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Abstract - Micro hot-film shear-stress sensors have been 
designed and fabricated by surface micromachining technology 
compatible with IC technology. A poly-silicon strip, 2kmx80km, 
is deposited on the top of a thin silicon nitride film and functions 
as the sensor element. By using sacrificial-layer technique, a 
cavity (vacuum chamber), 200x200x2pm3, is placed between the 
silicon nitride film and silicon substrate. This cavity 
significantly decreases the heat loss to the substrate. For 
comparison purposes, a sensor structure without a cavity has 
also been designed and fabricated on the same chip. Theoretical 
analyses for the two vertical structures with and without a 
cavity show that the former has a lower frequency response and 
higher sensitivity than the latter. When the sensor is operated in 
constant temperature mode, the cut-off frequencies can reach 
130 k-Hz and 9 k-Hz respectively for the sensors without and 
with cavities. 

I. INTRODUCTION 

Fluid flow over a solid boundary generates a velocity 
gradient that produces a shear stress at the wall. This wall 
shear stress is one of the important parameters in fluid 
mechanics. There are many measurement techniques to 
determine shear stress [ I ] .  One common technique is a flush- 
mounted hot-wirehot-film anemometer. With micro- 
machining technology, more advanced techniques are 
available [4-61. The hot-film anemometer is an example of 
an indirect shear-stress measurement device. The heat 
transfer from a resistively heated element to the flowing fluid 
is measured, from which a value for shear stress is inferred. 
Although this type of probe has been employed widely for 
shear stress measurements, the factors influencing their 
unsteady performance are not yet well understood [l-21. It 
has been well accepted that the thermal properties of the 
substrate affect sensor operation [2-3]. Some workers have 
attempted to isolate the sensor from the substrate[7-8], 
however, none of these efforts resulted in the desired high 
frequency responses. The effect of the insulation on the 
sensor's performance remains unknown systematically. A 
finite difference method was provided to solve the one 
dimensional heat diffusion equation for the frequency 
response of a hot film sensor [ 3 ] .  The different sensor 
geometries and insulation materials were used to 
experimentally study the sensor and its relationship with the 

substrate [2]. No fully theoretical computations and 
experimental efforts are known to the authors. 

In this work, two different kinds of hot-film shear-stress 
sensors have been designed and fabricated by micro- 
machining technology: one with a vacuum chamber (cavity) 
underneath to insulate it from the substrate, and the other one 
without. Except for the vertical structure, these two sensors 
have identical geometries. Heat transfer models have beem 
developed for the sensors and the electric analogy of the he,at 
transfer was also used. Both analytical solution anld 
experimental results have been obtained. The micr0machine.d 
hot-film sensors were originally developed for a distributed 
micro-electro-mechanical system (MEMS) for viscous drag 
reduction research [3]. 

11. SENSOR AND STRUCTURE 

Fig. 1 schematically shows the top and cross-sectional 
views of the micro hot-film sensor with a cavity underneath. 
By using micromachining technology, a vacuum chamber 
(cavity), the square part (dashed line) in the Fig. l(a), :is 
placed under a thin silicon nitride film. The size of the cavity 
is 200x200~2 p3. A poly-silicon strip, 2x80 pm2, lis 
deposited on the silicon nitride film and functions as the 
sensor element. The metal leads connect the sensor element 
to outside through bonding pads. The other sensor without a 
cavity underneath is also included on the same chip. Both 
sensors, with and without cavity, have identical geometries. 
The flow direction is perpendicular to the long side of the 
sensor strip. 

The cavity is formed by sacrificial-layer (PSG, phospho- 
silicate glass) technique. Both silicon nitride and poly-silicon 
layers are deposited by LPCVD (low pressure chemical 
vapor deposition). The aluminum metalization forms the 
metal leads. The poly-silicon resistor is uniformly doped to a 
low sheet-resistance of typically 50 WO. The measured TCR 
(temperature coefficient of resistivity) of the sensor at this 
doping level is about 0,09%/"C. The detailed process steps 
are given in [4]. The sensor with negative TCR at lower 
doping level will be given at some other place. 

A photograph of the microfabricated sensors is shown in 
Fig. 2, in which the left one is the sensor with a cavity an'd 
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the right one without a cavity. The white parts in the figure 
are metal leads due to the optical reflection. Although the 
cavity is not shown thoroughly, its frame still can be seen 
clearly. The theoretical models for these sensors will be 
given in the following section. 

Fig. 1. Schematic top (a) and cross-sectional (b) views of the micro hot-film 
shear-stress sensor 

Fig. 2. The photograph of the micrfabrlcated hot-film shear-stress sensors 
with a cavity (the left) and without a cavity (the right) underneath. 

111. THEORETICAL MODELS 

A general three-layer structure is used to characterize the 
dynamic performances in the micro sensors, as shown in Fig. 
3(a). The film layer at the top represents the sensor element. 
The insulation layer represents the silicon nitride diaphragm. 
The silicon substrate with large thermal conductivity is 
treated as a heat sink. The length and width of the sensor is L 
and W. The q in the figure represent heat transfer. The 
subscripts i, and c represent the heat transfer to film, 
insulation layer, and convective heat transfer to the measured 
fluid, respectively. The same subscripts are used for layer 
thickness d and other thermal parameters in following 
paragraphs. The case of the sensor with a cavity underneath 
can be considered as that the heat transfer q1 goes laterally 
first and then goes vertically to the heat sink (substrate) as 
shown in Fig. 3 (b). 

The energy balance equation in the general structure of the 
Fig. 3 (a) can be given as follows: 

2 dTr dT 
i R = c  m -+cc,mi-+h(uz)A(T-T1) (1) dt dt 

The heating current i through the resistive sensor R produces 
heating power i2R. The power is dissipated or stored in the 
following three ways, corresponding to the three terms on the 

right-hand side of above equation. 1) convective heat 
transfer q,=h(u,)A(T-T,) to the sensor's environment, in 
which T and To are respectively the temperatures of the 
sensor element and of the heat sink. The convective heat 
transfer coefficient is represented by h(u,) and it is a function 
of shear velocity U,. The relation between the shear velocity 
u7 and the wall shear stress z, is z, = u?p where p is the 
measured fluid density. The heat transfer going through the 
insulation layer, substrate and then to the measured 
environment is also included in this term. This makes the 
effective heat transfer area A a little bit larger than WxL. 2) 
conductive heat transfer qf to the film. It equals the energy 
stored in the film, qf=cfmfdTf/dt, where cf, mf, and Tf are the 
specific heat, mass, and temperature of the film layer, 
respectively. 3) conductive heat transfer to the insulation 
layer and stored in it, qi=cimidTi/dt, with the same parameter 
notation for the insulation layer as in the film case. The last 
two conductive heat transfer terms have the following 
relations to thermal conductivity. 

(2) 
d7; - k,A(Tf - T I  4 .  = c.m ~ - 

L I ' d t  di 
k f A ( T  - T f )  

4f + 4 ,  = ( 3 )  
d f  

where ki and kf are the thermal conductivities of insulation 
and film layers, respectively. 
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(4 
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Fig. 3 .  The heat transfer models for the general sensor with an insulation 
layer undemeath (a), the sensor with a cavity undemeath (b), and their 

electric-analogy's equivalent circuit (c). 

Considering the fluctuating time dependent part of each 
above variable, neglecting secondary terms, and using a 
Laplace transform, the transfer function between the sensor's 
temperature and the input variable AF can be obtained as 
follows: 

(4) AF 
AT a R  t2s + 1 
-=(-I C X L ~ R ~ ,  t,t2s2 + ( t ,  + t2 + t,)s + 1 

where AF is the Laplace transform form of the input 
variable, which is a function of both electrical input 
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perturbation AI and shear-stress related input perturbation 
AH, T is the static temperature of the sensor. aR, a, and R, in 
(4) are resistive overheat ratio, temperature coefficicnt of 
resistivity (TCR) of the sensor element, and sensor resistance 
at temperature To, respectively. The time contents tl,  tz, and 
t3 in (4) are 

Although the system shown in (4) is second order, the pole 
S1=-l/(tl+t2+t3) is dominant. So the system behaves just like 
first order system aind its time constant is 

t= tl+tZ+t? (7) 
This total time constant consists of three parts, the first part 
tl is exactly the same as the time constant previous workers 
found [9], the last two parts t2 and t 3  obtained here indicate 
how the insulatioii layer parameters affect the sensors’ 
dynamic performances. From (6) and (7) it can be seen that 
the existence of the insulation layer tends to enlarge the time 
constant and to decrease the frequency response of the 
system. The smalLer the thermal conductivity ki of the 
insulation layer, the: bigger the effect. The larger the specific 
heat c, and mass mi of the insulation layer, the longer the 
time constant. This also answers why people can’t get high 
dynamic performance by insulating the sensor from the 
substrate. 

For the sensor with a cavity underneath, the heat transfer 
goes laterally first in the insulation layer and then vertically 
to the heat sink. This makes the time constant t2 change to 

(8) Lc t2 =- 
2 k, d, L ci mi 

where L, is the half length of the cavity side and ‘2’ in the 
denominator is dume to bi-directional heat transfer in the 
insulation layer. t2 and tl remain the same. Since L, in (8) is 
much bigger than di in (6) while 2diL in (8) and A in (6) are 
on the same order, the time constant t2 of the sensor with a 
cavity underneath is longer than that without a cavity. 
Actually the effective heat transfer area A and effective 
masses mf and m, are also increased because more volume is 
heated due to the existence of the cavity. All these factors 
tend to make the total time constant t of the sensor with a 
cavity longer than that without a cavity. 

It should be mentioned that Si substrate is not an ideal 
heat-sink. The part of the substrate behaves just like the 
insulation layer. This will make the actual time constant a 
little bit longer than that indicated by (6), (7), and (8). 

The sensitivity of the system can also be obtained based 
on (4). We can combine (4) and (5) as follows by replacing 
AI=O and AH=l/s inlto (5): 

(9) 
a,A(T-7;,) (tzs+l)(l/ s) 

A T = -  
ai2R, tltzs2 + ($ + t2 + t,)s + 1 

This equation can be written in the following form too: 
K 

(10) 

where SI and s2 are two poles of the system, KO, K1,  and KZ 
are constants. From (9) and (lo), we can get sensitivity 
constant KO 

A . T = - + - + ~  KO K 
s (s--1) ( S - S z )  

In comparison with (6) and (7), the sensitivity has a conflict 
requirement with system’s time constant. 

Alternatively, the electric analogy of the heat transfer can 
be used and the equivalent circuit is shown in Fig. 3 (c). The 
quantity dlAk in (2) and (3) is equivalent to a thermal 
resistance R, for the insulation layer or Rf for the film layer. 
Similarly, the quantity cm in (1) is equivalent to a thermal 
capacitance C, or C,. The same result with clearer physical 
meaning can be obtained by using this method, e.g., tz = R,C,. 

IV. EXPERIMENTS 

After the fabrication of the hot-film sensor, Both CC 
(constant current) and C T  (constant-temperature) circuits 
have been designed for sensor operation. Here we focus on 
the CT circuit as shown in Fig. 4. In the figure, R is the 
sensor, Roh for adjusting resistive overheat ratio, R, and C, 
are for compensation. Since suitable velocity fluctuations aire 
not readily available, one usually relies on electronic test 
signals. According to both theoretical analyses[ 101 and 
experimental confirmation[2], the frequency response or 
time constant can be obtained by feeding an electronic sine 
wave or square wave into the CT circuit. The terminall El in 
Fig. 4 is for this purpose. 

il I 

0-i.o 
-15 t 1 5  

Fig. 4. The Fonstant-temperature circuit for the hot-film shear-stress sensor 
in which R is the sensor and E, is the terminal for the testing signal. 

The square wave responses of both sensors with and 
without a cavity are measured and shown in Figs. 5 (a) and 
(b), respectively. The measured time constants are 72 ps and 
5.2 ps for the former and the latter, respectively. The 
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difference is clear and the latter (without a cavity) has much 
shorter time constant (one order of magnitude). This is 
consistent with the results indicated by theoretical models in 
section 111. An overheat ratio of 5.5% is used in this 
experiment. According to the approximate relation between 
time constant t, and cut-off frequency f, for CT operation. 
fc=l/( 1 St,), the cut-off frequency can be estimated. These 
frequencies are 9 k-Hz and 128 k-Hz for the sensors 
cavity and without cavity, respectively, based on the 
constant measurements. 

i 20.0; 2 1 0ov y o  005 100y, & f 2  RUN 
I 7 1  

tl = 0 000 5 t2 ~ 72 O O u s  At ~ 72 00us I/bt = 13 89kHr 

(a) 

1 lJ2.000 2 I .00v 1 0  005 10 oy, t2 STOP 

with 
time 

t l  = 0 000 5 t2 = 5.2oou5 A t  5 200us ,,At = 192 3KHZ 

(b) 
Fig. 5. The square wave responses of the hot-film sensors with (a) and 

without (b) a cavity underneath. The time constants are 72 ps and 5.2 ps for 
the top one and the bottom one, respectively. 

5-1 

2 ”! 
2 > 

1 

Fig. 6. The frequency responses of the micro hot-film sensors with and 
without cavity. The cut-off frequencies are 9 kilo-Hz and 130 kilo-Hz for 

the former and the latter, respectively. 

The real frequency responses have been obtained by using 
an electronic sine wave instead of square wave. Fig. 6 
presents the results for both sensors with and without a 

cavity. The cut-off frequencies are respectively 9 and 130 k- 
Hz. This is consistent with the estimates based on time 
constant measurements. 

In Fig. 5 the vertical scales are 20 mV/div. and 2 mV/div. 
for the sensors with a cavity(a) and without a cavity(b), 
respectively. So the sensitivity of the former is about one 
order of magnitude greater than the latter. This is also 
confirmed by wind tunnel measurements. 

V. CONCLUSIONS 

The hot-film shear-stress sensors with and without a cavity 
underneath have been designed and fabricated by micro- 
machining technology. The theoretical heat transfer models 
and analytical solutions indicate that the insulation layer has 
an important effect to the sensors’ frequency responses. Both 
theoretical and experimental results show that the sensor 
with a cavity underneath has a slower frequency response 
and higher sensitivity in comparison with the sensor without 
a cavity. 
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