CaltechAUTHORS
  A Caltech Library Service

Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817

Abbott, B. P. and Abbott, R. and Adhikari, R. X. and Ananyeva, A. and Anderson, S. B. and Appert, S. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Biscans, S and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Brunett, S. and Cahillane, C. and Callister, T. A. and Cepeda, C. B. and Coughlin, M. W. and Couvares, P. and Coyne, D. C. and Ehrens, P. and Eichholz, J. and Etzel, T. and Feicht, J. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Heptonstall, A. W. and Hulko, M. and Isi, M. and Kamai, B. and Kanner, J. B. and Kondrashov, V. and Korth, W. Z. and Kozak, D. B. and Lazzarini, A. and Markowitz, A. and Maros, E. and Massinger, T. J. and Matichard, F. and McIver, J. and Meshkov, S. and Nevin, L. and Pedraza, M. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Sanchez, L. E. and Taylor, R. and Torrie, C. I. and Urban, A. L. and Vajente, G. and Vass, S. and Venugopalan, G. and Wade, A. R. and Wallace, L. and Weinstein, A. J. and Williams, R. D. and Willis, J. L. and Wipf, C. C. and Xiao, S. and Yamamoto, H. and Zhang, L. and Zucker, M. E. and Zweizig, J. and Barkett, K. and Blackman, J. and Chen, Y. and Chua, A. J. K. and Li, X. and Ma, Y. and Pang, B. and Scheel, M. and Tso, R. and Varma, V. (2019) Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 875 (2). Art. No. 160. ISSN 1538-4357. http://resolver.caltech.edu/CaltechAUTHORS:20190426-072359239

[img] PDF - Published Version
See Usage Policy.

2425Kb
[img] PDF - Submitted Version
See Usage Policy.

1079Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20190426-072359239

Abstract

One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here, we revisit the neutron star remnant scenario and focus on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence of GW170817. The main physical scenario for this emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveform and different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. However, this study serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.3847/1538-4357/ab0f3dDOIArticle
https://arxiv.org/abs/1810.02581arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Billingsley, G.0000-0002-4141-2744
Callister, T. A.0000-0001-9892-177X
Coughlin, M. W.0000-0002-8262-2924
Isi, M.0000-0001-8830-8672
Kamai, B.0000-0001-6521-9351
Kanner, J. B.0000-0001-8115-0577
Korth, W. Z.0000-0003-3527-1348
Kozak, D. B.0000-0003-3118-8950
Massinger, T. J.0000-0002-3429-5025
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Zucker, M. E.0000-0002-2544-1596
Zweizig, J.0000-0002-1521-3397
Pang, B.0000-0002-5697-2162
Additional Information:© 2019 The American Astronomical Society. Received 2018 October 5; revised 2019 March 4; accepted 2019 March 8; published 2019 April 25. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO and also the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d'Innovació Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Educació Investigació Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned document number LIGO-P1800195.
Group:LIGO
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max Planck SocietyUNSPECIFIED
State of Niedersachsen/GermanyUNSPECIFIED
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche Scientifique (CNRS)UNSPECIFIED
Stichting voor Fundamenteel Onderzoek der Materie (FOM)UNSPECIFIED
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)UNSPECIFIED
Council of Scientific and Industrial Research (India)UNSPECIFIED
Department of Science and Technology (India)UNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development (India)UNSPECIFIED
Agencia Estatal de InvestigaciónUNSPECIFIED
Vicepresidència i Conselleria d'Innovació Recerca i TurismeUNSPECIFIED
Conselleria d'Educació i Universitat del Govern de les Illes BalearsUNSPECIFIED
Conselleria d'Educació Investigació Cultura i Esport de la Generalitat ValencianaUNSPECIFIED
National Science Centre (Poland)UNSPECIFIED
Swiss National Science Foundation (SNSF)UNSPECIFIED
Russian Foundation for Basic ResearchUNSPECIFIED
Russian Science FoundationUNSPECIFIED
European CommissionUNSPECIFIED
European Regional Development Funds (ERDF)UNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding CouncilUNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Hungarian Scientific Research Fund (OTKA)UNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
Paris Île-de-France RegionUNSPECIFIED
National Research, Development and Innovation Fund (NKFIA)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Province of Ontario Ministry of Economic Development and InnovationUNSPECIFIED
Natural Science and Engineering Research Council of Canada (NSERC) UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC)UNSPECIFIED
International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR)UNSPECIFIED
Research Grants Council of Hong KongUNSPECIFIED
National Natural Science Foundation of ChinaUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Kavli FoundationUNSPECIFIED
Subject Keywords:gravitational waves – methods: data analysis – stars: neutron
Other Numbering System:
Other Numbering System NameOther Numbering System ID
LIGO DocumentP1800195
Record Number:CaltechAUTHORS:20190426-072359239
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20190426-072359239
Official Citation:B. P. Abbott et al 2019 ApJ 875 160
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:95004
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:26 Apr 2019 16:53
Last Modified:26 Apr 2019 16:53

Repository Staff Only: item control page