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Materials and Methods 

Data 

In this study, we used continuous seismic data collected by the Southern California Seismic 

Network (SCSN) over the period 2008-2017. All available stations with EH and HH channels 

were used. The station membership of the SCSN evolved over time, but in total 513 unique 

stations were used at one point or another (Fig. S4). We filtered the waveform data with a 

Butterworth filter between 2-15 Hz and downsampled to 50 Hz for computational efficiency. The 

dataset was organized into 24-hour continuous files with all gaps filled with zeros. 

Template events were taken from the standard seismicity catalog produced by the SCSN. 

All local earthquakes listed in the catalog from 2000-2017 were preliminarily selected as 

template events, which total 284,149. We note that the template events start from the year 2000, 

rather than 2008 like the continuous data, because triggered waveforms exist further back in time 

but can still be used for the analysis. Template waveforms were then constructed for all stations 

with phase picks made by the SCSN, and were filtered and downsampled in an identical manner 

to the continuous data. The phase picks have all been manually reviewed by professional seismic 

analysts. P-wave templates were 2.5 seconds long or equal to the S-P time (whichever was 

shorter), whereas S-wave templates were 4.0 seconds long. Template waveforms were chosen to 

start 0.5 seconds before the phase arrival time. P-wave template waveforms were only taken 

from vertical components, while S-wave template waveforms were taken from horizontal 

components. We limited the maximum source-receiver distance of template waveforms to 50 

km, a compromise between maximizing detection sensitivity and missing events entirely in the 

coarsest parts of the network. 

 

Template matching 

The template matching procedure is a modified version of the technique developed by 

Shelly et al. (8) . For each day of continuous data in the study period, each of the template events 

was used to calculate cross-correlation functions. For a given template event, each of the 

available template waveforms was then checked to ensure the signal to noise ratio was above 5.0, 

using a 4-second long window prior to the P-wave onset as the noise window, and any template 

waveforms for which this criterion was not met were discarded. We then required a minimum of 

12 template waveforms to proceed, or else the template event was discarded altogether. Since 

there is a maximum of 1 P-wave and 2 S-wave templates per station, this translates into a 

minimum of 4 stations needed to run a template event. 

Next, the template waveforms were cross-correlated against 24 hours of continuous data 

resulting in correlation functions that were nearly 24 hours in duration. Correlations were only 

performed for templates and continuous data with identical station and channel codes. These 

correlation functions were then migrated back in time by the observed travel time of the 

matching template waveform, as defined by the time difference between the analyst pick and the 

origin time. The migration operation resulted in a time series in ‘origin time space’. Then, these 

migrated correlation functions were stacked over all stations, channels, and phases. The median 

absolute deviation was calculated for the stacked correlation function, and an initial detection 

threshold was set at 9.5 median absolute deviations. This threshold was chosen based on visual 

examination of thousands of detections. The time corresponding to the peak correlation value for 

each trigger was taken as the origin time of the detected event. 



 

 

The initial list of detections made by the template event was then subjected to additional 

post-processing steps for quality control purposes. First, to remove any cases where duplicate 

detections of the same event may have occurred, we merged together detections separated less 

than 2.0 seconds apart, and the detection with the largest stacked correlation coefficient was 

taken as the final detection. At this point, an initial location was assigned to the detection that 

was equal to the hypocenter of the template event. 

All of the processing steps listed above pertain to a single template event. The entire 

methodology is repeated for all template events in the set, for all of the days of data. Due to the 

potential for multiple template events to detect the same event, duplicates were identified as 

events separated by less than 2.0 seconds, and the detection with the largest cross-correlation 

coefficient was chosen as the final detection. Detections are generally very closely located to the 

template events that detected them, since the waveforms are required not only to be highly 

similar but have precisely the same moveout. This generally limits detections to within ~100-

200m. However, due to random chance, events will occasionally be detected by templates that 

are much further away. This is the reason for imposing a minimum separation time of 2.0 sec: so 

that duplicate detections are minimized. 

We used an array of 200 NVIDIA P100 GPUs to perform the cross-correlations, in an effort 

that totaled roughly 300,000 GPU hours and more than one million CPU hours over several 

iterations. Then, we performed a search across the set of detections to identify which were re-

detections of the template events themselves. There are various conditions for which a template 

event might not be recovered by the detection process, including an insufficient number of 

channels meeting the SNR criteria or phase criteria. For these reasons, these missing template 

events were added back to the catalog to ensure that it was an exact superset of the SCSN 

catalog. The entire procedure resulted in a set of 1,811,362 detections. 

 

Catalog quality control and false alarms 

The QTM catalog is a fully automated seismicity catalog, with the exception of the template 

events that were taken from the SCSN catalog. We examined thousands of detections randomly 

to determine the optimal detection thresholds and the approximate false alarm rates that these 

thresholds correspond to. The base QTM catalog, which contains 1.81 million earthquakes, used 

a threshold of 9.5 median absolute deviations, and has an approximate false alarm rate of 5%. 

We also provide an even higher quality catalog, using a threshold of 12 median absolute 

deviations, which has 853,764 earthquakes (4.74 times increase), and has a false alarm rate of 

less than 1%. 

 

Magnitude estimation 

We determined magnitudes using an approach based on amplitude ratios between the newly 

detected events and the template events. For each template waveform and the matching detection 

waveform, we calculated the peak amplitudes and corrected them for any differences in gain 

factors. Then the amplitude ratio was formed and translated into a magnitude difference by 

taking its logarithm and assuming a factor of 10 difference in amplitude was equal to a unit 

difference in magnitude. 

One strategy at this point is to take the average or median of the logarithmic amplitude ratios 

and add this to the magnitude of the template event. We found that for most events, this 

performed well, but for a few percent of the events, the magnitudes were slightly biased due to 

the inclusion of too many noisy amplitudes from operating so close to the ambient noise level. 



 

 

Furthermore, it is desirable to provide realistic estimates of the errors in the magnitudes. 

Therefore, we performed a Bayesian estimation (35) of the magnitude, by calculating the 

posterior distribution, 

 𝑝(𝑀 |𝑑) = 𝐿(𝑑|𝑀)𝑝(𝑀), 

where d represents the observations (here, these are the set of logarithmic amplitude ratios) and 

M is magnitude. The prior 𝑝(𝑀) is given by, 

 𝑝(𝑀) = {
𝐾10−𝑀, if 𝑀𝑙  ≤ 𝑀 ≤ 𝑀ℎ

0, otherwise
, 

where K is a normalization constant and Ml, Mh represent truncation limits to the exponential. 

Here, we use Ml = -2, reflecting the limit to which we expect to detect earthquakes on the low 

end, and set Mh equal to the magnitude of the template event associated with each detection, 

since we do not anticipate detecting larger earthquakes that do not already appear in the SCSN 

catalog. For the likelihood function, 𝐿(𝑑|𝑀), we use the Laplace distribution, which is an 

exponential where the errors follow an L1 norm, 

 𝐿(𝑑|𝑀) = ∏
1

2𝑏
𝑒−|𝑀−𝑑𝑖|/𝑏

𝑖 . 

The Laplace distribution was chosen instead of the more commonly selected Gaussian (and 

associated L2 norm), since it is more robust in the presence of statistical outliers, which are 

pervasive in large earthquake datasets. The Laplacian scale parameter, b, was chosen to be 0.33 

based on inspection of the scatter for numerous events’ amplitude ratios. For our catalog, we 

report three values taken from the posterior distribution: the median, the 5th percentile, and the 

95th percentile, which can be used to define a magnitude and a credibility interval. 

 

Magnitude of completeness estimation 

We used the Goodness-of-Fit (GFT) technique (36) to assess the magnitude of completeness 

Mc of the QTM catalog, while acknowledging that a single summary statistic like Mc masks the 

large spatiotemporal variability inherent to the dataset. In brief, the GFT technique interprets Mc 

as the magnitude above which the cumulative magnitude distribution can be interpreted as a 

Gutenberg-Richter power law. Rather than preselect a threshold value of goodness-of-fit (a 

practice which can sometimes produce unstable results (37) ), we instead select the Mc value as 

point at which the goodness-of-fit vs. Mc curve begins to level off. With this approach, the 

estimated Mc values for the QTM and the 2008-2017 subset of the SCSN catalog are 0.3 and 1.7, 

respectively (Figure S5).  

For comparison, we also show the Mc estimates obtained from the maximum curvature 

(MAXC) technique, which interprets Mc as the peak of the incremental magnitude distribution. 

The GFT estimates are 0.5-0.6 M units larger than the MAXC estimates, which is expected given 

the tendency for MAXC to underestimate the true Mc (37). We also note that the maximum 

likelihood estimate for the Gutenberg-Richter b-value (38) for our study region is relatively low, 

of order 0.8 for both the QTM and SCSN catalogs. This likely reflects the high seismicity rate in 

Baja California (especially in the aftermath of the 2010 M7.2 El Mayor-Cucapah earthquake), 

where SCSN network coverage is limited. Within the heart of the network (Figure S4), b-values 

are in the range 0.9-1.0. 

 

Seismicity relocation 

Next, we relocated all template events individually using a 3D velocity model (17, 39). Then, 

for each earthquake in the catalog, including template events, we determined the 200 nearest 



 

 

neighbor template events to be used for pairwise cross-correlation to measure differential times. 

For each event pair, we prepared data windows that were 1.0 sec long for P-waves and 1.5 sec 

long for S-waves, starting 0.25 sec before a given phase arrival. Phase picks were made by 

analysts at the SCSN and have all been manually reviewed. The maximum source-receiver 

distance allowed was 100 km. We required at least 6 differential times with a cross-correlation 

coefficient of 0.6 or greater in order to save the values for an event pair. This process resulted in 

~1.63 billion differential times and 99.4 million event pairs. 

We then refine the location precision of the catalog using GrowClust (16), a cluster-based 

relative relocation technique. GrowClust applies agglomerative, hierarchical clustering to 

differential travel time data for pairs of earthquakes observed at a set of common stations. The 

clustering algorithm uses a robust, L1-norm approach to define the relative hypocentral positions 

that are most consistent with the observed set of differential times. While the GrowClust 

algorithm is designed to scale to large datasets, the unprecedented size and unique structure of 

the QTM catalog required several preprocessing steps, which we describe below. 

The locations of the detected events are unknown a priori, though they are likely to be in the 

neighborhood of the source region of the detecting template in order to produce high waveform 

similarity. We thus set the initial location of each detected event to the location of its associated 

template event. We take advantage of the fact that the template event locations are significantly 

better resolved than detected event locations by rescaling the GrowClust waveform similarity 

coefficients by a factor of 100 for template-template event pairs, relative to the similarity 

coefficients of the template-detection event pairs. This ensures that the template events are 

relocated first with respect to one another during the GrowClust algorithm clustering hierarchy, 

before relocating any of the detected events. This improves the final location accuracy of both 

the template and detected events, and also improves the GrowClust algorithm efficiency.   

Since the full QTM catalog and the associated differential times are too large to fit into 

computer memory at once, we subdivided the full catalog into a set of 12 polygons, each with 

between 90,000 and 250,000 events (Figure S6). The polygon locations were determined 

automatically by applying a spectral clustering algorithm (40) to the template locations, a 

technique which groups events into clusters based on spatial connectedness and avoids 

subdividing the dataset in regions of dense seismicity (to the extent possible). To further mitigate 

the potential for edge artifacts, all polygon boundaries were padded with the 200 nearest 

neighbors of each event assigned to a given polygon. Detected events were assigned to the 

polygon of their associated template.  

We prepared region-specific input files for each of these 12 polygons and used an MPI script 

to run GrowClust in parallel, with a total runtime in CPU hours of 18.84 for the optimal run 

parameters. We performed sensitivity analysis on the GrowClust run parameters, and found only 

minor variations in catalog quality by perturbing the default values. Overall, the best results were 

produced by setting rmin = 0.65, ngoodmin = 8, rmsmax = 0.2, distmax1 = 5, distmax2 = 3, 

hshiftmax = vshiftmax=1.5, and nclustmin = 1 (see (16) and the associated User Guide for 

detailed descriptions of these parameters). In total, 701,262 of the events were able to relocated, 

which is 38.7%. The Gutenberg-Richter statistics for these events are shown in Fig. 1. The minor 

discrepancy between the relocated and unrelocated events at M > 3 reflects a small number of 

larger events that were not successfully relocated (larger earthquakes tend to have unique 

waveforms that are dissimilar to other nearby events and hence do not cross-correlate well). 

 

Static stress calculations 



 

 

We used the Coulomb3 software package (41) to calculate the approximate change in static 

stress for the 2010 M7.2 El Mayor-Cucapah earthquake. Our simplified model of the El-Mayor-

Cucapah earthquake emulates the fault orientation of previous source inversion solutions (27, 

42), and assumes a planar rupture with constant slip, a rupture length L = 75km, rupture W = 16 

km, strike = 319 degrees, dip = 77 degrees, and rake = -147 degrees. We calculated Coulomb 

stress change at 10km depth for aftershock fault planes aligned with the mainshock rupture 

(Figure S7). While the exact values are sensitive to the spatial stress patterns, assumed fault 

orientations, and other approximations inherent to Coulomb stress theory, the basic distance 

decay of static stresses are relatively insentive to these assumptions. These calculations suggest 

that static stresses from the El Mayor-Cucapah event should be negligible to first order (< 1 kPa) 

at the greater distances where measurable triggering is observed in the QTM catalog. We note 

that these calculations are strictly due to the coseismic displacements and ignore the effect of any 

postseismic deformation and of dynamic triggering. 

 

Future template matching catalogs for other seismic networks 

We will provide the QTMatch code for others to use for building template matching catalogs. 

The requirements for such catalogs are generally two-fold: a high-quality seismicity catalog and 

set of associated phase picks, and high-quality three-component continuous waveform datasets. 

While vertical only sensors can work, the S-waves are much weaker and often contribute more to 

the detection sensitivity than P-waves with lower energy. Station density generally is dependent 

on the targeted scale involved. 

  



 

 

Supplementary Text 

Catalog description 

The QTM catalog will be publicly available through the Southern California Earthquake 

Data Center <scedc.caltech.edu>, along with all of the differential times and associated meta-

data. The catalog is a superset of the SCSN catalog for the period 2008-2017. Each event is 

given a quality grade, where a quality of 1 indicates that an event has been manually reviewed by 

a professional seismic analyst at the SCSN; these events are those listed in the SCSN catalog. Of 

the newly detected events, the highest confidence detections are given a quality of 2. These 

detections correspond to a detection threshold of 12*MAD (see methods). The remainder of the 

detections are given a quality of 3, which corresponds to a detection threshold of 9.5*MAD. 

Depending on the level of confidence necessary for a particular analysis, it is therefore possible 

to subset the catalog accordingly. We emphasize that events with quality 2 and 3 quality have not 

been manually reviewed. For those interested in experimenting with different detection 

thresholds, all of the necessary information is provided. 

  



 

 

 

Fig. S1. 

Example of an event detected with template matching. P-wave template waveforms are colored 

red, and S-wave template waveforms are colored blue. Note that not all stations have P and S 

template waveforms that meet the quality control criteria (Methods). 

  



 

 

 

Fig. S2. 

Example of an event detected with template matching. P-wave template waveforms are colored 

red, and S-wave template waveforms are colored blue. Note that not all stations have P and S 

template waveforms that meet the quality control criteria (Methods). 



 

 

 

Fig. S3. 

Example of an event detected with template matching. P-wave template waveforms are colored 

red, and S-wave template waveforms are colored blue. Note that not all stations have P and S 

template waveforms that meet the quality control criteria (Methods).  



 

 

 

 

Fig. S4. 

Map of station distribution used for the template matching and differential time measurements. 

  



 

 

 
Fig. S5.  

Magnitude of completeness (Mc) estimates and incremental magnitude distributions for the QTM 

and SCSN catalogs from 2008-2017. The preferred Mc estimates are obtained from the GFT 

method (circular markers), with the maximum curvature estimates (star markers) shown for 

comparison. 



 

 

 

Fig. S6. 

The 12 polygons used in GrowClust relative hypocentral relocation technique. The legend 

indicates the polygon number as well as the number of events assigned to it. During the 

relocation process, each of the polygons shown above are padded with additional events to 

ensure that each event assigned to a given polygon is relocated in tandem with its 200 nearest 

neighbors.  

  



 

 

 

Fig. S7. 

Coulomb stress change for the 2010 M7.2 El Mayor-Cucapah earthquake. Coulomb stress at 

10km depth is calculated on a rectangular grid surrounding the mainshock centroid, assuming a 

uniform-slip rupture model and fault planes aligned with the mainshock rupture. (a) Coulomb 

stress increase as function of distance (black dots) for grid cells within the positively stressed 

regions, with the median stress increase denoted in red. (b) Map view of Coulomb stress change 

at 10km depth, with distance coordinates relative to the rupture centroid. Black contours 

correspond to 1kPa intervals.  



 

 

 
Fig. S8. 

Seismicity in the Hot Springs section of the San Jacinto fault zone (see figure inset). The upper 

panel shows seismicity in the SCSN catalog, while the lower panel is from the QTM catalog. 

  



 

 

 
Fig. S9. 

Similar analysis to Fig. 4A, but with a uniform minimum magnitude of 0.5 imposed across the 

dataset. 
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