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Weak lensing of type Ia supernovae (SNe Ia) is a systematic uncertainty in the use of SNe Ia as standard
candles, as well as an independent cosmological probe, if the corresponding magnification distribution can
be extracted from data. We study the peak brightness distribution of SNe Ia in the Pantheon sample and find
that the high-z subsample shows distinct weak lensing signatures compared to the low-z subsample: a long
tail at the bright end due to high magnifications and a shift of the peak brightness toward the faint end,
consistent with findings from earlier work. We develop a technique to reconstruct the weak lensing
magnification distribution of SNe Ia, pðμÞ, from the measured SN Ia flux distribution and apply it to the
Pantheon sample. We find that pðμÞ can be reconstructed at a significance better than 2σ for the subsample
of SNe Ia at z > 0.7 (124 SNe Ia), and at a lower significance for the SNe Ia at z > 0.9 (49 SNe Ia), due to
the small number of SNe Ia at high redshifts. The large number of z > 1 SNe Ia from future surveys will
enable the use of pðμÞ reconstructed from SNe Ia as an independent cosmological probe.

DOI: 10.1103/PhysRevD.99.083525

I. INTRODUCTION

Type Ia supernovae (SNe Ia) as standard candles play an
important role in modern cosmology. The luminosity
distance-redshift relation obtained through their observa-
tion provides a powerful probe of the expansion of the
Universe and led to the discovery of cosmic acceleration
[1,2]. Over the past decades, various surveys have collec-
tively observed thousands of SNe Ia [3–11], and they
provide strong constraints on the matter-energy compo-
nents in the Universe [12–14]. In order to achieve accurate
and precise cosmological constraints, accurate modeling of
supernovae with comprehensive examination of the sys-
tematic uncertainties is of critical importance. The effects
induced by weak gravitational lensing of SNe Ia are one of
the main systematic uncertainties, and its impact increases
with redshift [15–18]. On one hand, the bias in cosmo-
logical inference due to weak lensing can be minimized/
removed using flux-averaging [19,20]. On the other hand,
the weak lensing magnification of SNe Ia contains impor-
tant information about the distribution of matter in the
Universe [21]. Future surveys will target thousands of SNe
Ia at z > 1 [22,23]. The accurate modeling of the weak
lensing effect with this high statistics can significantly
improve our understanding of the properties of dark matter
and dark energy.
Due to the inhomogeneous distribution of matter in the

Universe, the light emitted from SNe Ia is bent along the line

of sight to the observer. This effect leads to themagnification
of the brightness of the observed SNe Ia and affect the scatter
from the mean brightness. Compared with the intrinsic
brightness distribution of SNe Ia, thisweak lensing signature
is subdominant. However, for high redshift objects, this
effect is not negligible since the light can experience more
bending before reaching the observer. This weak lensing
effect can be expressed in terms of a probability function of
magnification; see e.g., [17,18,24–26] and references
therein. The resulting distribution of SN Ia brightness is
thus a convolution of this magnification distribution and the
intrinsic distribution of brightness. The latest SNe Ia sample
has a compilation ofmore than 1000 data points; this enables
us to perform a thorough analysis to explore the possible
signals of weak lensing in current observation. This extends
the earlier investigation in [27].
The systematic uncertainty caused by weak lensing can

turn into signal when our modeling and observation are
sufficiently improved [28–32]. The weak lensing signature
observed in the SN Ia data contains information about the
underlying distribution of matter which depends on cosmol-
ogy. A method that can extract this information can provide
useful information to constrain the matter distribution and
cosmological parameters. We present a methodology for
reconstructing the weak lensing magnification distribution
from the observed peak flux distribution of SNe Ia, and we
apply it to the Pantheon sample compiled by Scolnic et al.
[14], to demonstrate the feasibility of this approach.
Our paper is organized as follows. We present the
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in Sec. II, as well as the results from the application to the
Pantheon sample. We measure the scatter of the intrinsic
brightness of SNe Ia in Sec. III and reconstruct the weak
lensing magnification distribution of SNe Ia in Sec. IV.
Section V presents our discussion and conclusion.

II. WEAK LENSING SIGNATURE

The derivation of the effect of weak lensing on the
magnification of supernovae has been discussed with
details in [17,18,33–35]. Here we follow the pioneering
work of Wang [27] and briefly describe the weak lensing
signature in the type Ia supernova observations.
Due to the intervening matter and structure, the light

received by the observer is bent and this can modify the
observed brightness of SNe Ia. The observed flux from a
SNe Ia can be written as

f ¼ μLint; ð1Þ

where Lint is the intrinsic brightness of the SNe Ia, and μ is
the magnification due to lensing, which can be modeled by
a universal probability distribution function based on the
measured matter power spectrum [18]. The two variables
Lint and μ are statistically independent; therefore the
distribution of their product f can be modeled explicitly
with the probability distribution function (PDF) of each
variable. The resulting distribution can be written as

pðfÞ ¼
Z

Lmax
int

0

dLint

Lint
gðLintÞp

�
f
Lint

�
; ð2Þ

where pðμÞ is the PDF of the magnification of SNe Ia, and
gðLintÞ is the PDF of the intrinsic brightness of SNe. The
upper limit of the integration Lmax

int ¼ f=μmin, resulting from
the requirement μ ¼ f=Lint ≥ μmin, where μmin is the mini-
mum value of the magnification due to lensing and can be
computed for a given cosmological model. Without prior
knowledge for the distribution of the intrinsic brightness of
SNe Ia, we follow [27] and assume that gðLintÞ is a Gaussian
distribution with unit mean and dispersion σ. The value of σ
can be well estimated with a large sample of SNe Ia at low
redshift; however wewill show that this quantity can also be
measured as a by-product in our weak lensing analysis.
In this paper, we measure pðμÞ by using the universal

probability distribution function (UPDF) of weak lensing
amplification as presented in [21,27]. Note thatpðμÞ can also
be computedwith the analytic method or using cosmological
N-body simulations; see e.g., [15,17,24,25,36–38] and
references therein. In this UPDF based framework, we first
calculate the minimum convergence as [39]

κ̂minðzÞ¼−
3

2

Ωmð1þ zÞ
cH−1

0

Z
z

0

dz0
ð1þ z0Þ2
Eðz0Þ

rðz0Þ
rðzÞ ½λðzÞ−λðz0Þ�;

ð3Þ

where rðzÞ is the comoving distance in a smooth Universe,
and

EðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ þΩkð1þ zÞ2

q
ð4Þ

is the dimensionless Hubble parameter in a ΛCDM cosmol-
ogy with Ωx denoting the matter-energy fraction of the
corresponding component x (herem refers tomatter,Λ refers
to cosmological constant, and k refers to curvature contri-
bution). The affine parameter

λðzÞ ¼ cH−1
0

Z
z

0

dz0

ð1þ z0Þ2Eðz0Þ : ð5Þ

The minimum of magnification μmin is related to the
minimum of convergence through μmin ¼ 1=ð1 − κ̂minÞ2.
This relation can be derived in terms of angular diameter
distances as detailed in Chapter 4 of [40]. Based on the
numerical simulation, the data of pðμÞ are converted to a
modified UPDF of the reduced convergence η [27],

PðηÞ ¼ 1

1þ η2
exp

�
−
�
η − ηpeak
ωηq

�
2
�
; ð6Þ

where

η ¼ 1þ μ − 1

jμmin − 1j : ð7Þ

The parameters in this formula ηpeak,ω, q are functions of ξη,
which is the variance of η and absorbs all the cosmological
dependence. For an arbitrary cosmological model, one can
compute ξη as [17]

ξη ¼
Z

χs

0

dχ
�
w
Fs

�
IμðχÞ; ð8Þ

with

Fs¼
Z

χs

0

dχwðχ;χsÞ; Iμ ¼ π

Z
∞

0

dk
k
Δ2ðk;zÞ

k
W2ðDkθ0Þ;

ð9Þ

Δ2ðk;zÞ¼ 4πk3Pmðk;zÞ; WðDkθ0Þ¼
2J1ðDkθ0Þ

Dkθ0
ð10Þ

where Pmðk; zÞ is the matter power spectrum at redshift z
withwave number k, θ0 is the smoothing angle [35], and J1 is
the Bessel function of order 1. The other quantities depend-
ing on the distance measure in the Universe can be calcu-
lated as
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wðχ; χsÞ ¼
H2

0

c2
DðχÞDðχs − χÞ

DðχsÞ
ð1þ zÞ

DðχÞ ¼ cH−1
0ffiffiffiffiffiffiffiffiffijΩkj

p sinnð
ffiffiffiffiffiffiffiffiffi
jΩkj

p
χÞ;

χ ¼
Z

z

0

cH−1
0 dz0

Eðz0Þ ; ð11Þ

where “sinn” is defined as sinh if Ωk > 0, sin if Ωk < 0. If
Ωk ¼ 0, both sinn and Ωk disappear.
In our analysis, we adopt the fitting formula provided by

[18] and further improved in [40] to calculate pðμÞ and
convolve it with the intrinsic brightness distribution to
obtain the observed flux distribution [see Eq. (2)]. Figure 1
presents the prediction of the observed flux distributions of
SNe Ia for magnification distribution pðμÞ at various
redshifts and with different widths of the intrinsic bright-
ness distribution gðLintÞ. The cosmological model adopted
is obtained through the flux-averaging method with the
latest Pantheon SNe Ia sample [41]. The result presents
clear signatures of the weak lensing effect of SNe Ia data
which are consistent with earlier investigations: a non-
Gaussian tail at the bright end due to high magnifications,
and a shift of the peak towards the faint end due to
demagnification since the Universe is mostly empty. We
also find that these signatures become more significant at
high redshift and with narrower intrinsic brightness dis-
tribution. This is due to the fact that the light emitted from
high redshift SNe Ia can experience more bending before
reaching the observer and thus result in stronger lensing
effects.

Next we explore this weak lensing effect in the current
SNe Ia data. We use the Pantheon sample compiled from
the full set of spectroscopically confirmed Pan-STARRS1
(PS1) SNe Ia with the observation from CfA1-4, CSP, PS1,
SDSS, SNLS and Hubble Space Telescope (HST) SN
surveys [14]. This dataset consists of 1048 SNe Ia in the
redshift range 0.01 < z < 2.3. Figure 2 displays the red-
shift distribution of this sample, with our redshift cuts used
in the analysis shown as vertical lines. Compared with the
datasets analyzed in earlier investigations [27], this
enlarged catalog can have significantly improved statistics.
In order to isolate the weak lensing signal in the SNe Ia
data, we first separate the data into several redshift bins.
The low redshift data with z < 0.1 are not considered in the

FIG. 1. Prediction of the observed flux distributions of SNe Ia for magnification distribution pðμÞ and intrinsic brightness distribution
gðLintÞ with different widths and redshifts. The cosmological model is obtained through the flux-averaging method and the width of
gðLintÞ is expressed in units of the mean flux. The distributions are normalized to have a peak value equal to 1.

FIG. 2. The redshift distribution of the Pantheon SNe Ia sample.
The vertical red lines correspond to the redshift cuts we use in the
analysis: z ¼ 0.1, 0.3, 0.7, 0.9.

RECONSTRUCTING THE WEAK LENSING MAGNIFICATION … PHYS. REV. D 99, 083525 (2019)

083525-3



analysis since they are significantly affected by the peculiar
velocities. As we present in Fig. 1, the low redshift SNe Ia
do not have a detectable weak lensing signature; therefore
we isolate the data with 0.1 < z < 0.3 to calculate the mean
flux and use this value to normalize the SNe Ia at higher
redshift. This can enable a meaningful and self-consistent
comparison of the high-z and low-z samples.
We present the resulting distribution of the SNe Ia flux in

Fig. 3. The top panel shows that the low-z sample is
consistent with a Gaussian distribution with σ ¼ 0.13 as we
may expect. For comparison, the Gaussian distribution and
the predicted distribution of SNe Ia flux from the con-
volution of a Gaussian distribution and pðμÞ are also
shown. Here pðμÞ is calculated using Eqs. (6) and (7) at
the effective redshift of the sample. The middle panel and
the bottom panel show the results for high-z samples with
two redshift cuts z > 0.7 and z > 0.9 respectively. We have
limited our analysis of the weak lensing effect for SNe Ia at

z > 0.7, since the weak lensing effect increases with
redshift and is not detectable at z < 0.7. We note that
the high-z sample with z > 0.7 shows clear signatures of
weak lensing: a high magnification at the bright end and a
demagnification shift of the peak toward the faint end. This
finding is consistent with the earlier study in [27] but with
better statistics due to the fact that the size of this high-z
sample is improved by a factor of 2. We also present results
with even higher redshift cut z > 0.9 in the bottom panel. It
implies a similar pattern as that of the z > 0.7 sample
(124 SNe Ia), but with more noise. Therefore we will focus
on the z>0.7 sample in the followinganalysis and just briefly
present the result from the z > 0.9 sample (49 SNe Ia)
as it is more strongly dominated by shot noise. The curves in
Fig. 3 are obtained assuming σ ¼ 0.13 in the Gaussian
distribution of the intrinsic brightness.Wewill show that this
parameter can be estimated from a simple likelihood analysis
in the next section.
In order to evaluate the statistical significance of the

result, we compare the flux distribution with the Gaussian
and convolved Gaussian distribution through a χ2 calcu-
lation as in Eq. (12). In this test, we assume that ξη in the
fitting formula of the UPDF is a free parameter in the weak
lensing scenario [18,40]. For the z > 0.7 subsample, we
find χ2 ¼ 5.49 for the Gaussian distribution and χ2 ¼ 2.95
for the convolved Gaussian respectively. The interpretation
from the weak lensing effect has a Δχ2 ¼ 2.54 improve-
ment. Given one extra parameter, the weak lensing
model has ΔAIC ¼ 0.54 improvement under an Akaike
information criterion (AIC). The z > 0.9 subsample has
similar results with χ2 ¼ 8.53 and χ2 ¼ 6.39 for the
Gaussian and convolved Gaussian respectively, a Δχ2 ¼
2.14 (ΔAIC ¼ 0.14) improvement. Note that the improve-
ment in model-fitting by convolving the Gaussian distri-
bution with pðμÞ is not significant for either sample as
measured by AIC, because the z > 0.7 sample has a small
lensing effect on average, while the z > 0.9 sample is shot-
noise dominated in the flux bins most sensitive to the
lensing effect (see Fig. 3, bottom panel). We expect that the
Gaussian convolved with the pðμÞ model will improve
model-fitting significantly compared to a Gaussian for
future SN Ia data at redshifts 1 to 2.
We have also performed a Kolmogorov-Smirnov test to

further access our results as in [27]. This test gives a
measure D, the maximum value of the absolute difference
between two cumulative distributions; i.e., smaller D
reveals better agreement. For the z > 0.7 subsample, we
find D ¼ 0.058 and D ¼ 0.051 for the Gaussian and
convolved Gaussian respectively. For the z > 0.9 subsam-
ple, the results are D ¼ 0.123 and D ¼ 0.072 respectively.
Therefore the Kolmogorov-Smirnov test shows that the flux
distributions of both subsamples are more consistent with
the convolved Gaussian than the pure Gaussian distribu-
tion, which supports the interpretation of the weak lensing
effect in the SNe Ia observations.

FIG. 3. The flux distribution of the low-z and high-z SNe Ia
samples. The redshift ranges and number of SNe Ia are shown in
the legend for each panel. The solid curves in each panel are
calculated assuming σ ¼ 0.13 in the Gaussian distribution of the
intrinsic brightness distribution, which can be estimated by a
simple likelihood analysis. The vertical grey line shows the unity
of the mean flux. pðμÞ is calculated at the effective redshift of
each sample. The low-z sample has a distribution consistent with
Gaussian which can be used to anchor the mean flux for both the
low-z and high-z samples. The z > 0.7 sample has better statistics
than the z > 0.9 sample, due to the larger size. It presents
characteristic signatures of weak lensing on the SNe Ia obser-
vations as explained in the text.

ZHONGXU ZHAI and YUN WANG PHYS. REV. D 99, 083525 (2019)

083525-4



III. CONSTRAINT ON THE DISPERSION
OF THE INTRINSIC BRIGHTNESS

The observed flux distribution shown in Fig. 3 can be
used to compare with the theoretical predictions in Eq. (2).
In this comparison, we assume a cosmological model
from the flux-averaging method [20] and the remaining
unknown parameter is σ in the intrinsic brightness distri-
bution gðLintÞ of SNe Ia. Therefore we can construct a naive
likelihood function

χ2 ¼
XNbin

i¼0

Di;obs −Di;pre

σD;i
; ð12Þ

where Nbin is the number of bins in f as in Fig. 3, Di is the
number of SNe Ia in the ith bin, and the subscripts “obs”
and “pre” refer to observation and prediction respectively.
Since the observable is the number count of SNe Ia in flux,
we assume the uncertainty follows a simple Poisson
distribution which gives σD;i ¼

ffiffiffiffiffiffiffiffiffiffiffi
Di;obs

p
. We present the

constraints on σ with two different redshift cuts (as shown
in Fig. 2) of the Pantheon sample in Fig. 4 by calculating
the value of χ2 in a range of σ. The result shows that the two
redshift cuts give best-fit values of σ consistent with each
other. Both samples show a dispersion of 13% in units of
the mean flux of SNe Ia. We also repeat this test for the low
redshift subsample with 0.1 < z < 0.3; the constraint on σ
is around 11.5%, consistent with the high redshift sub-
sample at a confidence level of 90%. It could indicate that a
redshift-independent intrinsic scatter is a reasonable
assumption, but we should note that this result needs to
be verified using much larger future samples with much

better statistics. The dispersion of intrinsic brightness of
SNe Ia can reflect the underlying physical mechanism. Its
accurate measurement can provide information of the
physics related to the explosion model and galaxy envi-
ronment and can improve the constraints on the cosmo-
logical parameters [31,42,43].

IV. RECONSTRUCTION OF pðμÞ
The observed flux distribution of SNe Ia as presented in

Fig. 3 is a convolution of the intrinsic distribution and
weak lensing magnification. The latter contains important
information about the spatial distribution of dark matter
and the late time evolution of the Universe. Therefore its
direct or indirect measurement can be important and
challenging, and it serves as a new probe to constrain
cosmology. In this section, we present a methodology for
extracting the measurement of pðμÞ from the observed SN
Ia flux distribution, and we apply it to current SNe Ia
observations.
Our approach is to numerically deconvolve Eq. (2) by

parametrizing the weak lensing magnification distribution
pðμÞ and assuming a model for the SN Ia peak brightness
intrinsic scatter gðLintÞ. Here are the steps in our method:
(1) Flux-average the SNe Ia to remove/minimize the

weak lensing effect.
(2) Derive the best-fit cosmological model using the

flux-averaged SNe Ia.
(3) Derive the SN Ia flux distribution for the high-z

subsample by removing the distance dependence of
the SN Ia apparent peak brightness assuming the
best-fit cosmological model.

(4) Parametrize pðμÞ with a set of parameters, fpðμiÞg,
for μmin < μi < μmax, where μmin is calculated from
the minimum of convergence in Eq (3), and μmax is
chosen to be large enough such that further increas-
ing its value has a negligible effect on the results.
Note that pðμÞ is assumed to be zero elsewhere.

(5) Model the SN Ia peak brightness intrinsic scatter
gðLintÞ as a Gaussian with dispersion σ.

(6) Interpolate fpðμiÞg to obtain a model pðμÞ, integrate
Eq. (2) to obtain predicted flux distribution for the
high-z subsample, and normalize it by the number of
SNe Ia in the subsample.

(7) Compute the likelihood function in Eq. (12).
(8) Run a Monte Carlo Markov chain (MCMC) test with

the emcee toolkit [44] to obtain constraints on the
parameters fpðμiÞ; σg.

The current SN Ia data do not allow a detailed
reconstruction of pðμÞ. For measuring pðμiÞ > 0, we have
chosen μi ¼ ð0.92; 0.96; 1.04; 1.1Þ for the z > 0.7 sample
and μi ¼ ð0.90; 0.94; 1.02; 1.1Þ for the z > 0.9 sample
respectively. We used the same number of parameters
for the two samples, but a wider range in μi for the higher
z sample as its pðμÞ is expected to have a broader
distribution.

FIG. 4. Constraints on σ: the dispersion of the intrinsic bright-
ness distribution of SNe Ia, for two different Pantheon sub-
samples, z > 0.7 (red) and z > 0.9 (blue). The stars denote the
best-fit value with χ2min, and the horizontal dotted line for the
z > 0.7 sample corresponds to χ2 ¼ χ2min þ Δχ2 with Δχ2 ¼ 1.
The results of these two constraints are consistent with each other
at a 1σ level, both indicating that the intrinsic brightness of SNe Ia
has a dispersion of about 13� 1% in units of the mean value.
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To demonstrate the feasibility of our approach and verify
consistency, we have derived the intrinsic scatter in SN Ia
peak luminosity separately (see the previous section),
instead of estimating it in a joint analysis with fpðμiÞg
as in step 8 above. We use linear interpolation in this
demonstration for simplicity. We will explore the joint
estimation of fpðμiÞ; σg and more sophisticated interpo-
lation schemes in future work.
We present this reconstructed pðμÞ in Fig. 5 for sub-

samples with two different redshift cuts, z > 0.7 (124 SNe
Ia) and z > 0.9 (49 SNe Ia). The red lines show the
prediction of pðμÞ based on UPDF (Sec. II) at various
redshifts. The reconstruction from the Pantheon sample is
shown as a dotted-dashed blue line with a shaded area.
There are two noticeable features in the result: first, the
resulting pðμÞ has a peak shape around μ < ∼1.0, con-
sistent with the UPDF prediction. The significance of the
reconstructed pðμÞ is higher than 2σ for the z > 0.7
subsample, indicating a positive detection of the weak
lensing magnification in SNe Ia observations. Second, the
reconstructed pðμÞ is broader than the theoretical predic-
tion at the mean redshift of the sample. This is partly due to
the fact that the light from the highest redshift supernovae
in the sample can experience more bending and result in
significant weak lensing magnification. Compared with the
limited number of SNe Ia with z > 0.7 or z > 0.9, their
contribution to the flux distribution is not negligible. The
predictions of pðμÞ based on UPDF at higher redshifts

show that the high-z SNe Ia can dramatically change the
overall shape of pðμÞ. The higher redshift subsample has
enhanced weak lensing signatures but degraded detect-
ability due to the reduced statistics (see the bottom panel of
Fig. 5). Note that the reconstructed pðμÞ for z > 0.9 SNe Ia
is broader than the reconstructed pðμÞ for SNe Ia z > 0.7,
since the weak lensing effect increases with z; in the
absence of lensing, pðμÞ is a delta function at μ ¼ 1.
Figure 5 demonstrates that the methodology presented in

this section can be used to extract pðμÞ from SN Ia data. We
expect that it will lead to detailed measurement of pðμÞ for
high-z SNe Ia when applied to sufficiently large samples of
SNe Ia at z > 1.

V. DISCUSSION AND CONCLUSION

We have presented a detection of the weak lensing
magnification in the SNe Ia observations. It extends the
pioneering work in [27] to derive the distribution of SNe Ia
brightness. By the use of the latest Pantheon SNe Ia sample,
we find consistent weak lensing signatures in the flux
distribution but with better statistics: a high magnification
tail at the bright end and a shift of peak magnification to
μ < 1 toward the faint end. Our analysis uses the low
redshift sample to find the mean flux and the results for two
high redshift samples are shown for comparison.
The observed flux distribution of SNe Ia is a result of

convolution between an intrinsic brightness distribution
and weak lensing magnification. We assume the intrinsic
distribution is Gaussian distributed with unit mean and
unknown dispersion σ. With measurement for the observed
flux distribution, we construct and perform a simple like-
lihood analysis and obtain the constraint on the dispersion.
For two samples with different redshift cuts, we find σ ¼
0.13 in units of the mean flux. The results of the two
samples are consistent with each other and do not present
significant redshift dependence. This type of measurement
could reveal the physical mechanism of SNe Ia explosion
and may contain information about the galaxies that host
SNe Ia.
We have developed a methodology to reconstruct the

weak lensing magnification of SNe Ia pðμÞ from their
observed peak flux distribution (see Sec. IV). Our method
is straightforward and assumes that pðμÞ is an interpolation
at certain values of μ and the measurements are determined
from a MCMC analysis. We applied our approach to the
Pantheon sample of SNe Ia and reconstructed pðμÞ for two
subsamples: z > 0.7 (124 SNe Ia) and z > 0.9 (49 SNe Ia).
The significance of the reconstructed pðμÞ is higher than 2σ
for the z > 0.7 subsample and lower for the z > 0.9
subsample due to its smaller size.
We have assumed that selection effects have been

accurately modeled and corrected in the Pantheon sample
by Scolnic et al. [14]. Since this is a complex and
challenging issue, we will examine it in detail using
realistically simulated data in future work.

FIG. 5. Reconstruction of pðμÞ from samples with two different
redshift cuts. Top panel: z > 0.7. Bottom panel: z > 0.9. The blue
dotted-dashed line is the reconstructed pðμÞ from observation and
the shaded area from inner to outer is 1 and 2σ uncertainties. The
red lines correspond to the theoretical prediction of pðμÞ from
UPDF at various redshifts.
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As a direct probe of dark matter and dark matter halos,
weak lensing provides an important means to study their
properties. The reconstruction of pðμÞ from the SNe Ia
observation is an independent measure of the underlying
distribution of matter. This in turn implies that we can use
this measurement to constrain cosmology [19,28,45–48].
In this case, the SNe Ia will not only be a geometrical
probe, but will also provide a constraint on the matter
distribution in the Universe. Even though the measurement
of pðμÞ can be noisy, it provides an independent cross-
check in cosmological constraints and can help break
the degeneracy of the cosmological parameters. The meth-
odology presented in this paper can be applied to the

thousands of SNe Ia at z > 1 that WFIRST will observe
[22] and yield unique information to improve our under-
standing of the Universe. We are currently investigating the
accuracy and precision of pðμÞ reconstruction from future
survey data. Our results will be presented as a follow-up to
the current paper.
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