layers have noncontractible loops with length that does not diverge with system
size, the model can have some ground state degeneracy that is not robust to perturbations. This non-robust
degeneracy results from the finite-sized (and therefore not robust) logical operators around these finite-sized
noncontractible loops. To lift this non-robust degeneracy, additional terms can be added to the model, similar
to case for the X-cube model (see e.g. Fig. 4(b-c) of Ref. [70]).

24



The Hamiltonian for this 1-foliated string-membrane-net model is given by the following
terms:

H
(1)
vert =−

∑
v

= −
∑
v

Zxy
v+x̂Z

xy
v+ŷZ

xy
v−x̂Z

xy
v−ŷ , (50)

H
(1)
edge =−

x-edge∑
e

−
y-edge∑
e

−
z-edge∑
e

(51)

=−
x-edge∑
e

Zxy
e

∏
p3e

Z̃p −
y-edge∑
e

Zxy
e

∏
p3e

Z̃p −
z-edge∑
e

∏
p3e

Z̃p ,

H
(1)
plaq =−

xy-plane∑
p

= −
xy-plane∑

p

X̃p

∏
e∈p

Xxy
e , (52)

H
(1)
vol =−

∑
c

= −
∑
c

∏
p∈c

X̃p . (53)

In the above equations, we have used the same graphical notation as in Sec. 3.
In order to map the model to decoupled layers, we consider the following unitary operator

U =

(
xy-plane∏

p

∏
e∈p

CpX
xy
e

)(
yz-plane∏

p

y-edge∏
e∈p

CpX
xy
e

)(
zx-plane∏

p

x-edge∏
e∈p

CpX
xy
e

)
, (54)

where CpXe are controlled-X gates, as defined in Eq. (24). The first term is depicted in
Fig. 7(a). The second term is a product of controlled-Xxy gates acting on the two neighboring
y-axis edges of each yz-plane plaquette.

∏y-edge
e∈p is a product over the y-axis edges e that

neighbor the plaquette p. The third term is similar.
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The above unitary acts on the 1-foliated model as follows:

UH
(1)
vertU

† =−
∑
v

= −
∑
v

Zxy
v+x̂Z

xy
v+ŷZ

xy
v−x̂Z

xy
v−ŷ

∏
p3v+ẑ

Z̃p
∏

p3v−ẑ
Z̃p , (55)

UH
(1)
edgeU

† =−
x-edge∑
e

Zxy
e −

y-edge∑
e

Zxy
e −

z-edge∑
e

∏
p3e

Z̃p , (56)

UH
(1)
plaqU

† =−
xy-plane∑

p

X̃p , (57)

UH
(1)
volU

† =−
∑
c

∏
p∈c

X̃p . (58)

In Eq. (55), v+ ẑ denotes the edge in the +ẑ direction from the vertex v, and
∏
p3v+ẑ denotes

the product over all plaquettes p that has the edge e = v + ẑ at its boundary.
The above Hamiltonian contains terms that act on single edges and plaquettes. Following

Sec. 3.3.2, we view these terms as local constraints that impose

Zxy
e = 1 , X̃xy-plaquette = 1 . (59)

This leaves us in a subspace where only the plaquettes in the yz and zx planes are not frozen
out.

On this subspace, the Hamiltonian is mapped to

UH(1)U † 7→ −
∑
v

−
z-edge∑
e

−
∑
c

(60)

= −
∑
v

∏
p3v+ẑ

Z̃p
∏

p′3v−ẑ
Z̃p′ −

z-edge∑
e

∏
p3e

Z̃p −
∑
c

yz-plane∏
p∈c

X̃p

zx-plane∏
p∈c

X̃p .

The third term is a sum of products of X̃p operators on two yz planes and two zx planes
neighboring each cube c. This Hamiltonian has the same ground state as a stack of 2D toric
code Hamiltonians. The second and third terms behave as 2D toric code cross and plaquette
operators (Fig. 4). The first term just changes the energies of the excited states.

A.1.2 Lineon Model (nf = 2)

In this subsection, we show that a cubic lattice with nf = 2 foliations along the yz and zx
planes with M` = N = 2 and m` = n` = 1 [defined in Eqs. (42) and (47)-(48)] is equivalent
to the anisotropic lineon model in Ref. [27].
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The Hamiltonian of this 2-foliated string-membrane-net model is given by

H
(2)
vert =−

∑
v

+ (61)

=−
∑
v

[
Zyz
v+ŷZ

yz
v+ẑZ

yz
v−ŷZ

yz
v−ẑ + Zzx

v+x̂Z
zx
v+ẑZ

zx
v−x̂Z

zx
v−ẑ

]
,

H
(2)
edge =−

x-edge∑
e

−
y-edge∑
e

−
z-edge∑
e

(62)

=−
x-edge∑
e

Zzx
e

∏
p3e

Z̃p −
y-edge∑
e

Zyz
e

∏
p3e

Z̃p −
z-edge∑
e

Zyz
e Z

zx
e

∏
p3e

Z̃p ,

H
(2)
plaq =−

yz-plane∑
p

−
zx-plane∑

p

(63)

=−
yz-plane∑

p

X̃p

∏
e∈p

Xyz
e −

zx-plane∑
p

X̃p

∏
e∈p

Xzx
e ,

H
(2)
vol =−

∑
c

= −
∑
c

∏
p∈c

X̃p , (64)

where we have used the same graphical notation as in Sec. 3.
In order to map to the lineon model, we consider the following unitary operator

U =

(
xy-plane∏

p

y-edge∏
e∈p

CpX
yz
e

x-edge∏
e∈p

CpX
zx
e

)(
yz-plane∏

p

∏
e∈p

CpX
yz
e

)(
zx-plane∏

p

∏
e∈p

CpX
zx
e

)
, (65)

where CpXe is defined in Eq. (24). The first term is a product of controlled-Xyz and controlled-
Xzx gates acting on the two y-axis and two x-axis edges that neighbor each xy-plane plaquette,
respectively.

∏y-edge
e∈p is a product over the y-axis edges e that neighbor the plaquette p. The

second and third terms are depicted in Fig. 7(b-c).
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The above unitary acts on the 2-foliated model as follows:

UH
(2)
vertU

† =−
∑
v

+

=−
∑
v

[
Zyz
v+ŷZ

yz
v+ẑZ

yz
v−ŷZ

yz
v−ẑZ̃v+x̂+ŷZ̃v−x̂+ŷZ̃v+x̂−ŷZ̃v−x̂−ŷ (66)

+Zzx
v+x̂Z

zx
v+ẑZ

zx
v−x̂Z

zx
v−ẑZ̃v+x̂+ŷZ̃v−x̂+ŷZ̃v+x̂−ŷZ̃v−x̂−ŷ

]
,

UH
(2)
edgeU

† =−
x-edge∑
e

Zzx
e −

y-edge∑
e

Zyz
e −

z-edge∑
e

Zyz
e Z

zx
e , (67)

UH
(2)
plaqU

† =−
yz-plane∑

p

X̃p −
zx-plane∑

p

X̃p , (68)

UH
(2)
volU

† =−
∑
c

=−
∑
c

∏
p∈c

X̃p

z-edge∏
e∈c

Xyz
e X

zx
e . (69)

In Eq. (69),
∏z-edge
e∈c is a product over the four z-edges e around the cube c.

Again we follow Sec. 3.3.2 and treat the terms acting on a single edge or plaquette as local
constraints:

Zzx
x-edge = 1 , Zyz

y-edge = 1 , Zyz
z-edgeZ

zx
z-edge = 1 , X̃yz

p = 1 , X̃zx
p = 1 . (70)

This freezes out the x and y edges, yz and zx plaquettes, and leaves one qubit for each xy
plaquette and z edge, which we identify via the following mapping:

Zyz
z-edge 7→ Zz-edge , Zzx

z-edge 7→ Zz-edge , Xzx
z-edgeX

xy
z-edge 7→ Xz-edge . (71)

Within the subspace satisfying these constraints, the Hamiltonian is mapped to

UH(2)U † 7→ − 2
∑
v

−
∑
c

(72)

= −2
∑
v

Zv+ẑZv−ẑZ̃v+x̂+ŷZ̃v−x̂+ŷZ̃v+x̂−ŷZ̃v−x̂−ŷ −
∑
c

xy-plane∏
p∈c

X̃p

z-edge∏
e∈c

Xe ,

where
∏xy-plane
p∈c denotes a product over the two xy-plane plaquettes on the boundary of the

cube c. There is only one flavor of qubit per z-edge, so the color of the z-edges in the
graphical notation is not important. This Hamiltonian is equivalent to the anisotropic lineon
model introduced in Ref. [27].
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B Ground State Degeneracy

Similar to Ref. [71], a finite and subextensive ground state degeneracy of the foliated field
theory can be calculated by adding a cutoff to describe the spacing between the foliating
layers.

Let us consider a 3-torus with coordinates 0 ≤ x < lx, 0 ≤ y < ly, and 0 ≤ z < lz and
periodic boundary conditions. We shall consider a flat 3-foliation described by

ekµ =
Lk
lk
δkµ , (73)

for k = 1, 2, 3 where Lk is an integer. This choice of foliation corresponds to a continuum
version of the X-cube model on an Lx × Ly × Lz cubic lattice. On a periodic Lx × Ly × Lz
lattice, the ZN X-cube model has degeneracy [46,71]

GSD = N2Lx+2Ly+2Lz−3 . (74)

We will now attempt to reproduce this expression from the field theory.
Fist, we must solve the equations of motion [Eq. (11) and Eq. (12)]. There are many

different gauge choices; one choice is the following:

Aka = δ(xa)qka(t, xk)− δ(xa)δ(xk)1 + εkab

2

∫
yk
qka(t, yk) + (a↔ k) ,

Bk
a = εkabδ(xa)pkb (t, x

k) , (75)

aa = 0 ,

bab = 0 ,

qka(t, 0) = pka(t, 0) = 0 for each k = 1, 2, 3 and with a =


1 k = 2

2 k = 3

3 k = 1

. (76)

The solution is parameterized by functions qka(t, xk) and pka(t, x
k). We remark that qka only

depends on two coordinates: time t and the spatial coordinate xk. q and p are effectively
nonlocal fields that describe the ground state Hilbert space. They require a spatial coordinate
for parameterization because the degeneracy of the X-cube model increases with system size.
The constraint in Eq. (76) avoids a redundancy and is necessary to reproduce the −3 in the
degeneracy equation [Eq. (74)].

We can now plug the above solution [Eq. (75)] into the action S =
∫
L [Eq. (3)]. The result

is

S =
N

2π

∑
k 6=b

Lk
lk

∫ lk

0
dxk pkb (t, x

k) ∂tq
k
b (t, xk) , (77)

where
∑

k 6=b sums over all 6 different choices of k, b = 1, 2, 3 such that k 6= b. If we ignore
quantization issues for the moment, then the above action describes the degenerate Hilbert
space of a degree of freedom for each k 6= b and xk, which would give an infinite amount of
ground state degeneracy.

In order to obtain a finite ground state degeneracy, one could consider imposing cutoff
lengths ak ∼ lk

Lk
in the xk-direction. xk can then effectively take `k/ak = Lk different values,
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and Eq. (77) roughly becomes

S ∼ N

2π

∑
k 6=b

∑
xk=0,ak,..,(Lk−1)ak

pkb (t, x
k) ∂tq

k
b (t, xk) . (78)

Eq. (78) effectively describes 2Lx + 2Ly + 2Lz − 3 many ZN qudits [where the −3 comes from
Eq. (76)], which matches the ground state degeneracy in Eq. (74). However, a more rigorous
derivation of a finite degeneracy (if possible) is left for future work.

C Foliated Field Theory from Singular Tetradic Palatini
Gravity

In this appendix, we note the interesting curiosity that the Tetradic Palatini action for gravity
results in a foliated field theory when linearized about a singuar field configuration.

The Tetradic Palatini action [87] is an alternative to the Einstein-Hilbert action of gravity
which has an advantage that it can be written nicely using differential forms. The Lagrangian
is

L =
1

16πG

∫
εαβγδ e

α ∧ eβ ∧ Ωγδ

=
1

16πG

∫
εµνρσεαβγδ e

α
µe
β
νΩγδ

ρσ d4x , (79)

Ωγδ
ρσ = ∂ρω

γδ
σ + ωγαρ ηαβω

βδ
σ − (ρ↔ σ) ,

where µ, ν, ρ, σ = 0, 1, 2, 3 are spacetime indices and α, β, γ, δ = 0, 1, 2, 3 are internal indices,
which are both implicitly summed over. eαµ is called a frame-field and factorizes the usual

Riemannian metric tensor as gµν = eαµηαβe
β
ν where ηαβ is the Minkowski metric. Ωγδ

ρσ is the

curvature of the non-abelian SO(3,1) gauge field ωαβµ , which ωαβµ is called the spin connection.

(The frame field is antisymmetric in its upper indices: ωαβµ = −ωβαµ .) The spin connection

is related to the usual Christoffel symbols Γνσµ as ωαβµ ηβγ = eανΓνσµE
σ
γ + eαν ∂µE

ν
γ , where Eµα is

the inverse matrix of eαµ: Eµαe
β
µ = δβα and Eµαeαν = δµν .

At each point in space, the frame field eαµ can the thought of as a matrix (since it has two
indices). We can now imagine naively expanding eαµ about a noninvertible rank-1 matrix with
only one nonzero value:

eαµ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 λ


α

µ

+Aαµ (80)

= δα3 ēµ +Aαµ , where ēµ = λδ3
µ .

Aαµ will be thought of as a small perturbation. This is an expansion about a singular spacetime
geometry; Minkowski space is described by an identity matrix eαµ = δαµ . Next we expand the
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frame field about zero:

ωαβµ =


B0
µ α, β = 1, 2

B1
µ α, β = 0, 2

B2
µ α, β = 0, 1 .

(81)

We are essentially just relabelling the ωαβµ fields in terms of Bk
µ fields.

If we linearly expand the Tetradic Palatini action in this way, and only keep terms that
are quadratic in A and B, then we obtain the following foliated Lagrangian:

L =
∑

k=0,1,2

εµνρσ ēµB
k
ν∂ρA

k
σ . (82)

where ēµ was defined in Eq. (80). This is very similar to the first term in the foliated field
theory [Eq. (3)] for a single foliation, which roughly corresponds to a single stack of toric codes
on a lattice.

This suggests that in this singular limit [Eq. (80)], tetradic Palatini gravity has a
gapped energy spectrum (with no gravitons) and exhibits a ground state degeneracy that is
exponential large with the length of the system. The possible existence of this large amount
of degeneracy may not be surprising since gravity and linearized gravity have recently been
argued to exhibit an extensive amount of ground state degeneracy [89–91].

D Table of Hamiltonian Terms

For reference use, we show all of the string-membrane-net model operators together:
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