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Abstract. There has been considerable recent literature connect-
ing Poncelet’s theorem to ellipses, Blaschke products and numerical
ranges, summarized, for example, in the recent book [16]. We show
how those results can be understood using ideas from the theory
of orthogonal polynomials on the unit circle (OPUC) and, in turn,
can provide new insights to the theory of OPUC.

1. Introduction

In 1813, Jean–Victor Poncelet [55] proved a remarkable theorem (see
Halbeisen–Hunderbüler [44] for a simple proof) that says if K is an el-
lipse inside another ellipse, Q, so that there is a triangle with vertices in
Q and sides tangent to K, then there are infinitely many such triangles,
indeed, so many that their vertices fill Q and their tangent points fill K.
There has been a huge literature motivated by this gem of projective
geometry, even a recent book [22]. Our paper studies three different
related developments.
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Marden’s 1948 book [49, Ch. 1, §4], Geometry of Polynomials, popu-
larized a theorem which he traces back to an 1864 paper of Jörg Siebeck
[57].

Theorem A. Let {wj}pj=1 be the vertices of a convex polygon in C
ordered clockwise. Let mj ∈ R, and let

M(z) =

p∑
j=1

mj

z − wj
(1.1)

Then the zero’s of M are the foci of a curve of class p − 1 which
intersects each of the line segments wjwk; j, k = 1, . . . , p; j 6= k at the
point dividing the line in ratio mj/mk.

In this brief introduction, we are not going to try to give you the
rather complicated definitions of the foci of a curve or of class nor will
we use these notions later in this paper (but see [48, 66]). We state this
theorem to emphasize there is a n–gon version, that M and its zeros
play a special role and that the ratios mj/mj+1 occur.

The second set of results concern Blaschke products. Starting in
2002, Daepp, Gorkin and collaborators wrote a series of papers [14, 15,
17, 36, 37, 38] considering finite Blaschke products1 of the form (for
{zj}nj=1 ⊂ D := {z ∈ C : |z| < 1}, maybe not be all distinct)

B(z) =
n∏
j=1

z − zj
1− z̄jz

(1.2)

These are precisely the Schur functions (analytic maps of D to itself)
which are analytic in a neighborhood of D, of magnitude 1 on ∂D, with
n zeros (they actually consider zB and sometimes divide their basic
function by z; we prefer to take this B and sometime multiply it by
z). Since |zB(z)| < 1 on D and |zB(z)| = 1 on ∂D, by the Cauchy–
Riemann equations, the map eiθ 7→ eiθB(eiθ) is strictly increasing in θ
and by the argument principle is n+ 1 to 1 so, for each λ ∈ ∂D, there
exist n + 1 solutions, wj; j = 1, . . . , n + 1, of wB(w) = λ̄ (they take
λ; it will be clear later why we prefer λ̄ as our label). We label the wj
with increasing arguments where arguments are taken in [0, 2π).

The main result in this approach is

Theorem B. For any {zj}nj=1 ⊂ D and any λ ∈ ∂D, there exist

mj(λ) > 0 with
∑n+1

j=1 mj(λ) = 1 so that

1 When we want to specify n, we will refer to (1.2) as n fold Blaschke products.
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n+1∑
j=1

mj(λ)

z − wj
=

B(z)

zB(z)− λ̄
(1.3)

The right side of this expression is a rational function of z which is
z−1+O(|z|−2) at infinity and with poles exactly at the wj so the left side

is just a partial fraction expansion and
∑n+1

j=1 mj(λ) = 1 follows from
the asymptotics at infinity. The main issue is the proof of Daepp et al
[14] that mj > 0 and they proved this by finding an explicit formula
for the mj in terms of the z’s and w’s,

mj =

[
1 +

n+1∑
k=1

1− |zk|2

|wj − zk|2

]−1

(1.4)

It is left unmentioned that there is a probability measure and what
its significance is. It has been noted (see, for example, footnote 5 on
page 107 in [39]) that there is a converse of sorts to this result, that is,
for every {mj}n+1

j=1 with mj > 0 and
∑n+1

j=1 mj = 1, there is a Blaschke

product so that (1.3) holds.
The following theorem is natural to state in this B(z) language

Theorem C. Fix λ 6= µ both in ∂D and let {wj}n+1
j=1 (resp. {uj}n+1

j=1 )

be the solutions of zB(z) = λ̄ (resp. zB(z) = µ̄). Then the w′s and u′s
interlace. Conversely, if one is given such interlacing sets, there is a
unique n fold Blaschke product so that the w’s and u’s are the solutions
of a zB(z) equation.

This result was first proven by Gao and Wu [27] in the Sn framework
below and the w’s and u’s enter as vertices of Poncelet (n + 1)–gons.
Their proof is long and involves lots of manipulations of determinants.
The later, much shorter proof, of Daepp, Gorkin and Voss [17] con-
structs some rational Herglotz functions with given interlacing zeros
and poles. We have a simple third proof. For reasons that will become
obvious later, for now, we’ll call this Wendroff’s Theorem for Blaschke
products. Parameter counting for this theorem is a little subtle. The
set of w’s and u’s lie in a 2n + 2 real dimensional manifold while it
appears the equivalent set is only the n zj’s in D which is only 2n
real parameters. But to get the w’s and u’s one needs two additional
free parameters, namely λ and µ. Conversely these parameters are
determined by the w’s and u’s since

λ = −
n+1∏
j=1

(−w̄j) µ = −
n+1∏
j=1

(−ūj) (1.5)
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The final theme concerns a class of finite dimensional matrices, now
called Sn, studied in a series of independent papers by Gau–Wu [24,
25, 26, 27, 28, 29, 30], also [76], and by Mirman [50, 51, 52, 53, 54] both
series starting in 1998. Recall that an operator on a Hilbert space is
called a contraction if its norm is at most 1. It is called completely non–
unitary if it has no invariant subspace on which it is unitary, which in
the finite dimensional case, is equivalent to there being no eigenvector
with eigenvalue λ obeying |λ| = 1. In the finite dimensional case, the
defect index of a contraction, A, is defined to be the dimension of the
range of 1 − A∗A. The space Sn is the set of completely non–unitary
contractions on Cn with defect index 1. One important theorem is

Theorem D. For any {zj}nj=1 ⊂ D (maybe not different), there is an
operator A ∈ Sn whose eigenvalues (counting algebraic multiplicity) are
the zj. Any two elements in Sn are unitarily equivalent if and only if
they have the same eigenvalues and multiplicities.

Recall that if A is an operator on a Hilbert space, H, then N(A), the
numerical range of an operator, A, on H is the set of values 〈ϕ,Aϕ〉
where we run through all ϕ ∈ H with ‖ϕ‖ = 1 (not ≤ 1!). It is a
subtle fact that N(A) is a convex subset of C and an easy fact that it
is compact when H is finite dimensional. See [5, 41, 43] for more on
numerical ranges. It is not hard to show that if A is normal, then (the
closure of) N(A) is the closed convex hull of the spectrum, so, in the
finite dimensional normal case, N(A) is the convex hull of the eigen-
values and so a convex polygon. In particular, if A is a k dimensional
unitary operator with simple spectrum, then N(A) is a convex k–gon
inscribed in ∂D.

Let H ⊂ K be two Hilbert spaces and P the orthogonal pro-
jection from K onto H. If A ∈ L(H), B ∈ L(K), we are inter-
ested in the relation A = PBP � H. If that holds we say that
A is a compression of B and that B is a dilation of A. In case
dim(K) < ∞, we call dim(K) − dim(H) the rank of the dilation.
There is a huge literature on dilations, much of it involving families
rather than single operators, for example, see [70, 71]. Our usage lim-
iting to a single operator and not demanding An = PBnP � H (for
n = 1, . . . ) is more common; see, for example, the Wikipedia article
https : //en.wikipedia.org/wiki/Dilation (operator theory).

Given a contraction, A on H, one is interested in finding K and
B ∈ L(K) so that B is a unitary dilation of A. It is easy to construct
such a dilation on K = H ⊕ H, so if dim(H) = n, a rank n unitary
dilation, but one can show there is a one parameter family of rank
one unitary dilations, {Bλ}λ∈∂D of any A ∈ Sn. For different λ, the
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eigenvalues are different and every point on the circle is an eigenvalue
of exactly one Bλ.

The big theorem in these papers of Gau–Wu and Mirman is

Theorem E. Let A ∈ Sn and {Bλ}λ∈∂D its rank one unitary dilations.
For each fixed λ, N(Bλ) is a solid n+ 1–gon with vertices {wj}n+1

j=1 on
∂D. Each edge of this polygon is tangent to N(A) at a single point and
as λ moves through all of ∂D, these tangent points trace out the entire
boundary of N(A). Moreover

N(A) =
⋂
λ∈∂D

N(Bλ) (1.6)

If, for a fixed λ, one forms

M(z) =
n+1∑
j=1

mj

z − wj
(1.7)

for suitable mj, then the zeros of M are precisely the eigenvalues of A.

Remark. It was a conjecture of Halmos [42], proven by Choi–Li [13],
that a formula like (1.6) holds for any contraction if the intersection is
over all dilations of rank at most n.

We are not the first people to realize the relations between these
themes; indeed, there is a very recent book on the subject [16] entitled:
Finding Ellipses: What Blaschke Products, Poncelet’s Theorem and
the Numerical Range Know about Each Other. The point of our paper
is that while the authors of these works didn’t know it, they were
discussing aspects of the theory of orthogonal polynomials on the unit
circle (OPUC). Our realization of this additional connection will allow
us to give new proofs and sometimes extend these results. These proofs
are often quite simple (if one knows the OPUC background [60, 61, 59]!)
and sometimes quite illuminating. For example, we’ll see that the left
side of (1.3) is the matrix element of the resolvent of a unitary operator
and the right side a Cramer’s rule ratio of determinants! Moreover, as
we’ll explain, this formula, which is one of the main results of the 2002
paper of Daepp, Gorkin and Mortini [14], can be viewed as a special
case of a general OPUC result of Khrushchev [46] published the year
before!

We will also find that these lovely earlier ideas provide new results
in the theory of OPUC of interest within that literature.

Because this paper is aimed at two disparate audiences (namely
workers on the themes above and workers in OPUC) with rather dif-
ferent backgrounds, the presentation is more discursive than it might
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be if directed only at experts in a single area. In particular, Section 2
which officially sets notation and terminology presents a lot of results
in OPUC with references to proofs. Section 3 states our main results.
Some of these results will rely on a new theorem presented in Section 4
on GGT matrices. Sections 5–7 recover results on Sn and Sections 8–9
on Blaschke products. Section 10 discusses two new variants of Wen-
droff’s Theorem connected to Theorem C and the final three sections
have additional remarks and results.

B.S. would like to thank Fritz Gesztesy and Lance Littlejohn for the
invitation to visit Baylor where our collaboration was begun.

2. OPUC On One Toe

A probability measure, dµ on ∂D is called non-trivial if it is not
supported on a finite set of points. That is true if and only if
L2(∂D, dµ) is infinite dimensional and, in turn, is true if and only if
{zj}∞j=0 are linearly independent as functions in that L2 space. In
that case, by using Gram–Schmidt on this set, we can define monic
orthonormal polynomials, Φn(z; dµ), and orthonormal polynomials,
ϕn(z; dµ) = Φn(z; dµ)/‖Φn‖. Usually, we’ll drop the “dµ” unless it
is needed for clarity.

The now standard reference for OPUC is Simon [60, 61]; older ref-
erences are parts of the books of Szegő [69], Geronimus [33] and Freud
[21]. A summary of the high points is [59] which was named after a
story from the Talmud. This even briefer summary is to set notation
and terminology and emphasize those aspects of the theory we’ll need.
We note that large swathes of the standard theory concern asymptotics
of the Φ ’s and the relation of the Verblunsky coefficients to qualitative
properties of the measure, none of which are relevant to our study here
which concerns only {Φn}Nn=0 for fixed finite N . We note that there
are issues we hope to study elsewhere of the large N behavior of the
numerical range where these ideas may be important.

On L2(∂D, dµ), one can define the antiunitary maps

τn(f)(eiθ) = einθf(eiθ) (2.1)

which takes zk to zn−k. Let Pn be the n + 1 dimensional space of
complex polynomials of degree at most n. Then τn maps Pn to itself
and has the form:

τn(Pn(z)) = znPn

(
1

z̄

)
(2.2)

so it just reverses the coefficients of Pn and complex conjugates them.
We will follow the awful, but unfortunately universal, convention of
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usually writing P ∗n instead of τn(Pn) hoping the implicit n is clear so
for example one writes

(zΦn)∗ = Φ∗n
where the ∗ on the left is τn+1 while the one on the right is τn!

This map is important because of the second part of the elementary

Proposition 2.1. In Pn
(a) Any f orthogonal to {zj}n−1

j=0 is a multiple of Φn

(b) Any f orthogonal to {zj}nj=1 is a multiple of Φ∗n

Because we will need ideas in its proof later we’ll give the simple
proof of the basic Szegő recursion

Theorem 2.2. Let dµ be a non–trivial probability measure on ∂D.
Then for each n = 0, 1, . . . there exists αn(dµ) ∈ D so that

Φn+1(z) = zΦn(z)− αnΦ∗n(z) (2.3)

Proof. Because they are monic, Φn+1(z) − zΦn(z) is a polynomial of
degree n which it is easy to see is orthogonal to {zj}nj=1 and so a multiple
of Φ∗n which proves that (2.3) holds for some αn ∈ C. By moving the
second term on the right to the left and noting that the two terms now
on the left are orthogonal one sees that ‖Φn+1‖2+‖zΦn‖2 = |αn|2‖Φ∗n‖2

so one has that

‖Φn+1‖ = ρn‖Φn‖; ρn ≡
√

1− |αn|2 (2.4)

proving that |αn| < 1. �

The αn are called Verblunsky coefficients. The strange sign and com-
plex conjugate in (2.3) are picked so that Theorem 2.6 below is true.
Taking z = 0 in (2.3) and noting that Φn monic implies that Φ∗n(0) = 1,
we see that

αn = −Φn+1(0) (2.5)

(2.4) implies the important

‖Φn‖ = ρ0 . . . ρn−1 (2.6)

Applying τn+1 to (2.3) we get Φ∗n+1(z) = Φ∗n(z) − αnΦn(z). This
equation and (2.3) can be inverted to give what are called inverse Szegő
recursion, which we’ll write for the normalized OPUC:

zϕn(z) = ρ−1
n (ϕn+1(z) + ᾱnϕ

∗
n+1(z)) (2.7)

ϕ∗n(z) = ρ−1
n (ϕ∗n+1(z) + αnϕn+1(z)) (2.8)

An important basic fact about zeros of OPUC is the following (which
the reader is right to suspect is connected to Theorem D!) is
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Theorem 2.3 (Wendroff’s Theorem for OPUC). All the zeros of Φn(z)
lie in D. Conversely, given any labelled set of n, not necessarily dis-
tinct, points in D, there exists a measure so that those points are exactly
the zeros (counting multiplicity) of the associated Φn(z). Any two such
measures have the same {αj}n−1

j=0 and so also the same {ϕj}nj=0.

Remarks. 1. The first statement goes back to Szegő’s basic 1920-
21 OPUC paper [68]. [60] has at least six proofs of this statement:
[60, proofs of Theorem 1.7.1 containing equations (1.7.22), (1.7.43),
(1.7.45), (1.7.46), (1.7.47) and (1.7.51)]. More generally, Fejér [20]
proved for any measure of compact support in C whose support doesn’t
lie in a line that the zeros of all its OPs lie in the interior of the convex
hull of the support.

2. The full result goes back to Geronimus [32] in 1946 long before
the proofs of Theorem D.

3. The name comes from a theorem for orthogonal polynomials on
the real line (OPRL) proven in Wendroff [74] in 1961: given 2n+1 dis-
tinct points in R thought of as an n point set interlacing an n+1 point
set, there is a probability measure on R with all moments finite so that
the two sets are the zeros of the OPRL Pn and Pn+1 and all such mea-
sures have the same first 2n+ 1 Jacobi parameters (i.e., coefficients of
the three terms recurrence relation) and {pj}n+1

j=0 , [60, Subsection 1.2.6].
The OPRL result without proof appears in a footnote of Geronimus’
paper and [60] tried to push the name Geroniums–Wendroff Theorem
for both results but the literature seems to have stuck with Wendroff
which we’ll follow in this paper for theorems of this type including new
ones. Theorem C has the flavor of Wendroff’s OPRL result and we’ll
see it can be view as an analog for paraorthogonal polynomials.

4. The uniqueness part, namely that Φn determines the {αj}n−1
j=0

comes from (2.5) which determines αn−1, and, then from inverse recur-
sion for the Φ’s, we get Φn−1 and so by iteration all the {αj}n−1

j=0 .
5. One way to show existence is a calculation [60, Proof of The-

orem 1.7.5] that proves that if Qn has all its zeros in D, and if
dµ(θ) = c dθ/|Q(eiθ)|2 (where c is a normalization constant) then Qn is
orthogonal in L2(dµ) to Pn−1 and so is the monic OPUC as required.
This is the measure with Qn as monic OPUC that has αj = 0 if j ≥ n.

Two classes of functions (discussed in detail in [60, Section 1.3]) are
Carathéodory functions (analytic function on D which obey Re(F (z)) >
0; F (0) = 1) and Schur functions (analytic functions on D which obey
|f(z)| < 1). Given a probability measure, dµ, on ∂D, we define two
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associated functions on D:

F (z) =

ˆ
eiθ + z

eiθ − z
dµ(θ); F (z) =

1 + zf(z)

1− zf(z)
(2.9)

called the Carathéodory function and Schur function of dµ.
Schur associated a set of parameters to any Schur function via f0 ≡ f

and

γn(f) = fn(0); fn(z) =
γn + zfn+1(z)

1− γ̄nfn+1(z)
(2.10)

If f is a finite degree m Blaschke product, then γm ∈ ∂D and the
process terminates. If not (in which case we call f a non–trivial Schur
function), we can define the Schur iterates, fn, and Schur parameters,
γn(f) ∈ D, for all n.

Theorem 2.4 (Schur’s Theorem (1917)). There is a one–one corre-
spondence between non–trivial Schur functions and sequences {γn}∞n=1

in D given by the map from f to its Schur parameters.

This was proven by Schur [56]; see [60, Section 1.3.6]

Theorem 2.5 (Verblunsky’s Theorem (1935)). There is a one–one
correspondence between non–trivial probability measures on ∂D and se-
quences {αn}∞n=1 in D given by the map from a measure to its OPUC
and the Verblunsky coefficients defined via Szegő recursion.

This was proven by Verblunsky [73] using an equivalent definition of
his coefficients. [60] has four proofs of this result (see [60, Theorems
1.7.11, 3.1.3, 4.1.5 and 4.2.8].

Theorem 2.6 (Geronimus’ Theorem (1944)). Let dµ be a non–trivial
probability measure on ∂D and f its Schur function. Then

αn(dµ) = γn(f) (2.11)

This theorem is due to Geronimus [31]. [60] has five proofs of this
result (see [60, Theroems 3.1.4, 3.2.7, 3.2.10, 3.4.3 and 4.5.9]. This
theorem explains why one writes Szegő recursion with the complex
conjugate and minus sign on α.

Let dµ be a non–trivial probability measure with Verblunsky coeffi-
cients {αn}∞n=1. The second kind polynomials for dµ, written {Ψn}∞n=0,
are the OPUC for the measure whose Verblunsky coefficients are
{−αn}∞n=1. The following was given explicitly in Geronimus [31, 32]
and earlier implicitly in Verblunsky [73].

Theorem 2.7. Let dµn be the measure with Verblunsky coefficients

αj(dµn) =

{
αj(dµ), if j ≤ n− 1
0, if j ≥ n

(2.12)
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Then the Carathéodory function, Fn of dµn is Ψ∗n/Φ
∗
n, and the

Carathéodory function, F, of dµ is limn→∞ Fn uniformly on compact
subsets of D.

The proof (see [60, (3.2.21)]) depends on the formula

Ψ∗k(z)Φk(z) + Φ∗k(z)Ψk(z) = 2zk
k−1∏
j=0

ρ2
j (2.13)

In 2001, Khrushchev [46] found a new approach to Rahkmanoff’s
Theorem (which gives a sufficient condition for the Verblunsky coef-
ficients to be asymptotically vanishing) with lots of other interesting
stuff. A basic result he needed was the following

Theorem 2.8 (Khrushchev’s formula). Let f be the Schur function of
some non–trivial probability measure, dµ, on the unit circle and let fn
be its nth Schur iterate. Let Bn(z) = Φn(z)/Φ∗n(z). Then the Schur
function of the probability measure |ϕn(eiθ)|2dµ is fn(z)Bn(z).

[60, 61] have three proofs of this: Khrushchev’s original proof [61,
Theorem 9.2.2], a proof using second kind polynomials [60, Corollary
4.4.2] and a proof using rank two perturbations of CMV matrices [60,
Theorem 4.5.10].

This formula is an OPUC analog of the fact that the Green’s function
for a whole line Schrödinger operator is the product of two suitably
normalized Weyl solutions.

We let Pn be the projection in L2(dµ) onto Pn−1, the polynomials
of degree at most n− 1. We use the subscript n because operators on
Pn−1 are represented by n× n matrices. Given a non-trivial measure,
let Mz be multiplication on by z on L2(∂D, dµ). By a compressed
multiplication operator, we mean the compression of the unitary Mz to
polynomials of degree at most n − 1, i.e. A = PnMzPn restricted to
Pn−1. We’ll write Aµ when we want to be explicit about the measure.

Theorem 2.9. Aµ depends only on the Verblunsky coefficients
{αj(dµ)}n−1

j=0 . That is

Aµ = Aν ⇐⇒ ∀0≤j≤n−1αj(dµ) = αj(dν) (2.14)

Remarks. 1. We don’t merely mean unitarily equivalent. These are
operators on an explicit space of polynomials and we mean equality.
That said, we’ll see shortly that if we only know that Aµ is unitarily
equivalent to Aν , it is still true that ∀0≤j≤n−1αj(dµ) = αj(dν).

2. While this result is not unexpected, we sketch the proof since we
don’t know any precise references.



OPUC AND PONCELET’S THEOREM 11

Proof. If the relevant Verblunsky coefficients are equal, then they define
the same set of {ϕj}n−1

j=0 and {ϕ∗j}n−1
j=0 and the first is an orthonormal

basis. Moreover, they both have

Aϕj =

{
ρjϕj+1 + ᾱjϕ

∗
j if 0 ≤ j ≤ n− 2

ᾱjϕ
∗
j if j = n− 1

(2.15)

and so they are equal.
Conversely, for any µ, we have that Qµ((Aµ)n−11) = Φn−1(·;µ) where

Qµ is the projection onto the orthogonal complement of {(Aµ)j1}n−2
j=1 so,

by Wendroff’s Theorem for OPUC, equality of the A’s implies equality
of the αj’s for 0 ≤ j ≤ n − 2. Then (2.15) for j = n − 1 implies the
equality of the αn−1’s. �

Fix z0. When does (Aµ−z0)q = 0 have a non–zero solution q ∈ Pn−1?
Clearly, only if (z − z0)q(z), which is a degree n polynomial, is killed
by Pn, i.e. if (z− z0)q(z) is a multiple of Φn(z) and this happens if and
only if Φn(z0) = 0. Thus the eigenvalues are precisely the zeros of Φn.
A closer look shows that all the eigenvalues have geometric multiplicity
1 and algebraic multiplicity the order of the zero. Thus:

Theorem 2.10. The eigenvalues of A are the zeros of Φn including up
to algebraic multiplicity. Thus

det(z − A) = Φn(z) (2.16)

In particular, since for an n× n matrix, C, det(−C) = (−1)n det(C),
we have that, by (2.5)

det(A) = (−1)n+1ᾱn−1 (2.17)

This implies that if Aµ is unitarily equivalent to Aν , then µ and ν
have the same Φn and so, by Wendroff’s Theorem, the same {αj}n−1

j=0 .
Suppose now that dµ is a trivial measure on ∂D, say with n+ 1 pure

points, {wj}n+1
j=1 . Then {zk}nk=0 are still independent, so one can use

Gram–Schmidt to form {Φj}nj=0. As the norm minimizer, one also has
that

Φn+1 =
n+1∏
j=1

(z − wj) (2.18)

Since this has norm 0, one expects (see (2.6)) and indeed finds that
Φn+1 is given by Szegő recursion but with |αn| = 1. That is, trivial
measures are described by sets of n + 1 Verblunsky coefficients, the
first n in D and the last in ∂D. The corresponding multiplication
operators are precisely the n + 1–dimensional unitaries with a cyclic
vector. Moreover, the Schur and Geronimus Theorems extend. The
Schur function of such an n+ 1 point measure is, up to a leading phase
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factor, an n–fold Blaschke product (whose zeros are those of Φn) and
which has n+ 1 Schur parameters, n in D and the last in ∂D.

This motivates, the following: Suppose, we are given a non–trivial
measure with Verblunsky coefficients, {αj}∞j=0, and we consider, Φn(z).
Given λ ∈ ∂D, we define the paraorthogonal polynomial (POPUC) by

Φn+1(z;λ) = zΦn(z)− λ̄Φ∗n(z) (2.19)

The definition goes back to Delsarte–Genin [19] and Jones et. al [45];
among later papers, we mention [7, 9, 10, 11, 18, 34, 58, 63, 75]. One
can show that the n+ 1 point measure, dνλ, whose first n Verblunsky
coefficients are the first n αj and with αn = λ has Φn+1(z;λ) as its n+1-
st monic OPUC (which has norm 0!). We’ll use Uλ as multiplication by
z on L2(∂D, dνλ). This L2 space has dimension n+1 and can be viewed
as the space of polynomials of degree at most n. It will be useful to
sometimes view it as an n+ 1× n+ 1 matrix in some convenient basis
– most often the normalized OPUC but sometimes the eigenvectors.

Theorem 2.11. Fix {αj}n−1
j=0 all in D and let A be the corresponding

compressed multiplication operator. The POPUC of degree n + 1 are
in one to one correspondence with the rank one unitary dilations of
A. The eigenvalues of the unitary, Uλ, associated to Φn+1(z;λ) are the
zeros of that polynomial so that

det(z − Uλ) = Φn+1(z;λ) (2.20)

In particular,

det(Uλ) = (−1)n λ (2.21)

We note that since Φ∗n(0) = 1, the constant term in Φn+1(z) is −λ̄
so we have that

λ = (−1)n
n+1∏
j=0

wj (2.22)

and we note that

Φ∗n+1(z, λ) = −λΦn+1(z, λ) (2.23)

We will need an explicit matrix representation for Mz and so Aµ

which [60] calls the GGT representation after Geroniums [31], Gragg
[40] and Teplyaev [72]. We note there is another matrix representation
called the CMV representation (after [8]) discussed in [60, Sectioon
4.2] which has advantages for the study of Mz on its infinite dimen-
sional space but for our needs on the n × n operator, Aµ, the GGT
representation is simpler and more natural.
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{ϕj}n−1
j=0 is an orthonormal basis for Pn−1 and the matrix elements

of Aµ in that basis are

Gk` = 〈ϕk, zϕ`〉; k, ` = 0, . . . , n− 1 (2.24)

Their explicit calculation is (see [60, (4.15)]) with α−1 = −1

Gk` =

 −α`αk−1

∏`−1
j=k ρj 0 ≤ k ≤ `

ρ` k = `+ 1
0 k ≥ `+ 2

(2.25)

In [60], this is calculated using 〈Φ∗n, P 〉 = ‖Φn‖2P (0) if degP ≤ n.
An easier alternative taken from [6] is to use Szegő recursion and inverse
Szegő recursion in the form

zϕn(z) = ρnϕn+1(z) + ᾱnϕ
∗
n(z) (2.26)

ϕ∗j(z) = ρj−1ϕ
∗
j−1(z)− αj−1ϕj(z) (2.27)

so

zϕn(z) = ρnϕn+1(z)− ᾱnαn−1ϕn(z) + ᾱnρn−1ϕ
∗
n−1(z)

= ρnϕn+1(z)− ᾱnαn−1ϕn(z)− ᾱnρn−1αn−2ϕn−1(z)

+ ᾱnρn−1ρn−2ϕ
∗
n−2(z) (2.28)

which upon iterating (using that ϕ∗0 = 1 = ϕ0) yields

zϕn(z) = ρnϕn+1(z) +
n∑
k=0

Gknϕk(z) (2.29)

with G given by (2.25). In other words,

G({αj}n−1
j=0 ) =


ᾱ0 ᾱ1ρ0 ᾱ2ρ0ρ1 . . . ᾱn−1ρ0 . . . ρn−2

ρ0 −ᾱ1α0 −ᾱ2α0ρ1 . . . −ᾱn−1α0ρ1 . . . ρn−2

0 ρ1 −ᾱ2α1 . . . −ᾱn−1α1ρ2 . . . ρn−2
...

...
...

. . .
...

0 0 0 . . . −ᾱn−1αn−2


(2.30)

We call the GGT representation of a compressed multiplication op-
erator a GGT contraction. The GGT representation of the matrix
associated to a POPUC we’ll call a GGT unitary.

3. Main Results

Here are the main results of this paper. We begin with three theo-
rems that capture the main structure theorem for Sn (Theorem D).

Theorem 1. Every compressed multiplication operator lies in Sn.



14 A. MARTÍNEZ–FINKELSHTEIN, BRIAN SIMANEK AND B. SIMON

Theorem 2. Every element in Sn is unitarily equivalent to a com-
pressed multiplication operator.

Theorem 3. For any set of n elements (with multiplicity) in D, there
is a compressed multiplication operator with those eigenvalues. Two
compressed multiplication operators with the same characteristic poly-
nomial are unitarily equivalent.

Thus, we can parametrize equivalence classes of Sn by two sets of n
elements from D:

(i) eigenvalues of a representative A ∈ Sn of the equivalence class,
or

(ii) Verblunsky coefficients {αj}n−1
j=0 , associated to the compressed

multiplication operator.

Theorem 1 will be easy and we’ll see that given the first two theorems,
Theorem 3 is essentially a restatement of Wendroff’s Theorem. Thus
the key will be Theorem 2. We will have two proofs, neither so short.
The one in Section 5 will rely on turning a GGT unitary on its head,
i.e. noting that a GGT unitary flipped along the secondary diagonal is
again a GGT unitary but with different Verblunsky coefficients. We’ll
develop this idea in Section 4. Our second proof of Theorem 2 in Section
6 will involve constructing an orthonormal basis for the space on which
A ∈ Sn acts that will show it is acting as a compressed multiplication
operator. Our construction of this basis is motivated by inverse Szegő
recursion.

Arlinskǐi has four papers [1, 2, 3, 4], one with coauthors, that are
related to the above three theorem. These papers deal with a related,
but different, class of operators which he calls truncated CMV matrices.
He gets these by starting with a finite or infinite unitary CMV matrix
and stripping off their first row and column. If the original unitary is
a finite n + 1× n + 1 matrix, this is related to, but distinct from, our
compressed multiplication operators in CMV basis. It is cleaner if one
describes the difference in GGT basis. Then he gets his operators by
removing the first row and column and we remove the last row and
column. For his objects, he has analogs of Theorems 1 and 2. He also
has a theorem like Theorem 3 except that, because truncated CMV
matrices whose Verblunsky coefficients are related up to an overall
phase factor are unitarily equivalent, the uniqueness result is a little
more involved. Because of our Theorem 4.2, one can establish a simple
unitary equivalence between truncated CMV matrices and compressed
multiplication operators and then obtain our Theorems 1-3 from his
theorems or vice–versa. We note that although he doesn’t seem to
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know about the earlier work around Theorem D, like us, he has an
OPUC proof of it.

Next, in Section 7, we’ll turn to the study of the numerical range of
compressed multiplication operators and prove two theorems.

For each λ ∈ ∂D, let Uλ be the associated unitary, Φn+1 the asso-
ciated POPUC, {wj}n+1

j=1 the zeros of Φn+1, cyclically ordered, ηj the

associated normalized eigenvectors, so ηj(z) = N−1
j Φn+1(z)/(z − wj)

and dµ the spectral measure

dµ =
n+1∑
j=1

|〈ηj, 1〉|2δwj
(3.1)

Let mj = |〈ηj, ϕn〉|2 > 0 (since deg(ηj) = n) so
∑n+1

j=1 mj = 1 (since

‖ϕn‖ = 1). Let A be the dimension n compressed multiplication oper-
ator and wn+2 ≡ w1.

Theorem 4. For j = 1, . . . , n+ 1, the line from wj to wj+1 intersects
N(A) in a single point, ζj, and |ζj − wj|/|ζj − wj+1| = mj/mj+1. In

particular,
∏n+1

j=1 |ζj − wj| =
∏n+1

j=1 |ζj − wj+1|.

Remark. If the line is between wj and wk, the corresponding point
also lies in N(A) but it is not, in general, the only point in N(A).

Theorem 5. For each λ, we have that N(Uλ) is a solid (n + 1)-gon
whose sides are tangent to N(A). ∂N(A) is a strictly convex analytic
curve and one has that

N(A) = ∩λ∈∂DN(Uλ) (3.2)

The proofs, which rely on operator theory, will not be difficult.
With the above definition of the mj, the spectral measure for ϕn and

the operator Uλ is

dν =
n+1∑
j=1

mj δwj
(3.3)

Theorem 6. Fix a degree n + 1 POPUC and let dν be the measure
constructed above. Then one has thatˆ

1

z − eiθ
dν(θ) =

Φn(z)

zΦn(z)− λ̄Φ∗n(z)
=

Φn(z)

Φn+1(z, λ)
(3.4)

Conversely, let dν be an n+ 1 point probability measure on ∂D. Then
(3.4) holds for the POPUC defined by dν.

If {zj}nj=1 are the zeros of Φn, then Φn(z)/Φ∗n(z) =
∏n

j=1
z−zj
1−z̄jz , so

Theorem 6 is the Blaschke product theorem of Daepp et al (1.3) and
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its converse as discussed after (1.4) with a very different proof of the
positivity of the mj and of the formula. As we’ll discuss this result
can be proven from Khrushchev’s formula by taking limits to extend
his formula to trivial measures. It can also be obtained from general
formulae for M–functions in [60]. We will give two simple direct proofs.
From the OPUC point of view, the picture isn’t complete until we find
the Verblunsky coefficients for the trivial measure dν.

Theorem 7. Let {αj}n−1
j=0 be the Verblunsky coefficients for the spectral

measure, dµ, of (3.1), that is the measure for which ϕj are the OPUC.
Then the Verblunsky coefficients {αj(dν)}n−1

j=0 for the measure, dν of
(3.3) are given by

αj(dν) = −λᾱn−1−j, j = 0, . . . , n− 1; αn(dν) = λ (3.5)

The λ = 1 case of this result is implicit in a remark on rank two de-
coupling of CMV matrices in [60] but we’ll give two more direct proofs:
one using the results from Section 4 on turning a CMV matrix on its
head and one proof using Geronimus’ Theorem and Szegő recursion.
Theorems 6 and 7 will be proven in Sections 8 and 9.

Section 10 has two Wendroff type theorems (Section 10 will discuss
previous literature related to this result but we note here that Theorem
8 appears previously in [35].)

Theorem 8 (Wendroff’s Theorem for (P)OPUC). The zero’s of
POPUC’s for two values of λ interlace. Conversely, given two sets
of n+ 1 interlacing points on ∂D, there exist unique {αj}n−1

j=0 in D and
λ, µ in ∂D so these are zeros of the associated POPUCs.

We put the (P) in “(P)OPUC” because, as we’ll discuss, there is a
rather different Wendroff type theorem for POPUC in the literature
which only involves some POPUC parameters whereas we discuss both
the POPUC parameter and the OPUC parameters.

Theorem 9 (Wendroff’s Theorem for Second Kind POPUC). Let
{wj}n+1

j=1 be the zeros of a POPUC, Φn+1, ordered clockwise, and {yj}n+1
j=1

be the zeros of associated second kind POPUC, Ψn+1, also ordered clock-
wise, so that y1 is the first zero after w1 going clockwise. Then the w’s
and y’s strictly interlace and one has that

n+1∏
j=1

yj = −
n+1∏
j=1

wj (3.6)

Conversely, if {wj}n+1
j=1 and {yj}n+1

j=1 are strictly interlacing and
obey (3.6), then there is a unique set of Verblunsky coefficients
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α0, . . . , αn−1 ∈ D and λ ∈ ∂D so that {wj}n+1
j=1 is the set of zeros of

the associated POPUC and {yj}n+1
j=1 the zeros of the associated second

kind POPUC.

Recall that for OPUC, second kind OPUC were defined by putting
a minus sign in front of all the Verblunsky coefficients. We define the
second kind POPUC by also putting a minus sign in front of the λ
parameter unlike the convention in [63]. Theorem 8 is equivalent to
the result of Gau–Wu quoted as Theorem C. We have a new proof.
The first halves of both of our Wendroff type theorems are already in
the OPUC literature; we’ll say more about that in Section 10.

Section 11 discusses a theorem of Gau-Wu [25] about zeros of deriva-
tives of polynomials all of whose zeros are on ∂D and the question of
Gorkin–Skubak [37] asking when a finite subset of D is the set of zeros
of the derivative of a polynomial all of whose zeros lie on ∂D.

Section 12 discusses Poncelet’s Theorem. Theorem A shows that the
eigenvalues of A ∈ Sn are the foci of a curve containing set ∂N(A).
While we don’t have an OPUC way to understand the eigenvalues as
foci, Section 13 explains two other ways of going from N(A) to the
eigenvalues.

4. Turning a Unitary GGT Matrix on Its Head

In this section we answer a question about unitary n× n GGT ma-
trices that will be relevant to one of our proofs of Theorem 2 and 7
(although the later will need (n+1)×(n+1) matrices). We begin with

Theorem 4.1. Let U be an n × n unitary matrix with cyclic vector
ψ0. Then there is a unique basis {ej}nj=1 in which U is a GGT unitary

G({αj}n−1
j=0 ) and ψ0 = e1. The {αj}n−1

j=0 are uniquely determined by the
pair U, ψ0.

Remarks. 1. We emphasize that the {αj}n−1
j=0 are not unitary invari-

ants of U alone but of U and its cyclic vector. The unitary invariants
of U are the n eigenvalues so n real parameters, but the α′s are n− 1
in D and one in ∂D (since αn−1 ∈ ∂D) and so 2n− 1 real parameters.
To determine G, all that matters from the cyclic vector is the spec-
tral measure, so n− 1 independent real weights leading to the correct
parameter count. That the eigenvalues of U aren’t enough to deter-
mine the α’s is indicated by the form of the Wendroff type theorems
in Section 10.

2. While we won’t need it below, there are explicit formulae for
the weights of the spectral measure dµ =

∑n
j=1 qjδwj

for U and ψ0

in terms of the OPUC {ϕj}n−1
j=0 (which are determined by {αj}n−2

j=0 ).
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Namely qj = 1/λn−1(wj); λn−1(w) =
∑n−1

j=0 |ϕj(w)|2. The λ are called

Christoffel numbers. This formula goes back to Jones et al. [45] (see
[60, Theorem 2.2.12] for a quick proof) although it is just the POPUC
analog of well–known formulae for OPRL known under the name Gauss
quadrature or Gauss–Jacobi quadrature.

Proof. The pair U, ψ0 determine the spectral measure and so a set of
n+ 1 monic OPUC whose last element is a POPUC and whose first n
elements normalized are the basis obtained by using Gram–Schmidt on
{Ukψ}n−1

k=0 . The representation in this matrix is precisely the claimed
GGT matrix. Uniqueness is easy. �

Here is the main result of this section:

Theorem 4.2. Let U be an n × n unitary matrix with cyclic vector
ψ0 with det(U) = (−1)n+1. Then there is a unique basis {ej}nj=1 in

which U is a GGT unitary G({βj}n−1
j=0 ) and ψ0 = en. The {βj}n−1

j=0 are
uniquely determined by the pair U, ψ0 and the β’s are related to the α’s
of Theorem 4.1 by

βj = ᾱn−2−j, j = 0, . . . , n− 2; βn−1 = −1 (4.1)

Remarks. 1. At first sight, it may be puzzling that U is unitarily
equivalent to GGT matrices with, in general, two different Verblunsky
coefficients. After all, Wendroff’s Theorem for OPUC implies that a
GGT contraction determines uniquely all its Verblunsky coefficients
but as pointed out in Remark 1 to Theorem 4.1 this is not true for
GGT unitaries as this theorem dramatically demonstrates.

2. The intuition is simple. A look at (2.30) shows that when
αn−1 = −1, there is a covariance under reflection about the reverse
main diagonal so long as one relabels the α’s via (4.1).

The covariance under reflection suggests we want to reverse the order
of the GGT basis. That has the advantage of taking e1 to en as we
want but such a reversal not only reflects, it also gives a transpose so
the following is critical

Lemma 4.3. Given any set of Verblunsky coefficients {αj}n−1
j=0 , with

αj ∈ D, j = 0, . . . , n − 2, and αn−1 ∈ D, the matrix representation
of A, the associated compressed multiplication operator, in the basis
{χj}n−1

j=0 where χj = ϕj is the transpose of the GGT matrix.

Remark. It is perhaps surprising a finite GGT matrix is unitarily
equivalent to its transpose. Using the so called AGR factorization (see
[64]) one can write the unitary operator explicitly. If U1 . . . Un is the
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AGR factorization and Wj = Uj . . . Un and W = Wn . . .W2, then one
can show that WGW−1 = Gt.

Proof. Clearly

〈χj, zχk〉 =

ˆ
χ̄j(e

iθ)eiθχk(e
iθ) dµ(θ)

=

ˆ
ϕj(e

iθ)eiθϕ̄k(e
iθ) dµ(θ)

= Gkj (4.2)

�

Proof of Theorem 4.2. As in the proof of Theorem 4.1, realize the space
on which U acts as L2(∂D, dµ) where dµ is the spectral measure for ψ0

and U . Let ϕj, j = 0, . . . , n − 1 be the orthonormal polynomials for
dµ, so, in particular, ψ0 = ϕ0. Let ej = ϕ̄n−j so en = ψ0. By either
the explicit formulae, (2.25) for Gk` or the form of the matrix (2.30),
one sees that the transpose of G({αj}n−1

j=0 ) in a basis run backwards is

G({βj}n−1
j=0 ) with β given by (4.1). Given Lemma 4.3, we see that the

matrix of U in basis {ej}nj=1 is G({βj}n−1
j=0 ) as claimed. �

We supposed that det(U) = (−1)n+1 for simplicity of calculation
(which implies that αn−1 = −1). It is easy to see that, more generally,
one has that

Theorem 4.4. Let U be an n × n unitary matrix with cyclic vector
ψ0. Then there is a unique basis {ej}nj=1 in which U is a GGT unitary

G({βj}n−1
j=0 ) and ψ0 = en. The {βj}n−1

j=0 are uniquely determined by the
pair U, ψ0 and the β’s are related to the α’s of Theorem 4.2 by

βj = −αn−1ᾱn−2−j, j = 0, . . . , n− 2; βn−1 = αn−1 (4.3)

5. Sn = Compressed Multiplication via GGT Matrices

In this Section, we give our first proof of Theorem 2. Let A ∈ Sn.
Pick once and for all a unit vector xn−1 ∈ ran(1 − A∗A). Then there
exists some ρn−1 ∈ (0, 1] such that

A∗A = 1− ρ2
n−1〈xn−1, ·〉xn−1 (5.1)

(for now, ρn−1 is just some number in (0, 1] but eventually we will see
that it is the same as a ρn−1 associated to OPUC and defined in (2.4)).
By using the polar decomposition, we can write A = UB where U is
unitary with det(U) = (−1)n+1 and B is diagonal in a basis including
xn−1 as its last element so that B has 1’s along diagonal except for
the last diagonal element which is some complex number a with |a|2 +
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ρ2
n−1 = 1. To see this start with A = V |A| as polar decomposition,

and shift to a basis where |A| is diagonal. Then pick U=V D where
D is diagonal and unitary with ones along diagonal except for the last
slot whose phase is picked to arrange det(U) = (−1)n+1 and then take
B = D∗|A|.

Lemma 5.1. For any A obeying (5.1), with the above decomposition
A = UB, we have that xn−1 is cyclic for U if and only if A has no
eigenvalue of magnitude 1.

Proof. If xn−1 was not cyclic for U , let K be the orthogonal comple-
ment of the cyclic subspace generated by U and xn−1. Then U−1 is
a polynomial in U (look at the secular equation) so U∗ leaves K⊥ in-
variant and thus U leaves K invariant. Since K is orthogonal to xn−1,
we have that B � K = 1. It follows that any eigenvector of U � K is
an eigenvector of A with the same eigenvalue so A has eigenvalues of
magnitude 1 as claimed.

Conversely, if Aη = λη with ‖η‖ = |λ| = 1, then ‖Aη‖ = ‖η‖ so
η is orthogonal to xn−1, implying that Bη = η, and is thus also an
eigenvector of U . It follows that 〈η, Ukxn−1〉 = 〈(U∗)kη, xn−1〉 = 0 so η
is orthogonal to the cyclic subspace of U and xn−1 so xn−1 is not cyclic
for U . �

First Proof of Theorem 2. Let A ∈ Sn. Then, as above A = UB where,
by Lemma 5.1, U has xn−1 as cyclic vector. By Theorem 4.2, U is a
GGT unitary where βn−1 = −1 and B is diagonal with 1’s along the
diagonal except for a in the lower right corner. It follows that in this
basis A is a GGT contraction with Verblunsky coefficients

γj =

{
βj, if 0 ≤ j ≤ n− 2
−a, if j = n− 1

(5.2)

Thus A is a compressed multiplication operator. �

6. Sn = Compressed Multiplication via Inverse Szegő
Recursion

In this Section, we give our second proof of Theorem 2. Let A ∈ Sn.
We will carefully pick a basis {xj}n−1

j=0 with xn−1 a unit vector as in
Section 5, for which

A∗A = 1− ρ2
n−1xn−1x

∗
n−1 (6.1)

and show that this basis is the basis of OPUC for a compressed multi-
plication operator. Our motivation for the construction is inverse Szegő
recursion.
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In (6.1), the unit vector xn−1 ∈ Hn, the space on which A, which we’ll
now denote by An, acts, so xn−1 ∈ ran(1− A∗nAn), and ρn−1 ∈ (0, 1].

Suppose that n ≥ 2 (Theorem 2 is trivial when n = 1). Let Hn−1 be
the n− 1–dimensional orthogonal complement of xn−1 so

Hn−1 = ker(1− A∗nAn) (6.2)

and let Pn−1 be the projection on Hn−1.
Since An is an isometry on Hn−1, An[Hn−1], the image of Hn−1 under

An has dimension n− 1 so we can pick a unit vector yn−1 ∈ An[Hn−1]⊥

unique up to overall phase factor. For now we won’t specify that phase
but we will later (essentially so that if xn−1 is ϕn−1, then yn−1 is ϕ∗n−1).
Let Qn−1 be the projection onto An[Hn−1].

Proposition 6.1. First, Qn−1xn−1 6= 0. Secondly there exists an−1 ∈ C
so that

ρ2
n−1 + |an−1|2 = 1 (6.3)

Anxn−1 = an−1yn−1 (6.4)

Thirdly, there exists a unique unit vector xn−2 ∈ Hn−1 so that Anxn−2

is a positive multiple of Qn−1xn−1. One has that

Anxn−2 = ρ−1
n−2[xn−1 + an−2yn−1] (6.5)

for some ρn−2 ∈ (0, 1] and an−2 ∈ C where

ρ2
n−2 + |an−2|2 = 1 (6.6)

Let An−1 = Pn−1AnPn−1 as an operator on Hn−1. Then An−1 ∈ Sn−1

with
1− A∗n−1An−1 = ρ2

n−2〈xn−2, ·〉xn−2 (6.7)

Proof. If Qn−1xn−1 = 0, then An leaves Hn−1 invariant. Since An is an
isometry on that space, the restriction of An to that invariant subspace
would be unitary which means that An would have eigenvalues of mag-
nitude one contradicting the hypothesis that A ∈ Sn (it is interesting
that this is how the eigenvalue condition enters in the proof!).

By (6.1), if u ∈ Hn−1, then 〈Anu,Anxn−1〉 = 〈u, xn−1〉 = 0 so
Anxn−1 ∈ An[Hn−1]⊥ proving (6.4). Formula (6.1), which says that
‖Anxn−1‖2 = 1− ρ2

n−1 then implies (6.3).
Since is An is an isometry onHn−1, there is a unique vector u ∈ Hn−1

so that Anu = Qn−1xn−1 and one has that ρn−2 ≡ ‖u‖ ∈ (0, 1]. Let
xn−2 = ρ−1

n−2u and note that (1 − Qn−1)xn−1 = −an−2yn−1 for some
an−2 ∈ C. This proves (6.5). Writing (6.5) as

xn−1 = ρn−2Anxn−2 − an−2yn−1 (6.8)

and noting that yn−1 is orthogonal to Axn−2 implies (6.6).
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Since An is an isometry onHn−1, it maps the orthogonal complement
of u in Hn−1 into Hn−1 so An−1 is an isometry on that orthogonal
complement which proves (6.7). Moreover, if An−1v = cv with v a unit
vector and |c| = 1, then ‖Pn−1Anv‖ = 1 ≥ ‖Anv‖ so Pn−1Anv = Anv
and v is an eigenvector of An and there is a contradiction, i.e. An−1 ∈
Sn−1. �

If n ≥ 2, we define, consistently with viewing An−1 ∈ Sn−1, Hn−2 to
be the complement of xn−2 in Hn−1, i.e.

Hn−2 = ker(1− A∗n−1An−1) (6.9)

and Qn−2, an operator on Hn−1, the projection onto An−1[Hn−2]. If
n = 2, then we take Q0 = 0.

Proposition 6.2. One can choose a unit vector yn−2 ∈ Hn−1 with
Qn−2yn−2 = 0 (i.e. yn−2 ∈ Hn−1 ∩ [An−1[Hn−2]]⊥) so that

Axn−2 = ρn−2xn−1 + an−2yn−2 (6.10)

〈yn−1, yn−2〉 = ρn−2 > 0 (6.11)

Remarks. 1. (6.10) is, of course, (direct) Szegő recursion (2.3) and,
as noted, (6.5) is inverse Szegő recursion, (2.7). We note that (6.11) is
motivated by [60, (1.5.61)] while (6.12) below is its ∗ dual and (6.15)
below is a special case of [60, (1.5.60)].

2. This also holds when n = 2. Hn−1 is then one dimensional so
yn−1 is a multiple of xn−1 since they are both vectors in Hn−1.

Proof. We start taking the inner product of Anxn−2 with (6.8) which
given that Axn−2 ⊥ yn−1 and ‖Anxn−2‖ = 1 implies that

〈Axn−2, xn−1〉 = ρn−2 (6.12)

Since 1−Pn−1 = 〈xn−1, ·〉xn−1, where Pn−1 be the projection on Hn−1,
this implies that

(1− Pn−1)Axn−2 = ρn−2xn−1 (6.13)

On the other hand, let w ≡ Pn−1Axn−2 and let u ∈ Hn−2. Since
An preserves inner products on Hn−1, we see that 〈Anu,Anxn−2〉 = 0.
Since Anu ∈ Hn−1, we see that Pn−1Anu = Anu. Thus

〈Anu,w〉 = 〈Anu, Pn−1Anxn−2〉 = 〈Pn−1Anu,Anxn−2〉
= 〈Anu,Anxn−2〉 = 0

Since w ∈ Hn−1, we conclude that w is a multiple of yn−2. Therefore,
for some b, we have that

Axn−2 = (1− Pn−1)Axn−2 + Pn−1Axn−2 = ρn−2xn−1 + byn−2 (6.14)
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Since yn−2 ⊥ xn−1, we have that b2 + ρ2
n−1 = 1, so we can pick the

phase of yn−2 so that (6.10) holds.
With this choice, we need to prove (6.11). Actually, if an−2 = 0 the

above argument doesn’t fix the phase of yn−2 so in that case we will
show that (6.11) can be used to determine the phase. Taking the inner
product of (6.8) with yn−1 and using that yn−1 ⊥ Axn−2 we get that

〈yn−1, xn−1〉 = −an−2 (6.15)

Taking the inner product of (6.10) with yn−1 and again using yn−1 ⊥
Axn−2 we get that

0 = ρn−2〈yn−1, xn−1〉+ an−2〈yn−1, yn−2〉 (6.16)

Multiplying (6.15) by ρn−2 we conclude that

an−2〈yn−1, yn−2〉 = an−2ρn−2 (6.17)

which implies (6.11) if an−1 6= 0.
If an−2 = 0, i.e. ρn−2 = 1, then by (6.15), yn−1 ⊥ xn−1 and, thus,

yn−1 ∈ Hn−1. Since it is orthogonal to An[Hn−1], it is also orthogonal
to An[Hn−2] and thus we can pick yn−1 = yn so that (6.11) holds.

�

Second Proof of Theorem 2. By iterating the above construction, hav-
ing made a choice of phase for xn−1 and yn−1, we get H1 ⊂ H2 ⊂ · · · ⊂
Hn with dim(Hj) = j and xj, yj ∈ Hj+1, j = 0, 1, . . . , n− 1. Moreover
xj ⊥ Hj so {xj}n−1

j=0 is an orthonormal basis.

Changing the choice of phase of yn−1 by replacing it by eiθyn−1 re-
places each yj by eiθyj (same θ) since we rely on 〈yj, yj−1〉 > 0. More-
over, x0, y0 ∈ H1, a one dimensional space, so we can choose eiθ so
that y0 = x0. We make that choice once and for all, which changes the
phases of the aj and then we let αj = āj.

By construction, we have for j = 0, . . . , n− 2

Axj = ρjxj+1 + ᾱjyj (6.18)

xj+1 = ρjAxj − ᾱjyj+1 (6.19)

and by (6.4) that
Axn−1 = ᾱn−1yn−1 (6.20)

Multiplying (6.18) by ρj and substituting in (6.19) gives

xj+1 = ρ2
jxj+1 + ρjᾱjyj − ᾱjyj+1 (6.21)

Since 1− ρ2
j = αjᾱj, if αj 6= 0, we can divide it out and get

yj+1 = ρjyj − αjxj+1 (6.22)

If αj = 0, we saw that yj+1 = yj so (6.22) still holds.
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We thus have (6.18)/(6.20)/(6.22) which are the same as
(2.26)/(2.27) which can be used with x0 = y0 to show that, in {xj}n−1

j=0

basis, A is given by a GGT matrix proving Theorem 2. �

Proof of Theorem 3. The result is essentially a restatement of Wen-
droff Theorem for OPUC. Given the eigenvalues {zj}nj=1, take Φn(z) =∏n

j=1(z − zj). By Wendroff’s Theorem, this is an OPUC for measure
and if A is the corresponding compressed multiplication operator, then
its eigenvalues are the zeros of Φn, so the required set. In fact, one
proof of Wendroff’s theorem [60, Theroem 1.7.5] shows that one can
take the measure to be dθ/|ϕn|2, the so-called Bernstein–Szegő measure
associated to ϕn.

By Theorem 2.10, two compressed multiplication operators with the
same eigenvalues have the same Φn and are the exact same operator
acting on Pn−1. Thus, they are unitarily equivalent. �

7. The Numerical Range

In this section, we prove Theorems 4 and 5. Since we’ve seen that Sn
agrees with compressed multiplication operators, we suppose A acts on
Pn−1 as a compressed multiplcation operators with Verblunsky coeffi-
cients {αj}n−1

j=0 . We will realize the unitary operators {Uλ}λ∈∂D associ-
ated to the degree n+ 1 POPUC as operators on Pn. We have {ϕj}nj=0

as an orthonormal basis for Pn in L2(∂D, dµλ) for the measures, dµλ,
associated to each of Uλ. For ψ ∈ Pn, we have that

ψ ∈ Pn−1 ⇐⇒ 〈ϕn, ψ〉 = 0 (7.1)

Szegő recursion says that

Aϕj =

{
ρjϕj+1 + ᾱjϕ

∗
j , j = 0, . . . , n− 2

ᾱjϕ
∗
j , j = n− 1

(7.2)

while

Uλϕj =

{
ρjϕj+1 + ᾱjϕ

∗
j , j = 0, . . . , n− 1

λ̄jϕ
∗
j , j = n

(7.3)

Uλ has eigenvalues at those {wj}n+1
j=1 , labelled so that 0 ≤ argwj <

argwj+1 < 2π, j = 1, . . . , n, with Φn+1(wj) = 0, where Φn+1(z) =
zΦn(z)− λ̄Φ∗n(z). The eigenvectors are

ηj(z) = N−1
j Φn+1(z)/(z − wj) = N−1

j

∏
k 6=j

(z − wk) (7.4)

where Nj > 0 is a normalization factor. Of course Φn+1, wj, ηj, Nj are
all λ dependent but we surpress this dependence unless we need to be
explicit.
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We define
mj(λ) = |〈ϕn, ηj〉|2 (7.5)

the Fourier coefficients of ϕn in the orthonormal basis {ηj}n+1
j=1 so

mj(λ) > 0,
n+1∑
j=1

mj(λ) = 1 (7.6)

The spectral measure for ϕn and Uλ is

dνλ(z) =
n+1∑
j=1

mjδwj
= |ϕn(z)|2dµλ(z) (7.7)

where

dµλ(z) =
n+1∑
j=1

qjδwj
; qj = 1/

n+1∑
k=0

|ϕk(wj)|2 (7.8)

(the Christoffel numbers, q−1
j , here sum to n + 1 while in Section 4,

they only summed to n because there we were discussing n×n unitaries
whereas here our unitary operators are (n+ 1)× (n+ 1)).

We won’t need them but we note there are explicit formulae for Nj

and mj, viz

Nj = q
1/2
j

∏
k 6=j

|wj − wk|; mj = qj|ϕn(wj)|2 (7.9)

We will need that these and the wj are real analytic in λ although one
can also get that from eigenvalue perturbation theory [65].

Lemma 7.1. Up to phase factor, the span of ηj and ηk, j 6= k has a
unique unit vector, ψ, in Pn−1 and it is given by

ψ = [〈ϕn, ηj〉ηk − 〈ϕn, ηk〉ηj]/
√
mj +mk (7.10)

One has that

ζjk := 〈ψ,Uλψ〉 = 〈ψ,Aψ〉 =
mjzk +mkzj
mj +mk

(7.11)

Proof. (7.10) is a consequence of (7.1). (7.11) for Uλ follows from the
Fourier expansion for Uλ and that this equals 〈ψ,Aψ〉 follows from
A = PnUλPn. �

Theorem 7.2 (=Theorem 4). For any j, k ∈ {1, . . . , n + 1}, j 6= k,
the point, ζ, on the line between wj and wk with

|ζ − wj|/|ζ − wk| = mj/mk (7.12)

lies in N(A). For k = j+ 1 (or j = n+ 1, k = 1), this is the only point
on the line which lies in N(A) and that line is tangent to ∂N(A) at the
point ζ.
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Remark. The polygon with vertices {wj}n+1
j=1 is ∂N(Uλ) and circum-

scribes N(A), so it is a kind of Poncelet polygon.

Proof. Given the formula (7.11) for ζ, (7.12) is a direct calculation.
Since ψ ∈ Pn−1, we have that ζ ∈ N(A).

Since Uλ is normal, N(Uλ) is the convex hull of the eigenvalues
{wj}n+1

j=1 and 〈ψ,Uλψ〉 =
∑n+1

j=1 wj|〈ψ, ηj〉|2 is in the segment from wj
to wj+1 if and only if ψ is the the space spanned by ηj and ηj+1. Thus
the only point on that line in N(A) comes from ψ given by (7.10) with
〈ψ,Aψ〉 given by (7.11). Since N(A) ⊂ N(Uλ), N(A) lies on one side
of the line segments and therefore the line segment is tangent. �

Theorem 7.3 (=Theorem 5). ∂N(A) is a real analytic curve. Each
ζ ∈ ∂N(A) is a tangent point of an edge of some N(Uλ). Moreover

N(A) = ∩λ∈∂DN(Uλ) (7.13)

Proof. As noted above, the wj and mj are real analytic functions of
λ̄, so ζ is real analytic. Since ∂N(A) is a convex curve, there is, in
the sense of a line with the curve on one side of the line, a tangent at
each point (although, a priori, it might not be unique). This tangent
must meet ∂D at a point which is a zero of some Φn+1(z;λ) and so
the tangent is an edge of that N(Uλ). That means that the function ζ
fills out the entire set ∂N(A). The analyticity then implies uniqueness
of tangent and so proves strict convexity. Thus, we need only prove
(7.13).

Since A is a restriction of each Uλ, we have that N(A) ⊂ N(Uλ), so
the ⊆ of (7.13) is immediate.

Pick ξ ∈ N(A)int, the interior of N(A) (which is non–empty by the
strict convexity). Let u /∈ N(A). The line segment from ξ to u meets
∂N(A) in a unique point, ζ. ζ lies on the edge of some ∂N(Uλ). Since
this edge is tangent to ∂N(A), it must be distnct from the line from ξ
to u which implies that u /∈ N(Uλ). Thus N(A)c ⊂ ∪N(Uλ)

c proving
the ⊇ half of (7.13). �

8. The Schur functions Associated to OPUC

In this section and the next, we will prove Theorems 6 and 7 and
the following related result

Theorem 8.1. Fix Verblunsky coefficients {αj}n−1
j=0 and corresponding

OPUC {Φj}nj=0. Let

Bn(z) =
Φn(z)

Φ∗n(z)
(8.1)
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Then Bn is a Schur function and for any λ ∈ ∂D, the Schur iterates of
λBn are λBn−1, λBn−2, . . . , λB0 = λ and the Schur parameters are

γj(λBn) =

{
−λᾱn−1−j, j = 0, . . . , n− 1
λ, j = n

(8.2)

The Carathéodory function for the associated measure is

Fn(z) = −Φn+1(z;−λ)

Φn+1(z;λ)
(8.3)

The measure associated to λBn is the measure dνλ of (7.7).

In this section, we’ll prove this theorem and use it to give the first
proof of Theorem 7. In the next section, we’ll use it to give one proof
of Theorem 6. In that section we’ll also give GGT matrix proofs of
Theorems 6 and 7. Formulae like (8.2) are implicit in the work of
Khrushchev [46]. We’ll say more about his work and its relation to the
first proof of Theorem 7 in the next Section.

Start of Proof of Theorem 8.1. If eiθ ∈ ∂D, the have that |Φn(eiθ)| =
|Φ∗n(eiθ)|. Moreover, since Φn has all of its zeros in D, Φ∗n has none, so
Bn(z) is analytic in D with |Bn(eiθ)| = 1 for eiθ ∈ ∂D. By the maximum
principle, Bn is a Schur function; indeed, up to a phase factor, it is the
Blaschke product of the zeros of Φn.

By Szegő recursion, (2.3) and the result of applying τn+1 to it, we
have that

λBn(z) = λ
zΦn−1(z)− ᾱn−1Φ∗n−1(z)

Φ∗n−1(z)− αn−1zΦn−1(z)

=
−λᾱn−1 + z(λBn−1(z))

1− λ̄αn−1z(λBn−1(z))
(8.4)

which precisely says that γ0(λBn) = −λᾱn−1 and that λBn−1 is the
first Schur iterate. By the obvious repetition, we get (8.2) and the
claimed full list of Blaschke iterates.

To get (8.3), we note that

Fn(z) =
1 + zλBn(z)

1− zλBn(z)

=
zΦn(z) + λ̄Φ∗n(z)

−(zΦn(z)− λ̄Φ∗n(z))
(8.5)

proving (8.3). This proves the entire theorem except for the identifica-
tion of the measure to which we now turn. �
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We have just shown that the Carathéodory function of dν, the mea-
sure with Schur function λBn is

F (z) =
1 + λzBn(z)

1− λzBn(z)
= −zϕn(z) + λ̄ϕ∗n(z)

zϕn(z)− λ̄ϕ∗n(z)
(8.6)

On the other hand, the Carathéodory function of the measure defined
by Φn+1(z;λ) is, by [60, (3.2.4)],

G(z) =
Ψ∗n+1(z)

Φ∗n+1(z)
= −Ψn+1(z)

Φn+1(z)
(8.7)

where we used (2.23). Here Ψn+1(z;λ) ≡ zΨn(z)+ λ̄Ψ∗n(z) with Ψn the
second kind OPUC; see Theorem 2.7.

Lemma 8.2. Fix λ and z0 in ∂D. Suppose that Φn+1(z0;λ) = 0. Then

1

Ψn+1(z0)
=

ϕn(z0)

2z0

∏n−1
j=0 ρj

(8.8)

Proof. By (2.13), we have that

Ψ∗n(z0)Φn(z0) + Φ∗n(z0)Ψn(z0) = 2zn0

n−1∏
j=0

ρ2
j (8.9)

By hypothesis, we have that Φn(z0) = z0λΦ∗n(z0), so (8.9) becomes

z0Φn(z0)∗Ψn+1(z0) = 2zn0

n−1∏
j=0

ρ2
j (8.10)

Since Φ∗n(z0) = zn0ϕn(z0)
∏n−1

j=0 ρj we get (8.8). �

End of the Proof of Theorem 8.1. Let z0 be a zero of the POPUC
Φn+1(z;λ). It suffices to show that for any such z0, one has that

lim
ε↓0

F ((1− ε)z0)/G((1− ε)z0) = |ϕn(z0)|2 (8.11)

We note that by (8.6) and (8.7), we have that

F (z)

G(z)
=
zΦn(z) + λ̄Φ∗n(z)

Ψn+1(z)
(8.12)

The right side of (8.12) has a limit at z0 which is 2z0Φn(z0)/Ψn+1(z0).
By (8.8), this is |ϕn(z0)|2. �
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9. M-functions of POPUC

In this section, we’ll begin with a proof of Theorem 6 following up
on the last section and then provide a totally different approach to
proving Theorems 6 and 7 using GGT matrices. Finally, we’ll discuss
the relation of these theorems to earlier work on OPUC.

We’ll call a function like
ˆ

1

z − eiθ
dν(θ) (9.1)

which appears on the left side of (3.4) an M -function in analogy with
the Weyl m-function of OPRL and the theory of second order ODEs
(although those functions have (x− z)−1, not (z − x)−1 where x is the
variable of integration).

First Proof of Theorem 6. Since w+z
w−z = 1− 2z 1

z−w , we have that

F (z) = 1− 2zM(z)⇒M(z) =
1− F (z)

2z
(9.2)

where F , the Carathéodory of dν, is given by (8.6). (9.2) and (8.5)
imply (3.4).

This provides a relation between a POPUC and the measure, dν,
associated to it. Given a Blaschke product or the POPUC associated to
it (the one with the same zeros), one sees from this that the combination
on the right of (1.3) or (3.4) has the form on the left of these equations.
Conversely, given a set of n+ 1 points on ∂D and probability weights,
we can form the associated measure ν and its M -function M as in (9.1).
By (2.9) and (9.2), M can be expressed in terms of a Schur function. It
remains to use Theorem 8.1 to show that M has the form of the right
hand side of (1.3), or equivalently, of (3.4). �

The following direct proof of (3.4) does not rely on identifying a
Schur function. We regard it as the simplest proof of (1.3). After
we’d found this proof, we found almost the identical argument in [35,
Section 2.2].

Second Proof of Theorem 6. Let Uλ be given by Theorem 2.11. Then
by the spectral theorem and the definition of dν, we have that

ˆ
1

z − eiθ
dν(θ) = 〈ϕn, (z − Uλ)−1ϕn〉 (9.3)
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In the GGT representation, ϕn is the vector (0, 0, . . . , 1)t, so Cramer’s
rule says that

〈ϕn, (z − Uλ)−1ϕn〉 =
det(z − Gn({α}n−1

j=0 ))

det(z − Gn+1({αj}n−1
j=0 ∪ {λ}))

(9.4)

since the result of dropping the last row and column of GGT matrix is
a GGT matrix of one degree less. By (2.20), the denominator of (9.4)
is Φn+1(z;λ) and by (2.16), the numerator is Φn(z). These facts imply
(3.4). Once one has this, the rest of the proof is the same as the last
paragraph of the first proof. �

Second Proof of Theorem 7. Except for replacing n by n+ 1 and αn−1

by λ, this is just Theorem 4.4. �

Finally, we turn to the connection of Theorems 6, 7 and 8.1 to earlier
work of Khrushchev [46] and Simon [60]. When λ = 1, (8.2), proven
as we do using Szegő recursion, is in Khrushchev’s paper. He uses it in
part to prove what [61, Theorem 9.2.4] calls Khrushchev’s formula that
if dη is a non–trivial probability measure, then the Schur function of
|ϕn(eiθ)|2 dη(θ) is fn(z)Bn(z) where fn is the nth Schur iterate of the
Schur function of dη, i.e. the Schur function with Schur parameters
γj(fn) = αn+j(dη), j = 0, 1, . . . , and Bn is given by (8.1).

If now, we take αn → λ ∈ ∂D, the measure dη converges to the
measure we called dµλ, so |ϕn(eiθ)|2dη converges to the measure that
we called dνλ and the Khrushchev formula in the limit says that the
Schur function of that measure is λBn which is the final assetion in
Theorem 8.1 which we saw above is the essence of the first proof of
Theorem 6.

In [60, Section 4.4], Simon, using rank two perturbation theory com-
puted matrix elements of (C−z)−1, where C is the CMV matrix, which
can be used to also find matrix elements of (G − z)−1 which provides
another proof of Theorem 6.

10. Wendroff Type Theorems

Simon [63] has three theorems about zero interlacing involving
POPUC which he proves using rank one perturbation theory (recently
Castillo–Petronilho [12] have extended some of these results and recast
them.)

(1) (proven earlier by Cantero et al [8]; see also [35]). If λ, µ ∈ ∂D are
different, then the zeros of Φn+1(z;λ) and Φn+1(z;µ) strictly interlace.

(2) (proven independently by Wong [75]) If λ ∈ ∂D, then the zeros of
the first and second kind POPUC, Φn+1(z;λ) and Ψn+1(z;λ), strictly
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interlace (we remark that here we define Ψn+1(z;λ) to have all the
opposite sign Verblunsky coefficients to Φn+1(z;λ), including changing
αn = λ to αn = −λ, which [63, 75] call Ψn+1(z;−λ)).

(3) (special case appeared earlier in Golinskii [34] and a refined ver-
sion in [12]). If λ, µ ∈ ∂D, perhaps equal, the zeros of the POPUC
Φn+1(z;λ) and Φn(z;µ) are either all distinct in which case Φn(z;µ)
has exactly one zero in exactly n of the n + 1 intervals obtained by
removing the zeros of Φn+1(z;λ) from ∂D or else they have exactly one
zero in common in which case Φn(z;µ) has no zero in the two intervals
obtained by removing the zeros of Φn+1(z;λ) from ∂D closest to the
common zero and exactly one zero in the other n− 1 intervals.

Wendroff type theorems mean suitable unique converses and, in this
regard, parameter counting is important. The various parameters lie
in real manifolds and if there is to be existence and uniqueness, the
two manifolds must have the same real dimension.

In this regard (1) is fine. The set of possible zeros has real dimension
2n + 2 and they are determined by n complex Verblunsky coefficients
{αj}n−1

j=0 , λ and µ, also 2n+2 real parameters. Indeed Theorem 8 is such
a Wendroff theorem which we noted is essentially identical to a theorem
of Gau-Wu [27] which we called Theorem C. It was later proven in a
simpler way by Daepp et al [17]. The Daepp et al proof is essentially a
POPUC analog of a standard proof of Wendroff for OPRL. Our proof
(below) is new, albeit close to the earlier OPUC proof of Golinskii–
Kudryavtsev [35], and we feel illuminating.

As stated, (2) doesn’t have the right parameter counting for a Wen-
droff theorem. The zeros are again 2n + 2 parameters but n complex
Verblunsky coefficients {αj}n−1

j=0 and λ are only 2n+ 1 real parameters.
That’s because there is a restriction on the zeros, namely (3.6). With
this restriction, the set of zeros is only 2n+ 1 parameters so parameter
counting is fine and there is a Wendroff theorem, Theorem 9, new here.

The parameter counting is also wrong for there to be a strict converse
in case (3). There are 2n+1 real parameters for the zeros but n complex
Verblunsky coefficients {αj}n−1

j=0 , λ and µ, are 2n + 2 real parameters.
Indeed some simple examples when n = 1 show that, in general, there
exists a one parameter family of choices for (α0, α1, λ, µ) leading to
zeros (w1, w2, y1). Nevertheless, Castillo et al. [11] do have a Wendroff
type theorem in the context of (3)! They consider sequences of monic
polynomials {Ξj}∞j=0 obeying a three term recurrence relation

Ξn+1(z) = (z + βn)Ξn(z)− γnΞn−1(z) (10.1)
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with n = 1, 2, . . . with Ξ0 = 1 and Ξ1(z) = z + β0 for suitable
βj ∈ ∂D, j ≥ 0 and γj ∈ C \ {0}, j ≥ 1. [11] show that, under suit-
able hypotheses, there exist Verblunsky coefficients {αj}∞j=0 ∈ D∞ and
{λj}∞j=0 ∈ ∂D∞ so that Ξj are the associated POPUC but, when they
exist, {αj}∞j=0 ∈ D∞ and {λj}∞j=0 ∈ ∂D∞ are not unique but depend on
an arbitrary choice of λ0 ∈ ∂D. They proved that given sets of zeros
as in case (3), there is a unique choice of {βj}nj=0 and {γj}nj=0 and so

{Ξj}n−1
j=0 for which Ξn and Ξn+1 have the required zeros. Thus there is

a kind of Wendroff theorem for the sequence of POPUC but the OPUC
are not determined. In contradistinction, Theorem 8 does determine
all the lower order OPUC from the two POPUC which is why we call
it Wendroff’s Theorem for (P)OPUC.

We now turn to the proof Theorem 8. We begin with uniqueness.
Since

Φn+1(z, λ) = zΦn(z)− λ̄Φ∗n(z); Φn+1(z, µ) = zΦn(z)− µ̄Φ∗n(z)
(10.2)

we have that

Φn(z) =
λΦn+1(z;λ)− µΦn+1(z;µ)

(λ− µ)z
(10.3)

If z1, z2, . . . , zn+1, w1, w2, . . . , wn+1 are all in ∂D and are the zeros of
Φn+1(z, λ) and Φn+1(z, µ), then

Φn+1(z;λ) =
n+1∏
j=1

(z − zj); Φn+1(z;µ) =
n+1∏
j=1

(z − wj) (10.4)

so by (10.3), the z′s and w′s determine Φn(z) and so, by Wendroff’s
Theorem for OPUC (Theorem 2.3), they determine {αj}n−1

j=0 . By (2.22),
the zeros also determine λ and µ. Thus, we have the uniqueness claim.

For existence, we fix 2n + 2 points z1, z2, . . . , zn+1, w1, w2, . . . , wn+1

all in ∂D. For now, they need not be different or in any order but we
do need λ and µ below to be unequal.

Define

Qn+1(z) =
n+1∏
j=1

(z − zj); Rn+1(z) =
n+1∏
j=1

(z − wj) (10.5)

λ = −
n+1∏
j=1

(−z̄j) µ = −
n+1∏
j=1

(−w̄j) (10.6)

so that

Qn+1(0) = −λ̄; Qn+1(0) = −µ̄ (10.7)
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We revert to τn notation for the ∗ map since we’ll be using it with
different implicit n’s. We claim that

τn+1(Qn+1) = −λQn+1; τn+1(Rn+1) = −µRn+1 (10.8)

One way of seeing this is to note both sides have the same zeros, are
polynomials of degree n + 1 and have the same leading coefficients.
Another way is to note that

z

(
1

z
− z̄j

)
= 1− zz̄j = −z̄j(z − zj)

Define now

Pn(z) =
λQn+1(z)− µRn+1(z)

(λ− µ)z
(10.9)

Of course, this is motivated by (10.3). We note that by (10.7) the
numerator vanishes at z = 0 so Pn is a polynomial of degree n and the
λ− µ in the denominator makes it a monic polynomial. We compute:

τn(Pn) = τn+1(zPn) =
λ̄(−λ)Qn+1 − µ̄(−µ)Rn+1

λ̄− µ̄

= µλ
Qn+1 −Rn+1

λ− µ
(10.10)

where we used
1

λ̄− µ̄
=

1
1
λ
− 1

µ

= −λ− µ
µλ

This implies, by direct computation from (10.9) and (10.10), that

Lemma 10.1. We have that

zPn − λ̄τn(Pn) = Qn+1; zPn − µ̄τn(Pn) = Rn+1 (10.11)

Lemma 10.2. Let z0 ∈ ∂D. Then

Pn(z0) = 0 ⇐⇒ Qn+1(z0) = Rn+1(z0) = 0 (10.12)

Proof. Since z0 ∈ ∂D, one has that Pn(z0) = 0 ⇐⇒ τn(Pn)(z0) = 0.
Given this, (10.12) is immediate from (10.9), (10.10) and (10.11). �

With this algebra under our belt

Proof of Theorem 8. That the zero’s interlace follows from the fact that
Bn(z) = Φn(z)/Φ∗n has a strictly increasing argument. Uniqueness is
proven above.

Finally, given interlacing z’s and w’s, let z̃j be the roots of zn+1 − λ̄
and w̃j be the roots of zn+1 − µ̄. The P for this set of roots is clearly
zn which has all its roots in D. One can continuously deform these sets
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keeping the corresponding λ and µ unchanged through strictly inter-
lacing sets and so deform from zn to Pn. The zeros of Pn move con-
tinuously and, by Lemma 10.2 and strict interlacing, never go through
∂D. Thus Pn has all its zeros inside D so, by Wendroff’s theorem for
OPUC (Theorem 2.3), it is a Φn. By Lemma 10.1, Qn+1 and Rn+1 are
the POPUC for the Φn. �

Theorem 8 appears already in Golinskii–Kudryavtsev [35, Theorem
3.2]. Our proof of uniqueness is essentially the same as theirs. Our
proof of existence is related to theirs but instead of our perturbation
argument above, they use a Theorem of Simon [61, Theorem 11.5.6].
We believe that the role of interlacing is clearer in our new argument
than in this earlier argument of Simon.

We now turn to the proof of Theorem 9. We will need (8.7) which ex-
presses the Carathéodory function, G(z), of the measure we called dµλ

in terms of Φn+1(z;λ) and Ψn+1(z;λ). The Verblunsky coefficients of
that measure are precisely what the second half of the Theorem claims
are determined by the zeros obeying (3.6). The proof will depend on
an analysis of what we’ll call “quasi-Carathéodory” functions (because
the c’s below may not be positive). A degree n+1 quasi-Carathéodory
function is one of the form, given {zj}n+1

j=1 ⊂ ∂D:

f(z) =
n+1∑
j=1

cj
zj + z

zj − z
; cj ∈ R \ {0};

n+1∑
j=1

cj = 1 (10.13)

Proposition 10.3. Let f be a quasi-Carathéodory function (10.13)
whose poles are written in cyclic order with zn+2 ≡ z1, cn+2 ≡ c1.
Then

(a) f(z) is purely imaginary on the unit circle with the zj’s removed.
(b) f(0) = 1; f(∞) = −1
(c) For each j = 1, . . . , n+1, if cj and cj+1 have the same (resp, dif-

ferent) signs, then f has an odd (resp. even) number of zeros (counting
multiplicity) in the arc between zj and zj+1.

Remark. If all cj’s are of the same sign, by the pigeonhole principle, all
the zeros of f lie on ∂D and there is a single zero in each arc between zj
and zj+1. However, if we allow for a sign changes, it is easy to construct
examples where not all the zeros of f lie on ∂D and examples where
all of them do.

Proof. (a) and (b) are immediate. (c) By noting that Im((1 + z)/(1−
z)) = 2Im(z)/|1 − z|2, one sees that if cj > 0, then f → i∞ as z
approaches zj from larger argument. This implies that if cj and cj+1
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has opposite (resp. same) signs, there must be an even (resp. odd)
number of sign changes of Im(f) in the arc between zj and zj+1. �

Proposition 10.4. Let {zj}n+1
j=1 and {wj}n+1

j=1 be two sets of points, all
distinct, on the unit circle for which (3.6) holds. Let

f(z) =

∏n+1
j=1 (1− w̄jz)∏n+1
j=1 (1− z̄jz)

(10.14)

Then f is a quasi-Carathéodory function.

Proof. We begin by noting that if |u| = 1, then

1− ū(1/z̄) = (z − u)z−1 = −u(1− ūz)z−1

which implies that

f

(
1

z̄

)
=

∏n+1
j=1 wj∏n+1
j=1 zj

f(z) = −f(z) (10.15)

by (3.6).
Thus f is imaginary on the circle away from the poles which implies,

by a partial fraction expansion that

f(z) = c0 +
n+1∑
j=1

cj
zj + z

zj − z
; cj ∈ R \ {0}; c0 ∈ iR

Since f(0) = 1, we see that c0 +
∑n+1

j=1 cj = 1 which is real and so
implies that c0 = 0. Thus f is a quasi-Carathéodory function. �

Proof of Theorem 9. If zj and wj are the zero of a POPUC and its asso-

ciated second kind POPUC, then
∏n+1

j=1 zj = (−1)nλ̄ while
∏n+1

j=1 wj =

(−1)n(−λ̄) proving (3.6). By (8.7) and Proposition 10.3(c), there are
an odd number of zeros in each of the n+1 intervals, so one per interval
and the zeros interlace. That proves the direct result.

For the converse, given interlacing zeros obeying (3.6), by Proposi-
tion 10.4, f given by (10.14) is a quasi-Carathéodory function. Since
there are an odd number of zeros in each interval, the signs of the cj’s
are all the same. Since they sum to 1, they are all positive, so f is the
Carathéodory function of a point measure whose POPUC has zeros at
the poles of f , so the zj’s. Moreover, the second kind POPUC has
zeros at the zeros of f , so the w’s. �



36 A. MARTÍNEZ–FINKELSHTEIN, BRIAN SIMANEK AND B. SIMON

11. Derivatives of POPUC

There is a classical connection relating zeros of a polynomial, P , and
zeros of its derivative, P ′ to sums of the form (1.1) with all mj’s equal
because of the following basic relation.

Proposition 11.1. Let P (z) be a complex polynomails of degree k with
distinct zeros {zj}kj=1. Then the zeros of P ′(z) are the same as the zeros
of

M(z) ≡ 1

k

k∑
j=1

1

z − zj
(11.1)

Proof. Using P (z) = a
∏k

j=1(z−zj) and taking logarithmic derivatives,
one sees that

M(z) =
P ′(z)

kP (z)
(11.2)

Since the zeros of P are distinct, the zeros of M are precisely the zeros
of P ′(z). �

Remark. Of course, (11.2) holds if some of the zeros of P are not
distinct, at least away from zeros of P . But at multiple zeros of P , M
has a pole even though P ′ vanishes.

Given the relation of sums like (11.1) and Poncelet type polygons
that we studied in section 7 and what Theorem 7.2 tells us when there
are equal m’s, we are interested in polygons tangent at midpoints. In
this regard, there are two classical results in the case of triangles

Theorem F (Steiner [67], 1829). Given a triangle, T in the complex
plane with vertices {zj}3

j=1, there is a unique ellipse tangent to T at
the midpoints of its sides and the foci of the ellipse are

1

3
(z1 +z2 +z3)±

√(
1

3
(z1 + z2 + z3)

)2

− 1

3
(z1z2 + z1z3 + z2z3) (11.3)

Theorem G (Siebeck [57], 1864). The foci of the Steiner ellipse are
the zeros of P ′ where P is the cubic polynomial with zeros at {zj}3

j=1

Remark. Of course, since P (z) = (z − z1)(z − z2)(z − z3), we have
P ′(z) = az2 +bz+c; a = 3, b = −2(z1 +z2 +z3), c = (z1z2 +z1z3 +z2z3)
so this result is immeduiate. It was Siebeck who realized the special
role of sums like (11.1) in studying the zeros of P ′.

There are two papers in the series discussed in Section 1 that deal
with extending these results to k zeros on ∂D (for the case of three zeros,
they always lie on a circle so there is no loss in supposing that z1, z2, z3 ∈
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∂D), namely Gau-Wu [25] and Gorkin–Shubak [37]. Even though all
the results later in this section are more or less in these papers, we
decided to include this subject for several reasons: first, we believe
the results are interesting and deserve to be better known; second,
we want to emphasize how simple the basic proofs are; finally, and
most importantly, while Gorkin–Shubak [37] state the basic equation
for determining when n points in D are the zeros of a derivative of
a polynomial, P , whose zeros lie in ∂D (Theorem 11.3), they don’t
analyze them nor note the different nature in the case n is odd vs. n
even (Theorem 11.4 below is new).

The following is a variant of the main result in Gau–Wu [25]. Since
the numerical range of an operator A in S2 is an ellipse (indeed, all
operators on C2 have ellipses as their numerical range), the n = 2 case
of this theorem provides a proof of Theorems F and G.

Theorem 11.2. Let {zj}n+1
j=1 be n + 1 distinct points in ∂D. Then

up to unitary equivalence, there is a unique operator A ∈ Sn so that
N(A) is tangent to the midpoints of the edges of the convex polygon
with vertices {zj}n+1

j=1 . If P (z) =
∏n+1

j=1 (z − zj), then (n + 1)−1P ′(z) is
the characteristic polynomial for A and, in particular, the zeros of P ′

are the eigenvalues of A.

Proof. By Theorem 7.2, there is a unique oprator A ∈ Sn with N(A)
tangent at the midpoints of the polygon and its M–function has the
form (11.1) with k = n+ 1. By Theorem 6 and (11.2), we have that

P ′(z)

P (z)
=

Φn(z)

zΦn(z)− λ̄Φ∗n(z)
(11.4)

so P ′(z) = Φn(z). By Theorems 2.10 and 2, Φn is the characteristic
polynomial of A. �

Gorkin–Shubak [37] study the question of when {aj}nj=1 in D are the
zeros of the derivative of a polynomial, P , all of whose zeros lie in ∂D.
While they focus on the case n = 2, they state the following (in a
version that doesn’t mention POPUC or OPUC!).

Theorem 11.3. Let {aj}nj=1 be n not necessarily distinct points in D.
Then there is a polynomial, P , with all of its zeros on ∂D so that P ′

has its zeros at {aj}nj=1 if and only if there is a λ ∈ ∂D so that

Φ′n+1(z;λ) = (n+ 1)Φn(z) (11.5)

where Φn(z) =
∏n

j=1(z − aj) and Φn+1(z;λ) is given by (2.19).

Proof. If (11.5) holds, then, clearly, {aj}nj=1 is the set of critical points
of a polynomial whose zeros all lie on ∂D.
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Converely, let P be a monic polynomial whose zeros {zj}n+1
j=1 all lie

in ∂D and so that P ′ vanishes at {aj}nj=1. By Theorem 6, we know that
M(z) given by (11.1) (with k = n + 1) is the M–function associated
to some n+ 1–point measure dµ on ∂D with OPUC obeying (3.4) with
dν = |ϕn|2dµ = (n + 1)−1

∑n+1
j=1 δzj . Moroever, for some λ, zj are the

zeros of Φn+1(z;λ). Thus P (z) = Φn+1(z;λ) and, by (3.4) and (11.2),

1

n+ 1

P ′(z)

Φn+1(z;λ)
=

Φn(z)

Φn+1(z;λ)
(11.6)

so (11.5) holds. �

Now, given {aj}nj=1, a collection of points in D, let sk =∑
ai1ai2 . . . aik , with the sum over all

(
n
k

)
sets of distinct i1i2 . . . ik in

{1, . . . n}, be the elementary symmetric functions, k = 1, . . . , n so that

Φn(z) ≡
n∏
j=1

(z − aj) = zn +
n−1∑
k=0

(−1)n−ksn−kz
k (11.7)

Theorem 11.4. (11.5) is equivalent to the equations

(n− j)sn−j + (−1)n−1λ̄(j + 1)s̄j+1 = 0, j = 0, . . . , n− 1 (11.8)

For n = 2k, even, there are k independent equations and in the 2n real
dimensional manifold of (a1, . . . , an) ∈ Dn, the set obeying (11.5) has
real dimension n + 1. For n = 2k + 1, odd, there are k + 1 equations
and if sk+1 6= 0, we have that

λ = (−1)n−1s̄k/sk (11.9)

In the 2n real dimensional manifold of (a1, . . . , an) ∈ Dn, the set obey-
ing (11.5) has real dimension n+ 1.

Remarks. 1. It may be that the set of allowed a’s has some singu-
lar points but except for a lower dimensional set, it is a real analytic
manifold.

2. The case n = 2 is treated in detail in Gorkin–Shubak [37]. In that
case, there is one equation where λ can be used to adjust the phase so
that we get

|a1 + a2| = |a1a2| (11.10)

3. In terms of the operator, A ∈ Sn associated to Φn, the aj are eigen-
values and sk = Tr(∧k(A)) (see Simon [62] for discussion of ∧k(A)). In
particular, (11.8) for j = 0 is

n det(a) + (−1)n−1λ̄Tr(A∗) = 0 (11.11)
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4. The proof shows that the only possible singularities occur at points
where two a’s are equal and, if n = 2k + 1 is odd, where sk+1 = 0. It
is an interesting question whether these singularities actually occur.

Proof. (11.5) is equivaelent to

nΦn + λ̄(Φ∗n)′ − zΦn = 0 (11.12)

Write Φn(z) = zn +
∑n−1

j=0 Ajz
j. Then (Φ∗n)′(z) =

∑n
k=1 kAn−kz

k and

(11.12) becomes (11.9).
It is well known that away from coincident points, the map

(a1, . . . , an) 7→ (s1, . . . , sn) has a non–singular inverse. The equations
(11.9) are the same for j and for n − 1 − j but are clearly indepen-
dent linear equations for j = 1, 2, . . . ,

[
n
2

+ 1
]
. The dimension counting

results follow. �

12. Poncelet’s Theorem

That completes most of we want to say about using OPUC ideas to
understand the topics discussed in Section 1. These final two sections
make some brief comments about the relation of algebraic geometric
ideas in the area where we have not succeeded in leveraging OPUC
methods.

We begin with Poncelet’s Theorem. For the triangle case, the ideas of
Section 7 are ideal. Given two points z1, z2 ∈ D, there is a unique monic
polynomial, Φ2(z) = (z − z1)(z − z2) with simple zeros at those two
points (assuming z1 6= z2). As with all 2 × 2 matrices, the numerical
range of the associated compressed multiplication operator, A, is an
ellipse with foci at the eigenvalues z1, z2. We can form the unitaries
associated to the various POPUC, Φ3(z;λ) as λ runs through ∂D. Their
numerical ranges provide an infinity of Poncelet triangles with vertices
on the unit circle and tangent to N(A).

Moreover, if the ellipse is made larger (with the same foci), it is easy
to see that starting at w0 ∈ ∂D and forming three successive tangents
to the large ellipse ending at successive points w1, w2, w3 don’t go as
far around the circle as for the critical ellipse and so one gets less than
a closed triangle. Similarly, for a smaller ellipse, the wj are further
along and so don’t give a closed triangle. Thus we only have a triangle
for the critical ellipse which has an infinity of triangles. This proves
Poncelet’s Theorem for triangles.

As we emphasized, the ideas of Section 7 give an analog of Poncelet’s
theorem from triangles to other polygons, but not the analog that
Poncelet considered, since in that case, in general, the numerical range
is not an ellipse. That said, Mirman [50] and Gau–Wu [26] did use
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some of these ideas for a proof of the Poncelet ellipse theorem for
higher degree polygons but they rely on a result of Kippenhahn [47]
who considers the dual of the boundary, ∂N(A), of the numerical range
of an n× n matrix. He considers the projective dual of this boundary,
essentially, the set of tangents to the curve and proves that in projective
coordinates, this dual is a degree n real variety (or more properly the
outer part of the variety).

The above argument for triangles extends to n-gons and shows that
if we fix the foci of an ellipse in D and w0 ∈ ∂D, then there is a single
eccentricity where the n touching tangents starting at w0 lead to a
closed convex n-gon. This is perhaps best understood using the idea
of a billiard trajectory as in [22, Chapter 15]. Indeed, given w0 ∈ ∂D
and an ellipse E ⊂ D, there are two tangents to E that pass through
w0. Let ` be the tangent that intersects ∂D at w0 and a point w1 such
that the path from w0 to w1 on ∂D in the counterclockwise direction
is along the arc that is separated from E by `. Using this notation, let
us define B(w0) = w1 and similarly define B on all of ∂D. We want to
show that if the foci of an ellipse are given in D, then there is a unique
eccentricity of the ellipse E with those foci such that the corresponding
map B satisfies Bn(w0) = w0. This last condition can be rephrased as

n−1∑
j=0

(
arg(Bj+1(w0))− arg(Bj(w0))

)
= 2π (12.1)

where each difference of arguments in this sum is taken in (0, 2π). Our
above argument for triangles proves monotonicity in the left-hand side
of (12.1) as a function of the eccentricity. We also saw above that there
is a unique eccentricity e such that if the eccentricity of E is e, then
B3(w0) = w0 and Poncelet’s Theorem implies that this value of e is
independent of w0 ∈ ∂D. Monotonicity implies that if the eccentricity
of E is smaller than e, then the left-hand side of (12.1) is strictly larger
than 2π. Similarly, as the ellipse approaches touching the unit circle,
it takes more than n iterations of B to get past the point on E closest
to ∂D, so the left-hand side of (12.1) converges to something less than
2π. By continuity there is a unique eccentricity where the left-hand
side of (12.1) is 2π. A priori, that eccentricity could be w0–dependent

One can show there is an A ∈ Sn whose numerical range is tangent
to this ngon at the same tangent points. Given Kippenhahn’s result,
the nfold agreement of the ellipse and ∂N(A) and a use of Bezout’s
theorem proves that the two curves are the same, proving Poncelet’s
theorem in this case.
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It would be interesting to have an OPUC understanding of Kippen-
hahn’s Theorem.

13. From the Numerical Range to the Eigenvalues

In this final section, we want to discuss how for A ∈ Sn, N(A)
determines the eigenvalues of A (and so, up to unitary equivalence,
A). The results in Sections 1 and 3 provide two ways that we want
to discuss first. Then we’ll turn to a potential method via algebraic
geometry.

Here are the two methods:
(1) Given n and ∂N(A), draw two ngons with vertices in ∂D that

circumscribe N(A) and apply Theorem C/Theorem 8.
(2) Given n and ∂N(A), draw one such polygon. Use Theorem 4

to compute the mj and then Theorem B/Theorem 6 to determine the
zeros of Φn which are the eigenvalues.

There is another connection between eigenvalues and a curve related
to N(A) that is related to the work of Kippenhahn [47] mentioned
earlier and extended by Singer [66] and Langer–Singer [48]. There is
a real projective curve, Γ, so that N(A) is the convex hull of Γ and
the eigenvalues are exactly the (real) foci of Γ (foci are an involved
construction from algebraic geometry that, for an ellipse, are the usual
foci).

When we first learned of this result, we assumed that it must imply
for the case of elliptical N(A), that the eigenvalues must be its two
usual foci, obviously not both simple if n ≥ 3. This was wrong! Indeed,
there has been a detailed study of ellipses in the case n = 4 by Fujimura
[23] and Gorkin–Wagner [38] that shows in this case there is a third
usually distinct eigenvalue.

The key point is that while ∂N(A) is included in Γ, Γ can have
additional pieces inside N(A) (and if n ≥ 3, there are always such
additional pieces). As we’ve seen, ∂N(A) is the envelope of the lines
obtained by joining successive eigenvalues of the various rank one uni-
tary dialations, Uλ. As proven by Singer [66, Prop. 3.1], Γ is the
envelope of the complete graph on the eigenvalues of Uλ, i.e. all lines
joining pairs of distinct eigenvalues. We illustrated this with a simple
illuminating example. Once one picks the eigenvalues a, b, c ∈ D for
A ∈ S3, one can form the various Φ4(z;λ) and the polygons associated
to their zeros. We took examples with b = 0.8e34i and c = 0.57e4i (cho-
sen by experimenting to get clean output). For one example, we picked
a = 0.7i and for the second we chose a = −0.74949 · · ·+ i0.164697 . . . .
The later was chosen using [38, Prop. 3.7] to give an elliptical N(A).
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Figure 1 shows the outer polygons when a = 0.7i (left) or for the
elliptical case (right).

Figure 1. The outer polygons and the numerical range
N(A) for A ∈ S3 determined by its two eigenvalues at
0.8e34i and 0.57e4i, and the third one either at 0.7i (left)
or at −0.74949 · · ·+ i0.164697 . . . (right). The eigenval-
ues are indicated by the fat dots in the interior of N(A).

In conformance with the discussion in section 7, one can see the
convex ∂N(A) formed in each case. Figure 2 shows the complete graphs
of the eigenvalues of the Uλ when a = 0.7i (left) and in the elliptical
case (right).

Figure 2. The complete graphs of the eigenvalues of
the Uλ and the numerical range N(A) of two different
A ∈ S3 from Figure 1.
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One sees that there is an extra piece of Γ in the resulting envelope.
As shown in [38], in the elliptical case, the extra piece of Γ is the

single point {a}. As can be seen by looking at the case where all
eigenvalues of A are zero and the extra pieces are circles when n ≥ 4,
this single point phenomena is only true for n = 3. In any event,
one cannot use these ideas to go directly from N(A) as a set to the
eigenvalues.
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