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The resolvent formulation of the Navier—Stokes equations gives a means for the char-
acterisation and prediction of features of turbulent flows—such as statistics, structures
and their nonlinear interactions—using the singular value decomposition of the resolvent
operator based on the appropriate turbulent mean, following the framework developed
by McKeon & Sharmal (2010). This work will describe a methodology for approximating
leading resolvent (i.e., pseudospectral) modes for shear-driven turbulent flows using
prescribed analytic functions. We will demonstrate that these functions, which arise
from the consideration of wavepacket pseudoeigenmodes of simplified linear operators
, in particular give an accurate approximation of the class of nominally
wall-detached modes that are centred about the critical layer. Focussing in particular
on modelling wall-normal vorticity modes, we present a series of simplifications to the
governing equations that result in scalar differential operators that are amenable to such
analysis. We validate our method on a model operator related to the Squire equation, and
show for this simplified case how wavepacket pseudomodes relate to truncated asymptotic
expansions of Airy functions. We demonstrate that the leading wall-normal vorticity
response mode for the full Navier—Stokes equations may be accurately approximated
by considering a second order scalar operator, equipped with a non-standard scalar
inner product. Using this method, optimal mode shapes may be found by finding the
appropriate root of a polynomial. In addition, the variation in mode shape as a function
of wavenumber and Reynolds number may be captured by evolving a low dimensional
differential equation in parameter space. This characterisation provides a theoretical
framework for understanding the origin of observed structures, and allows for rapid
estimation of dominant resolvent mode characteristics without the need for operator
discretisation or large numerical computations. We explore regions of validity for this
method, and in particular find that it remains accurate even when the modes have some
amount of “attachment” to the wall. In particular, we demonstrate that the region of
validity contains the regions in parameter space where large-scale and very-large-scale
motions typically reside. We relate these findings to classical lift-up and Orr amplification
mechanisms in shear-driven flows.

1. Introduction

The identification of pertinent structures that arise in the transition towards, and
as coherent features within, turbulent wall-bounded flows has been the focus of much
research over the past several decades. Qualitatively, such analysis includes identification
and classification of empirically-observed structures, such as near-wall streaks (Kline et al.
[1967), hairpin structures (Theodorsen! 1952} [Head & Bandyopadhyay|[1981) and their

1 Email address for correspondence: sdawson5@iit.edu



2 S. T. M. Dawson and B. J. McKeon

grouping in large-scale motions (Zhou et al.[1999;|Guala et al.2006), and very large-scale
motions or superstructures (Kim & Adrian|[1999 Guala et al.|2006; [Hutchins & Marusic|
. For more details concerning the (sometimes debated) properties, taxonomy and
dynamics of such structures, see reviews such as [Robinson| (1991)), [Smits et al.| (2011)),
and , and references within.

On a quantitative level, a starting point for the prediction of coherent structure
comes from consideration of properties of the governing equations, most typically in
linearised form. Features emergent in wall-bounded turbulent flows often bear little
resemblance to modes identified from classical stability analysis (Drazin & Reid|[2004)),
where two-dimensional modes are predicted to be the least stable by Squire’s theorem,
and mean-linearised flows often have only stable eigenvalues (Reynolds & Tiederman|
11967; Del Alamo & Jimenez| [2006; |Cossu et al||2009). Perhaps the most important
realisation in the study of such linear operators is the fact that their non-normality
can result in high amplification (in either the time or frequency domain), which cannot
be predicted from their spectra alone (Boberg & Brosa [1988; Butler & Farrell |1992;
[Reddy & Henningson|[1993; [Trefethen ef al|[1993; [Schmid & Henningson|[1994; [McKeon|
& Sharma)[2010; Bamieh & Dahlehl|2001} [Jovanovié & Bamieh|2005; [Schmid 2007; Hwang]
& Cossu|[2010; [Schmid & Henningson|[2012)). Operator nonnormality is responsible for
both finite-time energy growth of the linear system from a from a given initial condition,
and the amplification resulting from continual forcing (be it stochastic or harmonic).
Indeed, these two notions are mathematically related via the Kriess constant of the
operator (Schmid|[2007).

While most initial works considered laminar base flows (with one notable exception be-
ing [Farrell & Ioannou (1993)), who considered mean-linearised equations using stochastic
forcing), more recent developments have used similar methods for prediction of turbulent
features by linearizing about states computed from turbulent data and/or models (which
is most often a mean state). For example, [Del Alamo & Jimenez (2006) and [Cossul
have demonstrated transient growth of near wall-streaks and large scale
motions for turbulent channel and zero-pressure-gradient boundary layers respectively,
while [Schoppa & Hussain| (2002)) has showed that a turbulent mean with the addition
of low-speed streaks can give rise to the growth of structures in the near-wall region of
turbulent channel flow.

The characterisation of the nonlinear Navier—Stokes equations in the frequency domain
as the linear resolvent operator acting on the nonlinear “forcing” terms, as developed by
McKeon & Sharmal (2010) has been particularly fruitful for elucidating operator-based
predictions of structure in wall-bounded turbulence, including very large scale motions
and their scaling (McKeon & Sharmal[2010)), and hairpin structures (Sharma & McKeon|
2013). McKeon! (2017) summarizes further developments in this area. Note that this
approach has also been applied in other contexts, such as in the study of cavity (Gémez
et al2016; Qadri & Schmid|[2017), airfoil (Yeh & Taira2018)), and jet (Garnaud et al.
2013} [Jeun et al.|2016; [Towne et al|[2018} [Schmidt et al|2018) flows.

While such developments are recent and ongoing, many of the underlying physical
mechanisms in shear flows have been understood for at least several decades. These
include the Orr mechanism (Orr|[1907; [Jiménez|[2013), which amplifies upstream-leaning
disturbances while tilting them towards the downstream direction, and the lift-up mech-
anism (Landahl||{1980} [1975), in which wall-normal disturbances lead to large streamwise
responses. Streamwise inhomogeneity provides an additional mechanism for amplification
of disturbances (Chomaz |2005; [Hack & Moin|2017)), which, as with the Orr and lift-up
mechanisms, arises through different aspects of non normality of the underlying linear
operator (Symon et al|2018).
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Recent results concerning the pseudospectral properties of certain matrices (Trefethen
& Chapman|[2004) and linear differential operators by (Trefethen [2005) have revealed
criteria by which pseudomodes exist that are localised in both space and spatial frequency,
and are highly amplified by the associated resolvent operator. This method of analysis
has been used, for example, in the analysis of swept wing flow by |Obrist & Schmid| (2010,
2011J).

An alternative route to quantitatively define coherent structure in turbulent flows
is to consider data collected from simulations or experiments. The proper orthogonal
decomposition (Lumley [1967), which computes spatial modes of highest energy in a
dataset, is perhaps the most ubiquitous such method. The original formulation computes
a set of energetically optimal modes for each temporal frequency. This method was
recently shown by Towne et al.| (2018) to give modes equivalent to resolvent response
modes, under the assumption that the true forcing to the system, arising from the
nonlinear term in the Navier—Stokes equations, results in uncorrelated resolvent response
mode expansion coefficients. Note that quantitatively correct prediction of characteris-
tics of wall-bounded turbulence using resolvent-based approaches can be improved by
considering the properties of the nonlinear forcing terms, which are dependent on second
order turbulence statistics (Zare et al.[|2017]), or through the addition of an eddy viscosity
term to the linearised dynamics (Illingworth et al.||2018).

Connections may also be made between resolvent analysis and the dynamic mode
decomposition (Schmid & Sesterhenn|[2008; [Schmid| |2010; Rowley et al.| 2009), which
computes spatial modes from the eigendecomposition of an linear operator that best
matches the evolution of the data between adjacent snapshots, as described in [Sharma
et al.| (2016) and Towne et al| (2018). A widely used POD variant computes modes
without filtering into temporal frequencies, which gives a basis that can be used to project
the Navier—Stokes equations onto to obtain a reduced-order model (Berkooz et al.|[1993;
Holmes et al.[2012). Note in particular that this has been used to describe the dynamics
of coherent structures in wall-bounded turbulent flows, such as those associated with the
near-wall cycle (Aubry et al.|/1988]). Reviews of modal decomposition techniques, and
their use in reduced-order modelling, may be found respectively in (Taira et al| (2017)
and Rowley & Dawson| (2017)).

With the exception of very simple systems, the identification of mode shapes typically
requires resorting to numerical methods, applied either to the discretised (and most-
often linearised) governing equations, or to data collected from experiments or numerical
simulations of their evolution. In this work, we describe methods to approximate mode
shapes and amplification mechanisms without requiring the formation of discretised
operators, for shear flows with arbitrary mean velocity profiles. In section |2, we provide
a review of the mathematical concepts that underpin our analysis. Section [3] presents the
formulation and sample results for resolvent analysis of a turbulent boundary layer, and
presents a sequence of simplifications to the governing equations that retain the correct
features of the leading resolvent response mode. In Section [d] we detail a procedure for
estimating mode shapes by solving an optimisation problem using a prescribed template
function, which may be derived either from approximations to exact solutions of the
given operator, or from the wavepacket pseudomode theory introduced in section [2}

2. Mathematical preliminaries: The resolvent and pseudospectra of a
linearised operator

This section presents material on the pseudospectral analysis of a mean-linearised
system, which will provide background for the analysis in later sections. Section[2.1]intro-
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duces the resolvent formulation of a nonlinear system. The singular value decomposition
of the resolvent and its connection with pseudospectra is discussed in Section[2.2] Section
discusses the underlying theory behind the existence of wavepacket pseudospectral
modes, which will be related to our subsequent analysis.

2.1. The resolvent form of a nonlinear dynamical system

We begin by considering a nonlinear dynamical system
u = g(u). (2.1)

Let ug denote the temporal mean of the state of the system, where we are assuming that
the dynamics are statistically stationary. Expressing the system state as u(t) = uo+u/'(¢),
we may rewrite equation [2.1] as

’ Og

W =g(uo+u) = Ju

w' + Flu), (22)
uo

where we have linearised about the mean state, but retained the full dynamics of the
system with the remaining nonlinear dynamics f(u). Taking a Fourier transform in time,
equation [2.2] may be expressed as

where * denotes a Fourier-transformed function. The mean-subtracted state of the system
may then be expressed by

a = —iw— 8—g
ou

where we refer to H,, as the associated resolvent operator for this system for a given
frequency w, where we are assuming here that this inverse exists (i.e., that iw is not an

—

) Fu) =M, f(u), (2.3)

eigenvalue of g—ﬁ ). It is important to note that we have not made any approximations
U,

0
to the nonlinear system at this point, and have only made the assumption that the system
is statistically stationary in time with a well-defined mean.

2.2. The singular value decomposition of the resolvent operator

From equation the properties of the mean-subtracted state u’ will depend both
on the nature of the nonlinear term f, and throperties of the linear operator H,, =
g

(—iw + £)71, where following on from section we let £L=— 55| . In particular, if

‘H., amplifies a small number of directions, or “modes” to a much largoer degree than all
others, then so long as these directions are excited to some extent by f , this can allow
prediction of the dominant features of u’ by studying only H,,.

More precisely, we consider the singular value decomposition of the resolvent operator

(oo}
Hy = Zaj%(b;, (2.4)
j=1
with o > op41 for all k. For the remainder of this work, we will consider H,, to be a

discretised operator, with a corresponding singular value decomposition (SVD) defined
in the same manner as but with a finite sum of modes. The SVD of a linear operator
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requires the definition of an inner product (or more precisely, inner products on both the
input and output spaces), which prescribes how the adjoint is prescribed and computed
(and also induces the norms used in defining various properties of the SVD). For discrete
operators, we may characterise an inner product by a positive definite weighting matrix
M for which
(x1, @) = 2] Mz,, (2.5)
where -7 denotes the conjugate transpose. If M characterises the inner product on the
spaces containing both the forcing and response functions of a finite-dimensional linear
operator L (which we consider the discretisation of a linear operator L), the adjoint
L* satisfies (Lxz1,z2) = (x1,L*x5), from which one may show that L* = M~*LTM.
Throughout this paper we will largely work with (infinite-dimensional) operators acting
on a continuous domain, with the understanding that numerical computation of the SVD
is performed on a finite-dimensional discrete approximation.
For some aspects of this work, it will be convenient to think of the leading singular
values and vectors of H,, as defined in the following manner:

o1 = max || Heo| = ||Hol|, 2.6

1 \|¢H:1H ol = [IHa| (2.6)

Y1 = argmax |[H v, (2.7)
P [[pll=1

¢1 = argmax | Ho 9|, (2.8)
¢ lloll=1

where here and throughout we use the spectral norm when taking the norm of an operator.
Note that we also have the relationship ¢y = o] 19,61, which may also be rearranged as
¢1 = o1H, 1. In other words, ¢ gives the shape of the forcing which gives rise to the
largest amplification (a factor of 1) upon the application of the operator H,,, the result
of which is the (scaled by o) response mode ;. It will also be useful to recognise that
these singular values and vectors are related to the smallest singular values and vectors
of H ! = (—iw + L), by

-1

o1 = | min ||H," ) : 2.9

= (min, 1 29)

1 = argmin ||H; ], (2.10)
i [pl=1

¢1 = argmin || (H,")" ¢]. (2.11)
o lloli=1

In this work, we will make use of these definitions, that allow us to define leading singular
values and vectors as solutions to an optimisation problem. Roughly speaking, we will
search for analytic functions that become as small as possible upon the action of (—iw +
L) = H,!, and reason from equation they will be close approximations to leading
resolvent response modes.

These ideas may be formalised as follows. For a linear operator £ and some ¢ > 0,
define the e-pseudospectrum as a set A.(L) C C satisfying

A(L) ={z: (L + E)u = zu, for some v and &, with ||€| < €}. (2.12)

Here £ is an operator mapping between the same spaces as £. Note in particular that
we have the equivalent definition of pseudospectra based on the norm of the resolvent:

2 € A(L\AL) = |I(=z+L)7 [ =€,

where here the \ operator refers to set exclusion. In particular, for any z € C, ¢, =
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min{e : z € A(L)} = o7 (2), where 01(2) is the largest singular value of (—z + £)~*
Furthermore, the corresponding pseudoeigenvector u satisfying (£ + &)u = zu, for some
& with ||€]] = e, is the left singular vector of (—z + £)~! corresponding to o1(2).
Note that the presence of the operator norm in the definition means that, unlike when
looking at the spectrum, the definition of pseudospectra requires that we work in a vector
space equipped with a norm, which the e-pseudospectrum associated with an operator is
dependent upon.

2.3. Conditions for the existence of wavepacket resolvent modes

Here we briefly describe the conditions under which a linear differential operator per-
mits wavepacket pseudomodes corresponding to small € (or equivalently, large resolvent
norm). More complete description of this phenomenon, as well as the related proofs,
may be found in |Trefethen & Embree (2005) and [Trefethen| (2005)). For some (small)
parameter h > 0, we may define a family of scaled differential operators

d7
(dy)i’

which we assume to act on a closed finite interval. We may then assemble any arbitrary
n-th order differential operator £, acting on a scalar variable u(y) by

D] = (ih)’ (2.13)

n
(Lru)(y) = D ci(y)Dyuly). (2.14)
§=0
Defining a test function vy, (y) = exp(—iky/h) for a complex scalar k, we have
(Lpop)( Z c; () v (y) = f(y, k)on(y), (2.15)

where we refer to f(y,k) as the symbol corresponding to the family of differential
operators L. We will consider potential pseudoeigenvalues A = f(yx, ks«). The symbol
f(y, k) is said to satisfy the twist condition for real k if we have

Im (g}j) > 0. (2.16)

When the twist condition is satisfied for some (y.,k.), one it can be a pseudomode
¥(Y; Y«, k) (of unit norm) that has phase variation matching v, close to y., satisfying
both

(=X + Ln)e(y; yo, k)| < MTHT (2.17)
for some M > 1, and also that
; *7k*
Wi k)l ooy by - )?/h) (2.18)

max [1)(y; Ys, k)|

for some b, C' > 0. In other words, we have modes that are spatially localised near y,, have
localised spatial frequency k., and are “asymptotically good” pseudoeigenfuctions. Note
that the region of C where the twist condition is satisfied is independent of the choice
of norm. Note also that this theory developed in [Trefethen| (2005 builds upon earlier
observations of certain classes of equations by Davies (1999alb). More generally, these
ideas are closely related to classical WKBJ expansions, which have also been utilised
recently by |Leonard| (2016) in the context of studying approximate inviscid solutions for
channel flow.
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In this work, using these ideas as justification and inspiration, for a given temporal
frequency (where A = iw), we will assume that the leading resolvent response mode may
be closely approximated by a function that is localised in the wall-normal direction, both
spatially (as for functions satisfying equation and in the frequency domain (as is
the case for the test functions v;,). When this assumption is justified, it allows for a
reformulation of resolvent analysis in terms of finding the spatial width and frequency
of a template function ¢ that minimises ||(—=A + £)¢||, and thus are close to the true
leading resolvent response mode (from equation .

3. The behaviour of leading resolvent modes in wall-bounded
turbulence

This section will apply the concepts introduced in section [2| to explore methods
by which the shape of resolvent modes may be approximated. In this section and
elsewhere, we will largely focus on a boundary layer configuration, which is assumed to be
approximately homogeneous in the streamwise direction (as well as being homogeneous
in the spanwise direction), though the analysis holds for any (approximately) parallel
shear-driven turbulent flow.

In section we introduce a resolvent formulation of the Navier—Stokes equations.
The setup is similar to that developed in McKeon & Sharmal (2010)), though following
more closely the formulation used in |[Rosenberg & McKeon| (2018]). Following this, in
section we will present a sequence of simplifications to the governing equations, that
will render them amenable to application of wavepacket pseudomode theory. We will
additionally present some sample results to motivate these developments, as well as those
later presented in section

3.1. A resolvent formulation of the Navier—Stokes equations

We will restrict attention to flows which are (approximately) homogenous in the
streamwise (x) and spanwise (z) directions, with a mean streamwise velocity (u,v,w) =
(U,0,0) that varies in the wall normal (y) direction. We will consider the incompressible
Navier—Stokes equations in (wall-normal) velocity-vorticity form, and will take Fourier
transforms in the streamwise and spanwise directions, with wavenumbers given by k,
and k.. Applying the procedure detailed in section gives

b —iw + A7 Lo, 0 s
(n) B ( ik, U, —iw+£sq) (f;) : (3.1)

He

where v and 7} = ik,4 — ik,w are the Fourier-transformed wall-normal velocity and
vorticity fields, U, is the wall-normal gradient of the streamwise velocity, and the
Laplacian A = 9,, — k3, with k2 = k2 + k2. The Orr-Sommerfeld (OS) and Squire
(SQ) operators are given respectively by

1
Re

. 1
ESq = ’LkmU — EA (33)

Los = ikyUA — ikyUyy — — A2, (3.2)

Further details concerning the equivalence of this formulation to one using primitive
variables (in particular the implicit restriction of the forcing to the solenoidal component)
is given in Rosenberg & McKeonl (2018). The resolvent operator Hy is now parametrised
by the spatiotemporal wavevector k = (w, k., k).
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The SVD of the resolvent operator is computed using an inner product that is
proportional to kinetic energy for a given set of spatial wavenumbers (Gustavsson||1986;
Butler & Farrell |1992)), defined by

((01,M), (02,72)) = %/ (=01 Ay + Mii2) dy, (3.4)

where the overbar denotes complex conjugation.

In later sections, we will consider the following two scalar inner products arising from
the components of 34}

. s 1[5
<21722> = kT/leQdyv (35)
1 Jy
1 _
<21722>A = —kT / élﬂfgdy (36)
1 Jy

That is to say, when considering scalar operators, we will assume that the inner product
is the “standard” one unless using a A-subscript. We will also refer to (-,-), as the
Laplacian inner product.

We will now present some sample results that will motivate many of the developments
in the remainder of this paper. We consider a turbulent boundary layer with friction
Reynolds number Re, = 900. Mean velocity profiles are obtained from the DNS data
of |[Wu et al.| (2017)), by averaging data at a single streamwise location. Figure (1 shows
leading resolvent response mode shapes for this system. The wavenumbers k, = 7/2,
and k, = 27 and wavespeed (¢ = 0.8Us) have been chosen to be consistent with the
typical size of large-scale motions in zero-pressure-gradient boundary layers (e.g., Monty
et al| (2009); Kovasznay et al.| (1970); |Cantwell| (1981)); [Saxton-Fox & McKeon| (2017).
Here and throughout, the resolvent operator is discretised using a Chebyshev collocation
method, utilising the toolbox of [Weideman & Reddy] (2000).

We observe that the mode is dominated by the wall-normal vorticity component, which
is centred on and localised around the critical layer, and has an approximately linear
variation in phase within this region. These observations, which are typical of modes that
are “detached” from the wall, suggests that this numerically computed mode resembles a
wavepacket mode as described in section[2:3] Here and throughout, we consider a mode to
be detached from the wall if its shape is not substantially effected by the wall’s presence.
In section [4] we will seek to predict the shape of this mode without explicitly computing
an SVD (or indeed, without explicitly forming a discretised resolvent operator). Making
this procedure tractable, however, will require simplification of the governing equations,
which are described in section 3.2

3.2. Simplifications to the Navier—Stokes operator for resolvent mode approximation

Following [Rosenberg & McKeon| (2018)), rather than studying the full system we may
start by separating the resolvent modes into those being forced by f, and f, separately.
In particular, defining scalar resolvent operators

HUU = (_iw + A_l‘cos)_la (37)
Hoy = (—iw + Log) 7,
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FIGURE 1. (a) Mean velocity profile for a turbulent boundary layer at Re, = 900 (—) and
critical layer location corresponding to a wavespeed ¢ = 0.8Ux (--). (b) Amplitude and (c)
phase of wall normal velocity (—-) and vorticity (-) for leading resolvent response modes with
ke =7/2, k. =27 and ¢ = 0.8U.

the Orr-Sommerfeld (OS) and Squire (SQ) modes may be computed by taking SVD’s of
the reduced resolvent operators given as

v _ How 0\ /G
(ﬁos) o (isznﬂUvav O) (0) ’ (39)

Hos,k

(noq) - <8 'H?m) (5) : (3.10)

Hsrz,k

While the modes computed from different subsystems are no longer orthogonal, Rosen-
berg & McKeon| (2018]) demonstrated they can provide a basis that better captures dy-
namical features of the system. Our interest in this decomposition is primarily concerned
with using this decomposition to simplify the required analysis. Figure [2] shows the 7-
component of the response modes of the OS and SQ subsystems for the same parameters
considered in figure [I] We observe in particular that the OS operator gives the same
mode shape as the full system, with the SQ mode also sharing the same qualitative
characteristics. This suggests that the ability to predict and understand the shape of the
vorticity response of the full system can be reduced to studying only the OS subsystem.

In order to make the ensuing analysis more tractable, we will require additional
simplifications. Note first that the components of the OS and SQ sub-operators may
be written in scalar form as

b = Hyodo (3.11)
Tlos = /angvv (3-12)
ﬁsq = Hnngna (313)

where Hyy = (ik, HyyUyHow) is the off-diagonal term in H,s g in equation

When considering the SVD of these subsystems, it is important that we use the
appropriate inner product on both the input and output spaces. Since the response is en-
ergetically dominated by wall-normal vorticity, it is reasonable that a close approximation
to the 7 response of the full system (which itself is approximated by the OS response) can
be obtained just by considering the scalar operator in equation Figure 3| shows that
this assumption is indeed valid for the sample parameters considered in this section. As
well as simplifying the analysis, reducing the full resolvent operator to a scalar operator
brings us closer to being able to apply the wavepacket pseudomode theory discussed in
section An additional requirement for the direct application of this theory is that
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FIGURE 2. (a) Amplitude and (b) phase of wall normal vorticity response mode computed from
full system (—), SQ subsystem (—-), and OS subsystem (——), with the same parameters as in

figure

the operator under consideration be representable as a differential operator in the form
of equation The operator in equation does not satisfy this property, as the OS
component contains the inverse Laplacian.

Motivated by this, we now present an approximating simplification to which we
believe to be novel. This development will take advantage of the similarity between the
OS and SQ operators, and will consider variations of the “standard” inner products
discussed in section [3.I} We start by taking advantage of the localised nature of the
resolvent response modes, and assume that the mean velocity profile may be linearised
about the critical layer location, y.. Under this assumption, we have

How = Ail/HrmA- (314)

This means that the operator that we are attempting to simplify is
’Hfﬁl}n = (iszyc)Hnnva (3.15)
= (iszyc)annAil/HnnAa (3.16)

where Uy, is the wall-normal gradient in the mean velocity profile at the critical layer
location, y., and the Lin superscript denotes that the mean velocity profile has been
linearised about y.. Figures [2] and [3] show that the resolvent response modes of H,,, do
not quantitatively match those of H,,. This is because the leading forcing mode of H,,,
does not coincide with the mode most amplified by H,,. Given that the leading resolvent
modes are dependent on the choice of inner product, it is reasonable to ask if a different
choice of inner product could be used in the SVD of H,,,, such that the leading forcing
mode approximately coincides with the leading response of H,,. Physically, what we are
seeking to do is to find an inner product weighting that will most amplify the lift-up
mechanism (at the expense of optimising the Orr mechanism in isolation).

Let H;, denote the adjoint of H,,, with respect to the standard scalar inner product,
equation If we instead consider the “Laplacian” inner product, we obtain

* A _ A—lgyx*
Hod = A7, A,

This has the same form as equation except with the (standard) adjoint of #,,,
which amounts to taking the complex conjugate of the critical layer term. Note also that
H,, with the regular inner product has leading forcing and response modes (i.e., right
and left singular vectors) that differ only in the direction of the phase change. We also
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FIGURE 3. (a) Amplitude and (b) phase of wall normal vorticity response mode computed from
the OS subsystem (—), the scalar off-diagonal term H.,, of OS subsystem (—-), and its simplified
scalar approximation computed using H,, with a Laplacian inner product (——), all with the
same parameters as in figure[I]

then have
* *, A —1
(’H,m) = A" HpA,
which is identical to equation meaning in particular that both share the same

resolvent forcing and response modes. If we are to weight this operator explicitly to
compute an SVD in the Laplacian scalar norm, we obtain

L ATWA B
HIA = [(5,) "] = A7, 412, (3.17)

Therefore, computing this SVD should give a leading forcing mode for #,, that
coincides with the leading response mode of H,,,, thus minimising the “projection loss”
of the total amplification. In effect, we are modifying the inner product used for H,,
such that it’s leading forcing mode aligns with the leading response mode of #,,. This
analysis therefore relies on the assumption that the total amplification is dominated by
the lift-up, rather than the Orr, mechanism. With this assumption, this trick allows us to
compute optimal response mode shapes by only considering the Squire operator, which is
a differential operator of the general form given in equation rather than the full OS
operator, which is not. It will be shown later that this assumption holds except for large
kﬁ_, in which case the Laplacian approaches a constant, and so H,, and H,, converge to
the same operator. Figure [3| shows that this modification to the inner product allows us
to closely match the wall-normal vorticity component of the response mode of the full
Navier—Stokes system, for the sample parameters chosen. We will discuss reasons for the
success of this approximation, and in particular the relative balance between optimising
the Orr and lift-up mechanisms, in section [4]

4. Predicting the shape of resolvent modes

This section will present a method that allows for the prediction of resolvent mode
shapes, focusing in particular on the wall-normal vorticity component. The main idea will
be to assume the existence of a mode that is localised in both wall-normal location, and
wall-normal spatial frequency, and then find the parameters which result from maximum
amplification of the resolvent operator, or equivalently, minimisation of the action of its
inverse, on a given function. We will start by predicting the shape of a model operator
(which is closely related to the Squire operator) in sections which relates mode shapes
to asymptotic expansions of Airy functions, and which approximates mode shapes
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under the assumption of the existence of wavepacket pseudomodes. This latter approach
is then extended to consider the shape of modes for the full incompressible Navier—Stokes
system in section [4.3] using the approximations presented in section [3.2] We will validate
our method first on laminar Couette flow with a linear velocity profile in section
before returning to the turbulent boundary layer configuration in section [£.4]

4.1. Relationship between wavepacket resolvent modes and Airy functions

Before applying wavepacket pseudomode theory more generally, in this section we focus
on a model (Airy) operator that is equivalent to the Squire operator with a linearised
mean velocity profile. This analysis will show how numerically computed resolvent
response modes relate to exact analytical solutions to simplified governing equations.
Linearising the mean velocity profile about the critical layer, the Squire equation reduces
to

(—iw + Efqm) =ik, Uy, (y — y.) — Re A, (4.1)

For clarity, we let R = k,U, Re, and consider the closely-related operator

2

) _ ) in 1 d o
T = (ikoUy,) " (—iw + L") = —=(iR) ' — + (y — ye + (iR)'k7)

dy?
o d? .
=—(iR) 1Ty2+(y_yc_wcz)
o d?
= —(iR) 1d7y2+(y_>\)7 (4.2)

where A\ = y. +wi, and w, = R_lki, and we are assuming that k, # 0. Note that we are
generally interested in performing resolvent analysis along the axis of neutral stability
(i.e., for real-valued frequencies with no growth or decay), but here we are incorporating
the viscous dissipation term w. into A, so in general A is complex for this analysis. T is
a complex Airy-type operator, and is identical to the operator considered, for example,
in Reddy et al.|(1993)) as a model for studying the pseudospectra of the Orr-Sommerfeld
operator. The equation Tu = 0 has a general solution that can be expressed by two
independent Airy functions, such as

u(y) = c1Ai[z] + cp Ai[e?™/32],
with
z=(iR)Y3(y—\). (4.3)
Note that distinct solutions are obtained through the choice of contour in the complex
plane when applying standard Laplace transform methods.

Shown in figure [4 are eigenvalues and selected eigenfuctions of 7 with Dirichlet
boundary conditions on a finite domain y € [—1, 1], with R = 3000. In figure |5, these
numerical eigenfunctions are compared to Ai[z], Ai[e?™/3z], and Ai[e=2""/32], and it
is seen that Ai[e?™"/3z] (when appropriately-scaled) closely matches the numerically
computed eigenfunctions on the finite domain. Note that if we had chosen eigenvalues on
the left branch (i.e., with negative real component), then the Ai[z] solution would have
been accurate for all cases. This can be seen more clearly by overlaying the y-domain on
the amplitude of the Airy functions in the complex plane, as shown in figure [f]

On an infinite domain (and when acting on square-integrable functions) 7 has an

empty spectrum, and e-pseudospectra that are independent of location on the real axis
(that is, the boundaries of the pseudospectrum for various € are horizontal lines).
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FIGURE 4. Spectrum (left) and selected eigenfunctions (right) of 7 with Dirichlet boundary
conditions on the domain y € [—1,1], with R = 3000. Absolute value and real component of
eigenfunctions are shown with thick and thin lines, respectively.
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FIGURE 5. Comparison between absolute value (left) and real component (right) of numerically
computed eigenfunctions (grey solid lines) of 7 with R = 3000, and those obtained from
analytical solutions of the Airy equation Ai[z], Ai[e*™/3z], and Ai[e2""/3z]. The analytic
solution Ai[ezm/ 32] closely matches the numerical solution for all cases, and is the only analytic
solution shown in the right subplot.

As discussed in|[Reddy et al.[(1993), a solution to 7w = 0 which is within € of a function
that satisfies the appropriate boundary conditions will be an e-pseudoeigenfunction. We
consider the pseudospectra of T, again for the finite domain y € [—1,1]. As discussed
in section this amounts to computing the leading singular values and vectors of
the resolvent of 7 for each A € C of interest. In particular, we may seek analytic
approximations of these resolvent (optimal pseudospectral) modes using the same method
as for eigenfunctions. In other words, for a given A € C, we are interested in finding
a function which is as close as possible to an eigenmode of 7. Noting that the Airy
functions are continuous, the fact that there are regions of C for which they are very
close to satisfying the boundary conditions of the finite domain suggest that these regions
correspond to very large values of resolvent norm o7.

Figure [7| shows e-pseudospectra for T, along with optimal pseudoeigenmodes (i.e.,
resolvent modes) and Airy function approximations thereof, for specified locations in the
centre of the domain. In the central region, the pseudospectral properties of T resemble
that of the operator on an infinite domain, where resolvent modes, which are “detached”
from the boundary, are invariant to horizontal translation within this region. Moreover,
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FIGURE 7. (left) e-pseudospectra of T (with parameters equal to those for figures El and [5)),
with contour levels corresponding to ¢ € {107%°,107* ... [ 107'}, and (right) amplitudes of
resolvent modes for locations in C as indicated on the left subplot. The right subplot compares
numerically computed modes (grey) with Airy functions Ai[z] (--), and Ai[e*""/3z] (——).

resolvent modes within this region will resemble translated versions of eigenmodes along
the inclined branches at the same vertical position. We observe that, as € increases and we
approach the real axis, the analytical Airy functions become less accurate, owing to their
growth in magnitude occurring closer and closer to the critical layer, eventually saturating
the component resembling the numerically computed response mode. As discussed in
Reddy et al| (1993)), these Airy functions can be used to compute constructive lower
bounds to the pseudospectrum of 7, though these bounds are inaccurate whenever the
Airy functions diverge far away from y = Re(\). The fact that w. = R7'k? means that
the most physically-relevant region of the complex plane is in the upper half-plane, which
means that the Airy functions themselves are not close approximations of physically-
relevant resolvent modes.

Away from the origin, one may approximate Airy functions by simpler expressions
that do not involve integrals. The derivation of such asymptotic approximations involves
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finding a location in the complex that has a dominant contribution to the contour integral.
We may derive the approximation (e.g., |Olver| (2014]); |Vallée & Soares| (2010))

1 2 2
Ai(z) =~ iﬁz_l/‘l exp (—323/2> ~ exp (—323/2> , (4.4)

which is accurate for large |z|, where here z = y(y— \), where (with reference to equation
4.3) we have v = (iR)'/3, A = ik? /R = w.i, and we assume for now that y. = 0.
Expanding the exponential term gives

X _g 3/2) — ox _2 -\ 3/2 _;Q § Yy 2_
ep< 3Z ) ep{ 3( /\) 1 2\ 8(>\) ’
and thus

1 2

Ai(z) ~ Cexp | (=M)P/28 = S (a2 (4) =] (4.5)
A4 A

where we must take care when dealing with multi-valued roots. In particular, for a

bounded approximation, we require that

Re [(—M)?’/ﬁ—l} —0.

If A = [’ then we find that this condition is only satisfied when 6, = 2Z. Note
that this corresponds to the lower half plane region where Airy functions can give close
approximations to the numerically-computed solutions. Assuming y. = 0, so that A = w.1,
for w. < 0 we obtain an approximation of the form

1| R ,

Y(y) ~ exp [—i |we| Ry — ~ o

Wi (4.6)

4.2. Predicting wavepacket modes for a model operator

Section demonstrated that, in certain regimes, resolvent modes may be approxi-
mated by a function of the general form

P(y) = cexp (aiy — by?), (4.7)

where a € R and b > 0 are functions of w. and R, and

2 1/4
-2
m

is a constant that gives 1 unit norm with respect to the regular scalar inner product.
This section will present an alternative analysis with this template function as a
starting point. Applying wavepacket pseudomode theory as described in section [2.3] one
may show that 7 satisfies the twist condition (equation is satisfied within the half
strip
{A: =1 <Re(N) < 1,Im(N) < 0}. (4.8)
The Imag()\) < 0 condition is consistent with the predicted condition for a spatially
localised mode from the truncated asymptotic expansion of an Airy function in equation
Note that the region described in equation is outside the region that is most
physically relevant for resolvent analysis of the Squire operator, where a positive k3
and R give a positive imaginary component of w.. Despite this, figure [7] shows that
even outside this region, the numerically computed pseudomode still maintains the same
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FIGURE 8. Contours of the cost function J7 as a function of shape parameters (a, b) for R = 3000
and several values of w., with global minima identified with filled circles. 25 contour levels spaced
logarithmically between 1078 (black) and 10* (white) are used.

spatially localised structure. To predict the shape of resolvent modes outside this region,
we will seek to directly optimize the shape parameters in the template function, equation
[4.7 In particular, we wish to find the values of a and b for which || 7% is minimized.
That is, we seek the minimum of the cost function

o0

Tr(a,b Rowe) = | To)P = / (T6)" (Tw)dy, (4.9)

=—00

where we are assuming that our mode is “detached” and localised, so can integrate over
an infinite domain, and are assuming a standard inner product for this model operator
(note that including a constant multiplicative factor of kIQ as in equation does not
affect mode shapes or singular values). For simplicity, we again take y. = 0. Note that
the leading resolvent singular value is related to this cost function by
—1/2
g1 (Rv wC) = Izllgl JT((I, ba Ra wC)

Noting that we have
2

L d
d 2
V*(y) = cexp[—ayi — by?],

T = (iR)™! + (y +iwe) ,

it can be shown that

Ty(y) = —% [4b°y* — i(4ab+ R)y — a® — 2b — Rw.] ¢(y),

« 1 , x
(TeW)" = % [4b%y? + i(4ab + R)y — a* — 2b — Ruw.| ¥* (y).
From this, we may compute

1 3 2, 2(3a®> + Rw,), a*+2aR+ 2w.a’R + w? R?

Jr(a,b; R,w.) = m + ﬁb B b+ B )
Contours of this cost function for R = 3000 and several values of w. are shown in
figure |8l We may analytically determine the locations of these minima as follows. This

cost function is minimised when
8JT 2

(4.10)

0 =~ T2 (6ab + 2a* 4+ 2Rw.a+ R) =0 (4.11)
1
aaibT =~ T (3b—|—3a + Rw:) =0 (4.12)

The equations and may be solved to give the parameters {a,b} minimising
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J7, with care taken to select the correct minimising solution. It is also possible to obtain a
parametrised family of solutions as follows. Assuming that R is fixed, suppose that we seek
the optimal values (a(w.), b(w,.)) for a range of values of w.. By implicitly differentiating
equations [4.11] and with respect to w,, the following ordinary differential equations
governing the evolution of the optimal mode shape parameters may be found:

da —R3a (4.13)

Owe  weR3 +3(a? + b)R2 + 12w b3R + 36b3(b — a?)’ '
A3 9,2

o _ 403 R(w.R — 3a® + 3b) (4.14)

Owe  weR3 +3(a? +b)R2 + 12w.b3 R + 36b3(b — a?)’

Note that this approach assumes that the global minimiser of Jy stays on the same
branch, and is smoothly continuous with w.. Figure [9] shows that the predicted values
of the optimal values of parameters a and b closely match both the asymptotic approx-
imations (for w. < 0), and the values obtained from fitting the numerically computed
modes. The width parameter for this fit to the numerically-computed mode data is found
by fitting a Gaussian function to the amplitude of the computed mode using MATLAB’s
fit command. The phase parameter is found by considering the gradient of the phase
in a small region near the critical layer location. The predicted shape parameters are
obtained from evolving the equations and from an initial condition obtained by
solving equations and directly (at w. = 0). Here, and in subsequent sections,
such solutions (along with the symbolic computation of integrals) are obtained using
Mathematica. Note that one could also use the asymptotic approximation for initial
conditions, where we must start from a sufficiently large negative value of w. to ensure
that the initial conditions are accurate. It is additionally shown that the value of the cost
function J7 for these optimal shape parameters closely matches the value of the cost
function that may be computed directly from the numerically computed singular value.
In essence, this shows that the optimal mode and amplification across all functions is
closely approximated by the optimal over the class of functions of the form given in
equation [£.7

We may also consider the behaviour of the optimal shape parameters as R varies.
Keeping w, constant, from equations [4.11}{4.12] we obtain

Oa (1 + 2wea)R3 + 4a(a® + 3b)R? + 1263 R — 96a3b*
OR ~ 2R (w.R? + 3(a + b)R2 + 12w .bPR + 3603(b — a2))’
ob  4b® (wZR? + 3R(—a + wea? + Ywcb) + 6a* + 18b?)
OR ~ R(w.R®+3(a2 + b)R2 + 12w PR + 3663(b — a2))

(4.15)

(4.16)

In the limit of large R and for w. # 0, (and assuming restrictions on the growth of a and
b with R), we have the approximations

Oa 1

3R ~ R (4.17)
b 4biw,

RS T (4.18)

from which we may infer the scalings a — C, b o< R'/2. For large R but with Rw, < 1,
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FIGURE 9. Prediction of optimal shape parameters a (a) and b (b) as a function of w. = Imag(A
with R = 3000 using both the truncated asymptotic Airy function approximation (equation
black dashed lines) and minimising the cost function given in equation m (grey lines), in
comparison to values fitted to numerically computed eigenfunctions on a finite domain (circles).
(c) compares the cost function value to the true value (o7 ?) obtained from the resolvent norm.

we instead obtain

@N 1
OR "~ 3(a2 +b)’
ob dab®

OR "~ R2(a®2+b)’

(4.19)

(4.20)
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FIGURE 10. Comparison between predicted (—) and fitted (——) parameters a (subplot a) and
b (b), and associated singular value (c) as a function R.

which can be shown to permit a consistent asymptotic solution with a o« R'/3 and
b « R?/3. This scaling of b corresponds to a mode with that scales with R'/3, which
agrees with the critical layer scaling (Drazin & Reid 2004), and can also be inferred
from the transformation described in equation Figure shows that these scalings
closely match the shape parameter trends obtained from the numerically computed
modes. Moreover, these shape parameters are accurately predicted from finding optimal
parameters of cost function J7, which can be obtained either from solving equations
and for each w. and R, or by evolving the differential equations and over
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R. It should be noted that, even for this model system, computing the leading resolvent
modes directly can require substantial computational resources for large R, highlighting
an advantage of approximations using the methods described in this section. We lastly
note that one could seek alternative parameterisations of the two-dimensional space of
optimal mode shapes, such as by varying R while keeping w.R (= k? ) constant.

4.3. Predicting the shape of resolvent modes for laminar Couette flow

In this section, we will extend the analysis in section [4.2] to consider the Navier—Stokes
operator and suboperators considered in sections and We again will restrict our
attention to predicting the vorticity component of the leading response mode of the
resolvent operators Hg, Hos,k and Hsq . For the Squire suboperator, the analysis is
almost identical to that of the model operator considered in section 1.2} To predict the
mode shapes of the full system, we rely on the fact that the response is dominated by
the effect of the OS suboperator, which we analyse using the simplifying approximations
introduced in section[3.2] In particular, this also results in a methodology similar to that
used in section but with a modification to use the Laplacian scalar inner product
(equation

We begin by again assuming mode shapes of the form
¢sq(y) = Csq €XP (asqiy - bsqyz) y
wos (y) = Cos €XP (aosiy - bosyQ) P

but now to satisfy the unit-norm requirements of the relevant inner products (equation
[3.5) for the SQ operator, equation [3.6] for the OS) we have

s\ 26,5\ /*
Csq = <q> kJ" Cos = ( ) kL(bOS + a’iS + ki)’

s m

where, with reference to the previous section, we have k? = w.R. Using the approxima-
tion to the Orr-Sommerfeld operator introduced in section and noting that U,, =1,
the relevant cost functions for optimizing the shape of the SQ and OS template functions
are

v e
oo b5 By k) = Uy ks T = 2 / (Tthos)" (Ttbos)dy (4.21)
Yy

2
)

U2 k‘2 o]
. _ 2 _ Y 'x *, A
Jos(a,b; R, k) = ”Uyak:rTw(JSHA = T2 / (Tos) (Tbos)dy
1 Jy=-c

2 1.2 (e’
_ Uik / (Tthos)* Aoy (4.22)
Yy

2
kL =—00

For laminar Couette flow we have U, = 1 for all y. in the domain, but we keep this
term so that the equations are directly applicable for arbitrary mean velocity profiles.
Also note that while the cost function for the Squire modes is “exact” given the assumed
template function and a linear mean velocity profile, the OS modes are relying on the
accuracy of a simplified operator (being the scalar Squire operator with a Laplacian inner
product) capturing the correct behavior of the response mode.

Substituting in the mode template functions (and dropping the subscripts on a and b
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parameters for brevity), explicit expressions for the cost functions are
Uzk2[1 3

23a®+ k1),  a*+2aR+2kIa® + k1

Jsqla,b; R, k) = ]y;i 4b + ﬁbQ + R2 b+ R2 )
(4.23)
U2 k2
Jos(a,b; R k) = Ye T [(3b+ a® + k7 )R® + 16ab(3b + a® + k7 )R

C4k2b(b+ a4+ k?) R?

+4b (156 + (a® + k%)® + 9% (5a® + k7)) + 3b(a® + k7 ) (5a® + k1))] -
(4.24)
As before, the minima of these cost functions may be found by selecting the appropriate
solution to the equations

Dy 202 K2

= 2 3 2 2 = 4.2
o i (6ab + 2a” + 2kTa + R) =0, (4.25)
O _Upka[ 1 2 2 2] -
b = ki _47()2 + ﬁ (3b + 3a” + kL) = O, (426)
J,s U2 k2

4
= Yo T —a+ — (3> +4k2 b+ (a®> + k2)?
Oa ki (b+a2+ki)2[ R( + ( L)) (427)

4
+R—C; (15b3 —i—9b(a2 +ki)2 + (a2 +ki)3 +3b2(5a2 +9ki)] —0,

a® + k%)

8Jos va2 ki 3 1 2 2 1 2 212 8
_ e B K2) — - k 2

b ki(b+a2+ki)2{ 17 @ TR gl k)T + pal
R2

= 0.

2
+— (156% + (a® + k7 )2(Ta® + k1) + 9% (5a® + 3k7) + 9b(5a® + k1 )(a® + ki))]

(4.28)
Figure [II] compares the predicted shape parameters to those obtained from fitting these
parameters to numerically-computed modes, which are computed for Re = 1000 and
various values of k, and k./k,. We observe in subplots (a) and (c) that the Squire
mode parameters are accurately predicted from solving equations and [£:26] Subplots
(b) and (d) show that solving equations and predicts the fitted parameters
to the leading resolvent response mode of the Squire operator with Laplacian inner
product. Furthermore, this prediction also accurately predicts the shape of the wall-
normal vorticity component of leading response modes for the full Navier—Stokes system.
Note that the scaling laws for small k, are identical to those for small R observed in
figure [I0] The trends at high k, differ from those in figure due to the fact that here
we keep k. proportional to k, (and thus k; o R), whereas in figure constant w,
resulted in k% o R. These trends can again be inferred from studying the dominant
terms in the evolution equations for the governing parameters, which can be computed
from considering the partial derivatives of Jy,; and J,s with respect to a and b, which we
omit for brevity.

For large k., the mode shapes for both operators converge, which may be explained
by the fact that the Laplacian operator is dominated by the constant k% term in this
regime. As a consequence, here analysis of the Squire operator gives accurate predictions
of the behaviour of the full Navier—Stokes system, particularly for the mode width, which
approaches a constant value with increasing k.. There is some difference between the
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FIGURE 11. Comparison between predicted (—) and fitted (o) mode shape parameters a (subplots
a,b) and b (c,d) for the Squire operator with a standard (a,c) and Laplacian (b,d) inner
product, as a function of streamwise wavenumber k., for Re = 1000 and spatial aspect ratios
k./ks € {0.5,1,2,4,8}. Also shown are fitted shape parameters for the 17 component of the full
Navier—Stokes system (x’s).

phase gradient parameter a for the full system and for the Squire system with both the
standard and Laplacian inner product (with the value for the full system lying between
those for the two simplified systems), though this difference decreases as k, increases and
the phase variation decays towards zero.

Figure [12] plots predicted and true mode amplitudes for several of the cases considered
in figure [T} The predicted mode shapes for 7 closely match the computed modes for
both the Squire and full Navier—Stokes system, with the modes for the latter being very
close to those of the OS subsystem. The largest discrepancy arises in the k, = 1 case,
where the tails of the mode amplitudes are significantly heavier than those of a Gaussian
distribution, and extend far from the critical layer towards the wall. This phenomenon
is related to a wider distribution in the v-component of the mode (not plotted), and
gives a larger variation in fitted b values for this k, for the full Navier—Stokes system, as
observed in figure

Figure [I3] compares the leading resolvent singular values for the Squire and Navier—
Stokes systems to those estimated from the minima of the cost functions Jyq and J,s, for
the same wavenumbers considered in figure The cost functions are able to accurately
predict the singular values of the scalar Squire operator with both the regular and
Laplacian inner product, though this is only accurate for the full Navier—Stokes system
for large k, (and thus large k%). In particular, these model operators are incapable of
predicting the increase in singular value for high-aspect-ratio (i.e., large k,/k,) modes
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FIGURE 12. Comparison between true (numerically computed, solid lines) and predicted (dotted
lines) mode amplitude for laminar Couette flow with Re = 1000 and k, = 1 (a,b) 10 (c,d)
and 100 (e,f), and aspect ratios k./k, € {0.5,1,2,4,8}. Subplots (a,c,e) show results for the
Squire subsystem, while subplots (b,d,f) are for the Navier—Stokes operator. The dashed lines
in subplots (b,d,f) also show (numerically computed) mode amplitudes for the Orr-Sommerfeld
subsystem.

that is observed, though we have shown that they still accurately predict mode shapes
in this regime.

4.4. Predicting mode shapes for a turbulent boundary layer

This section applies the methodology developed in sections .2 and [.3] to a turbulent
boundary layer. By linearizing the mean velocity profile about the critical layer, the
equations for predicting mode shape parameters are the same as those developed in
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inner product, for Re = 1000 and spatial aspect ratios k./kz € {0.5,1,2,4,8}. Also shown are
computed singular values for the full Navier—Stokes system (-+).

section (i.e., equations , though now U, and R = kU, Re are dependent
on the critical layer location. Figure [I4] shows the predicted and true response mode
shapes for the Squire and Navier—Stokes resolvent operators for two pairs of spatial
wavenumbers and various critical layer locations. Note that the case where {k;, k.,c} =
{m/2,27,0.8Us} as considered in figures as representative of a typical large-scale
motion, is included. The location typical of very large-scale motions (¢ &~ 0.6U) is
also included, though these structures would correspond to slightly smaller streamwise
wavenumbers than k, = 7/2. We observe that mode amplitude and phase variation (in
the local region of high amplitude) is accurately estimated, provided the mode is not
substantially affected by the presence of the wall. This shows in particular the validity of
using a mean velocity profile linearised about the critical layer to estimate mode shapes.

Figure [15| compares predicted and fitted mode shape parameters as a function of k,
for various aspect ratios k. /k,, for a wavespeed ¢ = 0.8U.,, with predicted and true
modes shapes plotted in figure We observe the same trends, and similar accuracy in
prediction of parameters as for laminar Couette flow (figure .

5. Discussion and conclusions

This work has presented a method for approximating leading resolvent response modes
for quasi-parallel shear-driven flows. This method relies on the assumption that the true
mode may be closely approximated by a simple template function, the general form of
which can be reasoned from consideration of wavepacket pseudomode theory. In essence,
the method reduces the space of possible mode shapes from an infinite-dimensional space
(which in practice is approximated by a high dimensional space defined by the numerical
discretisation) to a two-dimensional family of functions. Once this template function is
identified, the optimal shape parameters (which govern the width and phase variation of
the mode) may be found as the minimisers of a cost function, which is directly related to
the resolvent norm of the underlying operator. In practice, this amounts to finding the
roots of a pair of coupled equations, which may be arranged to be polynomials in the
shape parameters. In addition, it is possible to derive differential equations in parameter
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FIGURE 14. True (solid lines) and predicted (dashed) leading resolvent mode amplitudes and
phases for the Squire system (top row) and wall-normal vorticity component of the Navier—Stokes
system (bottom) for a turbulent boundary layer with Re, = 900. Modes are shown for two
wavenumber pairs, (kg, k) = (7/2,27) and (107, 107), and temporal frequencies corresponding
to wavespeeds of 0.6Ux, 0.7Uw, 0.8Uw, 0.9U, with critical layer locations indicated by dotted
lines.

space that govern the evolution of these optimal shape parameters. Importantly, this
method precludes the need for the formulation and decomposition of discretised linear
operators, leading to substantial reduction in computational cost. The extent of the
reduction in computational cost is dependent on the size of the discretisation, and
on the extent and resolution of the parameter space (e.g., wavenumbers and temporal
frequencies) that one wishes to study. The method may be readily applied to a model
operator, as considered in section[f.2] and in the analysis of the Squire operator in sections
[A3}[24] Application for the full Navier-Stokes system relies on additional simplifications
to arrive at a scalar differential operator which has a leading response mode (left singular
vector) which approximates the wall-normal vorticity component of the response mode
of the Navier—Stokes resolvent operator, as detailed in section [3.2} This simplification is
made in three steps. Firstly, the observation that the wall-normal vorticity response
is dominated by the Orr-Sommerfeld component (equation . Secondly, that this
operator is in turn dominated by the vorticity response to velocity forcing, governed
by the scalar operator (equation . Finally, the leading left singular vector of this
scalar operator may be approximated by that of the Squire operator furnished with the
scalar Laplacian inner product (equation . This results in an operator which may be
studied by applying the same techniques as those used for the model/Squire system. Note
that, even without this analysis, study of the Squire operator (for which the associated
cost function has a simpler form) typically gives the same qualitative behaviour observed
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FIGURE 15. Comparison between predicted (—) and fitted (o) mode shape parameters a (subplots
a,b) and b (c,d) for the Squire operator with a standard (a,c) and Laplacian (b,d) inner product,
as a function of streamwise wavenumber k,, for various mode aspect ratios for a turbulent
boundary layer with Re; = 900 and ¢ = 0.8U. Also shown are fitted shape parameters for the
n component of the full Navier—Stokes system (x’S).

for the full system. In particular, the Squire system obeys many of the same scaling laws
of mode shape parameters with wavenumbers and Reynolds numbers. More detailed
analysis of scaling and self-similarity properties of resolvent modes in wall-bounded flows
are given in |Moarref et al|(2013).

While the vorticity response mode shapes of the Squire and Orr-Sommerfeld resolvent
operators are qualitatively similar, they represent quite different physical phenomena.
The Squire resolvent operator describes amplification through forcing in the same com-
ponent, with an upstream-leaning optimal forcing mode giving a downstream-leaning
response mode. This is a manifestation of the classical Orr mechanism. Note in particular
that the Squire forcing mode has the same amplitude profile as the response mode, but
with an opposite phase variation. The Orr-Sommerfeld sub-operator on the other hand
typically has a leading response mode that is dominated by the wall-normal vorticity
component, but is forced primarily by wall-normal velocity, in a manner resembling the
lift-up mechanism. Despite this phenomenological difference, we have shown that the
shape of the response may be accurately predicted from the Squire operator with a
modified inner product.

This work has focused on characterising the shape of the (dominant) wall-normal
vorticity component resolvent modes for parallel wall-bounded flows. It is possible that
these methods could be extended for application to more complex geometries, and other
mode components. For most of the cases considered in this work, the cost function had
only one local minimum corresponding to a wavepacket mode (i.e., with b > 0), with the
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FIGURE 16. Comparison between true (numerically computed, solid lines) and predicted (dotted
lines) mode amplitudes for various k., and aspect ratios k. /k, € {0.5,1,2,4, 8}, for a turbulent
boundary layer with Re, = 900 and ¢ = 0.8U. The black horizontal dotted line indicates the
critical layer location. Subplots (a,c,e) show results for the Squire subsystem, while subplots
(b,d,f) are for the n-component of the Navier-Stokes operator. The dashed lines in subplots
(b,d,f) also show (numerically computed) mode amplitudes for the Orr-Sommerfeld subsystem.

exception being for negative w. for the model operator considered in section 4.2] as seen
in figure [8} More complex geometries might result in more complex cost functions, for
which more care must be taken to select the true global optimum. Note that the operators
considered here also typically have a large spectral gap between the first and second
singular value. Future work could also seek to identify modes corresponding to additional
singular values, which would be of particular interest for situations where the operator
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does not exhibit low-rank behaviour (i.e., there does not exist a large gap between the
leading and second singular values). Similar methods could also be applied to study
optimal forcing modes in more detail, and to compute nonlinear forcing terms induced
from analytic approximations to wavepacket modes. This would provide an alternative
route to study phenomena such as the self-similarity of the nonlinear forcing (Sharma,
et al.|[2017).

In terms of the methodology itself, there are a number of possible refinements that
could be investigated. For example, nonlinear terms in the expansion of the mean velocity
profile about the critical layer could be retained, and additional terms in the template
function (for example, a term could be added to allow for the phase variation to be
cubic in y — y.). The former modification might be particularly useful when dealing with
mean velocity profiles that have stationary points, such as in channel flow. Such additions
would lead to more complex cost functions, but the same techniques of analysis should
be applicable. The accuracy of the assumed form of the modes relies on the mode being
far enough away from the wall. Further extensions of the methodology could seek to
explicitly model the effect of the wall.

The authors acknowledge support from the Air Force Office of Scientific Research grant
FA9550-16-1-0232 (program manager Ivett Leyva). The authors also thank Peter Schmid,
Anthony Leonard, and Kevin Rosenberg for valuable discussions, and Xiaohua Wu for
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