Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

This Letter describes a search for Higgs boson pair production using the combined results from four final states: $bb\gamma\gamma$, $bb\tau\tau$, $bbbb$, and $bbVV$, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250–3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

The discovery of the Higgs boson (H) by the ATLAS and CMS Collaborations [1-3] was a major step in the understanding of the mechanism of electroweak symmetry breaking. The Higgs boson mass was jointly determined by the two experiments using the CERN LHC Run 1 data to be $m_H = 125.09 \pm 0.24$ GeV [4] and recently by CMS using partial Run 2 data with even better accuracy, $m_H = 125.26 \pm 0.21$ GeV [5]. With the Higgs boson mass known with a precision better than 0.2%, the structure of the Higgs scalar field potential and the Higgs boson self-couplings are precisely predicted in the standard model (SM). The current measurements of the properties of the Higgs boson are compatible with the SM predictions [6, 7]. The measurement of the Higgs boson self-coupling provides an independent test of the SM and verification that the Higgs mechanism is truly responsible for the electroweak symmetry breaking by giving access to the shape of the Higgs scalar field potential [8]. Access to the Higgs boson trilinear coupling can be obtained by measuring the production of pairs of Higgs bosons (HH) at the LHC. At the same time, several theories predict heavy resonances that decay into HH [9-16]. Studies of pair production of Higgs bosons, each of which can decay in different channels, allow one to probe different regions of the anomalous couplings space and of the resonant invariant mass spectrum. A combination of different channels is therefore needed to obtain the best possible sensitivity for the HH production.

The HH SM production cross section, which partly depends on the Higgs trilinear coupling, was computed at next-to-next-to-leading order in quantum chromodynamics (QCD), including next-to-next-to-leading-logarithmic corrections and finite top quark mass effects at next-to-leading order. Its value is $\sigma_{HH} = 33.53^{+4.3\%}_{-6.0\%}(\text{QCD scale}) \pm 5.9\%(\text{other})$ fb in proton-proton (pp) collisions at 13 TeV for a Higgs boson mass of 125 GeV [17-21], where “other” includes contributions from parton distribution function (PDF) uncertainties evaluated using the PDF4LHC recommendations [22-24], strong coupling constant α_s dependence, and top quark mass effects.

Physics beyond the SM (BSM) can significantly modify the cross section and the kinematic properties of nonresonant Higgs boson pair production. In order to provide model independent constraints on these effects, we introduce an effective field theory (EFT) Lagrangian that extends the SM with dimension-6 operators [25]. This approach results in five anomalous Higgs boson couplings relevant for HH production: the H coupling to the top quark, y_t; the trilinear coupling, λ_{HHH}; and three additional couplings, denoted by c_2, c_2g, and c_g, that represent, respectively, the interactions of a top quark pair with a Higgs boson pair, of a gluon pair with a Higgs boson pair, and of a gluon pair with a single H [17]. We define $k_\lambda = \lambda_{HHH}/\lambda_{SM}$ and $k_t = y_t/y_{SM}$. Since a full five-dimensional scan of all possible coupling combinations would be computationally excessive, a clustering strategy [26] has been developed to group together possible combinations of coupling values that present similar kinematic properties. Twelve clusters have been identified, in addition to the SM and the $\lambda_{HHH} = 0$ scenarios. Within each cluster, a representative point in the EFT space that we refer to as a benchmark is selected. Each benchmark thus represents a possible modification of the HH signal yield and kinematic distributions due to BSM effects.

In the searches discussed in the Letter, the resonant signal is represented by either a CP-even particle of spin-0 (radion) or spin-2 (graviton) with a width that is much smaller than the detector resolution for the whole range under study.

The ATLAS and CMS Collaborations performed studies of Higgs boson pair production at $\sqrt{s} = 8$ TeV [27-29]. Limits on nonresonant HH production were set by the CMS Collaboration in the $bb\gamma\gamma$ and $bb\tau\tau$ final states. Here and in the rest of the text the indication of the charge of the decay products is omitted for simplicity of notation. The combination of those searches...
allowed the CMS Collaboration to set an upper limit on HH production at 43 times the SM expectation \cite{29}. Using the data collected in 2016 at \(\sqrt{s} = 13\) TeV, the CMS and ATLAS Collaborations performed searches in the \(bb\gamma\gamma\) \cite{30,31}, \(bb\tau\tau\) \cite{32,33}, and \(bbbb\) \cite{34,35} final states, with the CMS Collaboration having results in the \(bbVV\) \cite{39} channel as well, where \(V\) denotes either a \(W\) or a \(Z\) boson that decays leptonically. All four channels studied at CMS are included in this combination.

The CMS apparatus features a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. Events of interest are selected using a two-tiered trigger system \cite{40}. The particle-flow algorithm \cite{41} aims to reconstruct and identify each individual particle in an event with an optimized combination of information from the various elements of the CMS detector. Dedicated b tagging algorithms \cite{42} are used to identify jets originating from b quarks (b jets). A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. \cite{43}.

With the current data, the \(bb\gamma\gamma\) \cite{30} analysis is the most sensitive to SM Higgs boson pair production in CMS. Despite a low branching fraction \(\mathcal{B}(HH \rightarrow bb\gamma\gamma) = 0.26\%\), the analysis profits from a very small background contribution, thanks to the excellent diphoton mass resolution of the CMS experiment for this channel \(\approx 1.6\) GeV \cite{30}). To exploit this feature, the analysis relies on a 2D fit of the \(H \rightarrow \gamma\gamma\) and \(H \rightarrow bb\) invariant mass distributions, where the background coming from the \(N\gamma + \text{jets} (N = \{0, 1, 2, \ldots\}\) continuum is estimated from the mass sidebands. Other background contributions can arise from single \(H\) production and constitute up to a third of the total background in the nonresonant searches. They are modeled from Monte Carlo (MC) simulations, including gluon fusion, vector boson fusion, \(VH\), \(t\bar{t}H\), and \(b\bar{b}H\) production processes. In the nonresonant searches events are classified into low- and high-mass categories according to the HH pair reduced mass \(\tilde{M}_X = M_{ll\gamma\gamma} - M_{ll} - M_{\gamma\gamma} + 250\) GeV, which increases the sensitivity to HH production. A further categorization based on the purity of the events is applied to both resonant and nonresonant searches. The signal purity is estimated by means of a boosted decision tree (BDT) built from the b tagging probability of each jet, the angles between the products of the HH system decay, and the transverse momentum of each H candidate. The category most sensitive to nonresonant production is the one with the highest signal purity and reduced mass, with a SM signal over background ratio \(S/B\) of \(\approx 5\%\). The low reduced mass categories enhance sensitivity to large \(k_{\perp}\) values. In the resonant search, two different BDTs are trained for resonance masses \(m_X\) higher or lower than 600 GeV.

The \(bb\tau\tau\) analysis \cite{32} combines a relatively low background contamination with a relatively large branching fraction (7.3\%), for a final \(S/B\) of \(\approx 0.4\%\) in the most sensitive category. At least one isolated hadronically decaying \(\tau\) lepton must be present in the event, together with a second isolated lepton that is oppositely charged. The second lepton can be either an electron or a muon (semileptonic final state) or another hadronically decaying \(\tau\) lepton (fully hadronic final state). Events are categorized according to the number of b-tagged jets (one or two) in the event. Events with a boosted \(H\) jet candidate are assigned to a dedicated boosted category. A BDT discriminant based on the kinematic differences between the HH and \(t\bar{t}\) processes is used in the semileptonic channels in order to reduce the large amount of \(t\bar{t}\) background. A kinematic fit \cite{44} is performed to reconstruct the Higgs boson mass. For the nonresonant searches, the so-called `stransverse mass' \(m_{T2}\) \cite{32,45,46} is found to provide the best separation between
the background and the signal \[45\]. For the resonant searches, a further kinematic fit, detailed in Ref. \[47\], is performed to reconstruct the most probable mass of the resonance. The largest background contributions come from Drell–Yan, \(t\bar{t}\), processes and events comprised uniquely of jets produced via the strong interaction (QCD multijet). Additional background sources considered are VH, VV, and W+jets. The Drell–Yan background is estimated from a leading order simulation with a scale factor obtained from data in a Z boson enriched control region to account for higher-order corrections. The QCD multijet background is estimated using three control regions with different lepton charge (same-sign region) and isolation requirements. All other background contributions are estimated from MC simulations.

The \(bb\) final state has the highest HH decay branching fraction (33.6\%). Three optimized resonance searches are performed targeting resonances of different masses. For a resonance mass below 0.7 TeV, four b-tagged jets \[34\] are required in the final state. For high-mass searches \((m_X > 1.2 \text{ TeV})\), selected events must contain two “H jet candidates,” where each H jet candidate is a jet associated with a boosted H decaying into a \(b\bar{b}\) pair merged into a single jet \[35\]. This candidate reconstruction uses jet substructure and jet flavor tagging techniques \[48\]. The search sensitivity in the intermediate mass range, 0.7–1.2 TeV, is improved by considering both the final state with four b jets and the case with one Higgs jet candidate and two b jets \[36\]. A dedicated nonresonant HH search is performed in the four b jet final state \[57\]. Triggers using b tagging and jet substructure techniques are used to collect these events. The sensitivity of the analysis is improved using a BDT that employs jet-related and HH decay kinematic variables and global event properties. Under SM assumptions, the S/B can be as high as 1\% in the most sensitive BDT bins. Further sensitivity to BSM nonresonant HH production, which often results in boosted topologies, is obtained adding the final states with four b-tagged jets (with H jet candidates). The bbVV analysis \[39\] includes the HH → bbWW → bb\(\ell\ell\nu\nu\) and the HH → bbZZ → bb\(\ell\ell\nu\nu\) processes, for a total branching fraction \(B(\text{HH} \rightarrow \text{bb}\ell\ell\nu\nu) = 2.72\%\) when all possible lepton flavor decays are considered (including the \(\tau\) leptonic decays). This channel has large backgrounds, which are predominantly from \(t\bar{t}\) and Drell–Yan processes. All background sources are estimated from MC simulations with the exception of Drell–Yan, which is estimated from data. In order to improve the rejection of these large backgrounds, a deep neural network (DNN) discriminant technique has been implemented. Two separate parametrized DNNs have been trained, one for the resonant and one for the nonresonant search. The first is parametrized according to the mass of the resonance, while the second depends on the parameters \(k_\lambda\) and \(k_t\). For each nonresonant benchmark, the closest point in the \((k_\lambda, k_t)\) plane, according to the statistical measure defined in Ref. \[26\], has been used to define the DNN parameters. An S/B ratio of \(\approx 0.18\%\) is obtained in the most sensitive DNN region for SM nonresonant production.

For both the resonant and nonresonant searches, likelihood fits are performed using the statistical toolkits, RooFit \[49\] and RooStats \[50\]. The signal strength (\(\mu\)), defined as the ratio between the observed and expected signal rates, is estimated with its corresponding confidence interval via the profile likelihood ratio test statistic \[51\]. The latter depends on the signal strength as well as on the nuisance parameters, which account for various experimental and theoretical uncertainties. The reference value for the expected signal strength is chosen as the SM gluon fusion HH production cross section (33.53 fb) in nonresonant searches. The likeli-
hood fits are performed with respect to the observed data or a data set constructed using $\mu = 1$ for assessing expected results using the asymptotic approximation [52, 53]. Limits are set at 95% confidence level (CL) using the CL$_s$ criterion [54, 55]. For all measurements, the H mass is fixed at $m_H = 125$ GeV, and branching fractions are assumed to be equal to the SM predictions. When investigating signal models corresponding to the shape benchmarks, the single H production cross sections are all assumed to have their SM values.

When combining results, the systematic uncertainties from various sources are accounted for as follows. A polynomial interpolation between alternative shape variations is used to model systematic effects on the shape of the discriminant variables. Lepton and photon reconstruction and identification efficiencies and energy scale corrections are assumed to be fully correlated across the channels and analysis categories that use the same objects. The uncertainties in the jet energy scale corrections are divided into multiple sources. The effect of each source on the rate and shape of the final observable for different processes is considered in the bbVV analysis and is treated as fully correlated with the normalization effects in the bb\tau{\tau} and bb\gamma{\gamma} channels. In these latter channels, the shape effects from the individual sources have been verified to be negligible, and only the cumulative effects on the shape are considered. They are assumed to be correlated with the normalization and shape variation from the bbbb analysis. Jet energy resolution effects are negligible in the bb\tau{\tau} channel and assumed to be fully correlated between the bbVV and the bbbb channels. The effects of jet energy scale and resolution are included in the functional form for the shape used in the bb\gamma{\gamma} channel and are assumed to be uncorrelated with the other channels. Uncertainties related to the b tagging are dominated by the modeling of heavy flavor production when measuring data/MC scale factors, and are considered correlated across the bb\tau{\tau}, bb\gamma{\gamma}, and bbVV channels. The nonresonant bbbb analysis uses a different b tagging method and is considered uncorrelated.

An integrated luminosity uncertainty of 2.5% [56] is applied in a fully correlated way to all channels and all processes estimated from simulation. Different uncertainties are applied to background processes that are estimated from data. The uncertainties in the total cross sections of the common background processes are assumed to be correlated across all channels, and are of the order of 5% for the most relevant ones (single top, t\bar{t}, VH). The uncertainty in the same-sign to opposite-sign candidate ratio in the bb\tau{\tau} channel is propagated to the estimation of the multijet background, and the uncertainties in the scale factors applied to the $Z/\gamma^* \rightarrow \ell\ell$ background estimation to correct for higher-order effects are also taken into account. A normalization uncertainty is considered in the bbbb nonresonant search to account for residual biases in the hemisphere mixing technique. Some background estimates in the bb\tau{\tau}, bbVV, and nonresonant bbbb analyses have non-negligible statistical uncertainties due to the limited number of events passing the selection in data control regions or simulated data samples. These are taken into account by allowing each bin in each template shape to fluctuate independently according to a Poisson distribution. These uncertainties are assumed to be uncorrelated across bins in the individual template shapes. The nonresonant signal uncertainties include contributions coming from variations in the renormalization and factorization scales, these amount to $^{+4.3}\%_{-6.0}\%$ [17, 20] of the nonresonant signal cross section. Other theoretical uncertainties such as those in α_S, PDFs, and finite top quark mass effects at next-to-next-to-leading order result in a further 5.9% uncertainty [18, 19, 21]. These effects are assumed to be fully correlated across the different channels. The α_S, PDFs, and scale variation effects are also included for single H background contributions. These uncertainties are considered fully correlated for the VH production in the bb\tau{\tau}, bbVV, and bb\gamma{\gamma} channels. The uncertainty in the branching fraction of the Higgs boson to bb [17] is also assumed to be fully correlated across all channels.

The event yield in data is small, so the statistical uncertainties are much larger than the sys-
Figure 1: The 95% CL upper limits on the signal strength $\mu = \sigma_{HH}/\sigma_{SM}$. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the limits on μ expected under the background-only hypothesis.

With all the correlations across the channels included, the observed and expected limits at 95% confidence level on the nonresonant HH production signal strength are measured to be 22.2 and 12.8 times the SM expectations, respectively. They are shown in Fig. 1 for the individual channels and their combination. Small excesses, compatible with statistical fluctuations, are observed in the bbbb, bb$\tau\tau$, and bb$\gamma\gamma$ final states and result in a small excess in the combined result. A scan is performed for different values of the k_λ parameter, while keeping all other EFT parameters fixed at their SM values. The value of k_λ affects both the expected cross section and the HH decay kinematics. For each value, these differences are fully simulated and considered in the scan. Resulting limits are reported in Fig. 2. The exclusion limit as a function of k_λ closely follows the features of the HH production cross section and HH invariant mass distribution M_{HH}, which are sculpted by the interference between the HH production via the trilinear Higgs coupling and the emission of an HH pair from a top quark loop. The minimum at $k_\lambda = 2.46$ corresponds to the maximum negative interference between the two diagrams, which results in a minimum of the cross section but at the same time enhances the relative imp-
The resonant search is performed in the range of masses from 250 to 3000 GeV. Under the hypothesis of a narrow-width resonance, no significant excess is found across the whole range for either a spin-0 or a spin-2 resonance. The results of the combined resonant search are shown in Fig. 3 for the spin-0 model, and in Appendix A for the spin-2 case.

In summary, a combination of searches for nonresonant and resonant Higgs boson pair production has been presented. The combination includes the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, $b\bar{b}b\bar{b}$, and $b\bar{b}VV$ channels, where V represents a W or Z boson, using a data sample collected in proton-proton collisions at $\sqrt{s} = 13$ TeV, which corresponds to an integrated luminosity of 35.9 fb$^{-1}$. Upper limits at 95%
Figure 3: Expected (dashed) and observed (solid line) 95% CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the limits on the HH cross section expected under the background-only hypothesis.

confidence level (CL) on the Higgs boson pair production cross section are obtained. For the nonresonant production mechanism, the observed (expected) 95% CL corresponds to 22.2 (12.8) times the theoretical prediction for the standard model cross section. An effective field theory framework is used to parametrize the cross section as a function of anomalous couplings of the Higgs boson. When varying only the ratio k_{λ} between the Higgs trilinear coupling λ_{HHH} and its standard model expectation, values of k_{λ} in the region $-11.8 < k_{\lambda} < 18.8$ ($-7.1 < k_{\lambda} < 13.6$) are still allowed by the observed (expected) data. For the resonant production mechanism, upper exclusion limits at 95% CL are obtained for the production of a narrow resonance with mass ranging from 250 to 3000 GeV. These results represent both the most sensitive and most comprehensive study of double Higgs production at the LHC to date.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF
(Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[6] ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV”, JHEP 08 (2016) 045,

[27] ATLAS Collaboration, “Searches for Higgs boson pair production in the \(hh \rightarrow bb\tau\tau, \gamma\gamma WW, \gamma\gamma bb, b\bar{b}b\bar{b}\) channels with the ATLAS detector”, *Phys. Rev. D* **92** (2015) 092004, [doi:10.1103/PhysRevD.92.092004] [arXiv:1509.04670].

[37] CMS Collaboration, “Search for nonresonant Higgs boson pair production in the \(b\bar{b}b\bar{b}\) final state at \(\sqrt{s} = 13\) TeV”, (2018). [arXiv:1810.11854]. Submitted to JHEP.

References

[41] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* **12** (2017) P10003,

[47] CMS Collaboration, “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $h \rightarrow \tau\tau$”, *Phys. Lett. B* **755** (2016) 217,

doi:10.22323/1.093.0057.

A Supplemental material

Figure 4 shows the 95% CL upper limit on the HH production cross section for each benchmark topology, the standard model and the $k_\lambda = 1$ case and for each final state. As can be seen in the plot, different benchmark shapes result in very different sensitivities for a given analysis. The combined limits alone are shown in Fig. 5.

The sensitivity of each analysis to the SM HH production is shown in Fig. 6 together with the 8 TeV CMS result.

The exclusion limits for a spin-2 narrow width resonance are shown in Fig. 7.
Figure 4: The 95% CL exclusion limits on the nonresonant Higgs boson pair production cross sections for different EFT benchmark topologies (bins 1 to 12) as defined in Ref. [26]. Each benchmark represents a possible modification in the HH signal yield and kinematic distributions due to BSM effects. The last two bins show the 95% CL exclusion limits for the SM and for the $\lambda' = 0$ scenario. Limits are shown for each of the four final states separately and for the combination.

The plot shows the observed and expected cross sections for different EFT benchmarks. The x-axis represents the different EFT benchmarks (1 to 12), while the y-axis shows the 95% CL upper limit on the cross sections in fb. The color coding indicates the 68% and 95% expected limits. The observed data points are marked with circles.

The CMS logo is visible in the bottom right corner of the page.
Figure 5: The 95% CL exclusion limits on the nonresonant Higgs boson pair production cross sections for different EFT benchmark topologies. Each bin of the histogram shows the limit for a different benchmark (bins 1 to 12) as defined in Ref. [26], for SM production and for $k_\lambda = 0$ production (last 2 bins). Each benchmark represents a possible modification in the HH signal yield and kinematic distributions due to BSM effects.
Figure 6: The 95% CL exclusion limits on the SM nonresonant Higgs boson pair production cross section for different channels. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The uppermost bin reports the combined limit obtained at $\sqrt{s} = 8$ TeV.
Figure 7: Expected (dashed) and observed (solid line) 95% CL exclusion limits on the production of a narrow, spin-2 resonance decaying into a pair of Higgs bosons. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja a, C.A. Bernardes a, L. Calligaris a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F. Novaes a, SandraS. Padula a

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla, A.A. Abdelalim, A. Mohamed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillas

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, Ravindra Kumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinali, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, G. Rolandi29, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Universit\`a di Roma b, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza, S. Gellia,b, E. Longoa,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua, C. Rovellia, F. Santanastasioa,b

INFN Sezione di Torino a, Universit\`a di Torino b, Torino, Italy, Universit\`a del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, F. Cennaa,b, S. Comettia, M. Cottaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pacheraa,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, R. Salvaticoa,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, D. Soldina,b, A. Staianoa

INFN Sezione di Trieste a, Universit\`a di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea
B. Francois, J. Goh30, T.J. Kim

Korea University, Seoul, Korea

Sejong University, Seoul, Korea
H.S. Kim

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoab, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim37, E. Kuznetsova38, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin
Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI),
Moscow, Russia
M. Chadeeva39, P. Parygin, D. Philippov, S. Polikarpov39, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin38, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin40, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov41, V. Blinov41, T. Dimova41, L. Kardapoltsev41, Y. Skovpen41

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’,
Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),
Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erce, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan García

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

University of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage
CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Ozkorumkulu, S. Tekten, E.A. Yetkin
Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, USA
University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA
Florida International University, Miami, USA
Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros
University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

University of Wisconsin - Madison, Madison, WI, USA

\^: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Cairo University, Cairo, Egypt
10: Also at Helwan University, Cairo, Egypt
11: Now at Zewail City of Science and Technology, Zewail, Egypt
12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at Shoolini University, Solan, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
30: Also at Kyunghee University, Seoul, Korea
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Universität Zürich, Zurich, Switzerland
48: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
49: Also at Adiyaman University, Adiyaman, Turkey
50: Also at Istanbul Aydin University, Istanbul, Turkey
51: Also at Mersin University, Mersin, Turkey
52: Also at Piri Reis University, Istanbul, Turkey
53: Also at Gaziosmanpasa University, Tokat, Turkey
54: Also at Ozyegin University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Monash University, Faculty of Science, Clayton, Australia
64: Also at Bethel University, St. Paul, USA
65: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
66: Also at Utah Valley University, Orem, USA
67: Also at Purdue University, West Lafayette, USA
68: Also at Beykent University, Istanbul, Turkey
69: Also at Bingol University, Bingol, Turkey
70: Also at Sinop University, Sinop, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea