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Abstract

Numerical simulation of bubble dynamics and cavitation is challenging; even the seemingly

simple problem of a collapsing spherical bubble is difficult to compute accurately with a

general, three-dimensional, compressible, multicomponent flow solver. Difficulties arise due

to both the physical model and the numerical method chosen for its solution. We consider

the 5-equation model of Allaire et al. [1], the 5-equation model of Kapila et al. [2], and the

6-equation model of Saurel et al. [3] as candidate approaches for spherical bubble dynamics,

and both MUSCL and WENO interface-capturing methods are implemented and compared.

We demonstrate the inadequacy of the traditional 5-equation model of Allaire et al. [1] for

spherical bubble collapse problems and explain the corresponding advantages of the aug-

mented model of Kapila et al. [2] for representing this phenomenon. Quantitative compar-

isons between the augmented 5-equation and 6-equation models for three-dimensional bubble

collapse problems demonstrate the versatility of pressure-disequilibrium models. Lastly, the

performance of pressure disequilibrium model for representing a three-dimensional spherical

bubble collapse for different bubble interior/exterior pressure ratios is evaluated for different

numerical methods. Pathologies associated with each factor and their origins are identified

and discussed.
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1. Introduction

Amongst other features, cavitation involves the growth and collapse of a gas bubble in

a liquid. Many applications require a detailed understanding of this process in or near soft

materials, including biological tissues for medical purposes [4–8] and polymeric coatings and

biofouling in industry [9]. Preliminary studies have shown that bubble dynamics are sensitive

to the properties of these materials [10, 11], motivating a comprehensive multi-scale theory

capable of predicting complex bubble cavitation.

Before considering the viscoelasticity of soft materials, accurate algorithms for bubble dy-

namics in Newtonian liquids must be developed. Indeed, even the seemingly simple problem

of a collapsing spherical bubble is challenging to compute accurately with general, three-

dimensional (3D), fully-compressible computational methods for a significant range of bub-

ble/ambient pressure ratios (and thus interface Mach numbers). Here, we use this problem

as a case study for the ability of a physical model, and its coupled numerical method, to

predict bubble dynamics generally.

Diffuse interface (interface-capturing) methods appear to be well-suited for this problem

when compared to other interface tracking and capturing schemes [12, 13]. Such methods

combine a multicomponent flow model with shock-capturing finite volume methods. Their

discrete-level conservation allows the compressibility of all phases and mixtures to be rep-

resented on the computational grid and interfaces appear and vanish naturally, irrespective

of their corresponding density ratio. Herein, we assess the difficulties that arise during a

spherical bubble collapse from the physical multicomponent flow model and its coupling to

the numerical method.

The mechanical-equilibrium multicomponent model of Allaire et al. [1] has been widely

used and can faithfully represent shock-induced collapses [14–17] and droplet atomization [18,

19]. Unfortunately, this model cannot predict the collapse time and minimum radius of the

Rayleigh collapse problem [20, 21]. This problem can be averted via the thermodynamically

consistent model of Kapila et al. [2] [20, 21], which includes a term (K∇ ·u) in the volume-
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fraction evolution equation to represent compressibility in mixture regions. Unfortunately,

this additional term leads to numerical instabilities during strong compression and expansion

near the interface [3, 22]. Instead, we propose using a pressure-disequilibrium model [3],

which relaxes the phase-specific pressures algorithmically at each time step, and averts the

stability issues of the K∇ ·u term. This model theoretically converges to the mechanical-

equilibrium model of Kapila et al. [2] under mesh refinement, and while it has been utilized

for cavitating flows [3, 23], detonating flows [24], surface-tension driven flows [25], droplet

atomization [26, 27], and fracture and fragmentation in ductile materials [28, 29], it has not

been applied to bubble dynamics or particularly to collapsing bubbles.

The multicomponent flow models are solved using shock-capturing finite-volume schemes

and Riemann solvers for fluxes [30, 31]. High-order spatial reconstructions, such as MUSCL [31–

33] and WENO [14, 20, 34, 35], are often used, along with their variants WENO-Z [36],

WENO-CU6 [37, 38], and TENO [39]. Herein, we will consider MUSCL and the WENO

of Jiang and Shu [34], coupled with the HLLC approximate Riemann solver [3, 14, 31] as

standard approaches for solving the multicomponent flow equations. Following usual pro-

cedure, these are coupled to total-variation-diminishing time integrators as an attempt to

suppress spurious oscillations at material interfaces under refinement [30, 31, 40, 41].

We first present the diffuse-interface multicomponent models in section 2. The numerical

methods we employ to solve the resulting equations are outlined in section 3. The setup of

the spherical-bubble-collapse problems we consider are presented in section 4. In section 5.1

we demonstrate and explain the utility of the K∇ ·u term in the mechanical-equilibrium

models. The convergence and behavior of this improved equilibrium model and the usual

pressure-disequilibrium model are studied in section 5.2 for the collapse and rebound of

spherical bubbles. Artifacts of the numerical methods we consider are examined in sec-

tion 5.3, including an investigation of interface sharpening techniques in section 5.4. Finally,

the pathologies identified are discussed in section 6.
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2. Multicomponent flow models

The compressible multicomponent flow models we present can all be written as

∂q

∂t
+∇ ·F (q) + h (q)∇ ·u = r (q) , (1)

where q is the state vector, F is the flux tensor, u is the velocity field, and h and r are non-

conservative quantities we describe subsequently. We only consider mechanical-equilibrium

models that formally conserve mass, momentum, and total energy, and neglect the effects of

viscosity, phase change and surface tension.

2.1. Mechanical-equilibrium model of Allaire et al. [1]

We first consider the mechanical-equilibrium model of Allaire et al. [1], which we call the

5-equation model. For a two-phase flow, we have

q =



α1

α1ρ1

α2ρ2

ρu

ρE


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

(ρE + p) u


, h =



−α1

0

0

0

0


, r =



0

0

0

0

0


, (2)

where ρ, u, and p are the mixture density, velocity, and pressure, respectively, and αk is the

volume fraction, for which k indicates the phase index. The mixture total energy is

E = e+
1

2
‖u‖2, (3)

where e is the mixture specific internal energy

e =
2∑

k=1

Ykek (ρk, p) . (4)

In (4), ek is defined via an equation of state and Yk are the mass fractions

Yk =
αkρk
ρ

. (5)
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Herein, we will consider a two-phase mixture of gas (g) and liquid (l), for which the gas is

modeled by the ideal-gas equation of state

pg = (γg − 1)ρgeg, (6)

where γg = 1.4, and the liquid is modeled by the stiffened-gas equation of state

pl = (γl − 1)ρlel − γlπ∞, (7)

where γl and π∞ are case-specific model parameters [42]. The mixture quantities are

ρ =
2∑

k=1

αkρk and p =
2∑

k=1

αkpk, (8)

and

ρc2 =
2∑

k=1

αkρkc
2
k

β (γk − 1)
, β =

2∑
k=1

αk
γk − 1

, (9)

where c is the mixture speed of sound, and ck and γk are the speed of sound and polytropic

coefficient of phase k. We note that while this model conserves mass, momentum, and total

energy, it does not strictly obey the second law of thermodynamics [1, 25].

2.2. Mechanical-equilibrium model of Kapila et al. [2]

The thermodynamically consistent mechanical-equilibrium model of Kapila et al. [2],

which we call the 5-equation model with K∇ ·u, has

q =



α1

α1ρ1

α2ρ2

ρu

ρE


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

(ρE + p) u


, h =



−α1

0

0

0

0


, r =



K∇ ·u
0

0

0

0


, (10)

where only r is different from (2). Here, K is

K =
ρ2c

2
2 − ρ1c21

ρ2c22
α2

+
ρ1c21
α1

, (11)
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and K∇ ·u represents expansion and compression of each phase in mixture regions. In this

case, the mixture speed of sound follows from

1

ρc2
=

2∑
k=1

αk
ρkc2k

, (12)

which is also the Wood speed of sound [43, 44].

2.3. Pressure-disequilibrium model of Saurel et al. [3]

The pressure-disequilibrium model of Saurel et al. [3], which we call the 6-equation model,

is expressed as

q =



α1

α1ρ1

α2ρ2

ρu

α1ρ1e1

α2ρ2e2


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

α1ρ1e1u

α2ρ2e2u


, h =



−α1

0

0

0

α1p1

α2p2


, r =



µδp

0

0

0

−µpIδp
µpIδp


, (13)

where r represents the relaxation of pressures between the phases with coefficient µ. The

interfacial pressure is

pI =
z2p1 + z1p2
z1 + z2

, (14)

where zk = ρkck is the acoustic impedance of the phase k, and

δp = p1 − p2, (15)

is the pressure difference between the two phases. Since p1 6= p2 here, the total energy equa-

tion of the mixture is replaced by the internal-energy equation for each phase. Nevertheless,

conservation of the mixture total energy can be written in its usual form

∂ρE

∂t
+∇ · [(ρE + p) u] = 0. (16)

We note that (16) is redundant when the internal energy equations are also computed.

However, in practice we include it in our computations to ensure that the total energy is
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numerically conserved, and thus preserve a correct treatment of shock waves (more details

can be found in Saurel et al. [3]).

The mixture speed of sound is defined according to

c2 =
2∑

k=1

Ykc
2
k. (17)

After applying the infinite pressure-relaxation procedure detailed in section 3.2, the effective

mixture speed of sound matches (12). We will discuss the influence of sound speed for

interface problems in section 5.3.2.

3. Numerical methods

We solve (1) numerically; the time evolution of q on a computational cell i with volume

Vi and surface A with normal unit vector n is given by the explicit finite-volume Godunov

[30] scheme

qn+1
i = qni −

∆t

Vi

(
N∑
s=1

AsF
?
s ·ns + h (qni )

N∑
s=1

Asu
?
s ·ns

)
, (18)

where n is the time-step index. Here, we label this basic first-order-accurate finite-volume

scheme as FV1. At the volume–volume interfaces, the associated Riemann problem is com-

puted using the HLLC approximate solver [3, 14, 31], giving the flux tensor and flow-velocity

vector F?
s and u?s, respectively. The solution of (18) is restricted by the usual CFL criterion.

3.1. Spatial and time reconstruction

Herein, we utilize both MUSCL and WENO spatial reconstructions. We use the second-

order-accurate MUSCL scheme of Schmidmayer et al. [33] (labeled here as MUSCL2) with

two-step time integration

q
n+ 1

2
i = qni +

1

2
∆tL (qni ) , (19)

qn+1
i = qni + ∆tL

(
q
n+ 1

2
i

)
, (20)

where L is the numerically approximated fluxes and non-conservative terms. The first step is

a prediction for the second step and the usual piece-wise linear MUSCL reconstruction [31] is
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used on the primitive variables. The monotonized central (MC) [40] slope limiter is employed

as an attempt to minimize interface diffusion and its behavior is investigated in section 5.3.

This method has been previously implemented for the pressure-disequilibrium model [3, 23–

25, 27, 29, 33, 45].

The WENO scheme is either third- or fifth-order accurate (labeled here as WENO3 and

WENO5, respectively) and reconstructs the primitive variables [14]. In this case, the time

derivative is computed via the third-order TVD Runge–Kutta algorithm [41]

q
(1)
i = qni + ∆tL (qni ) , (21)

q
(2)
i =

3

4
qni +

1

4
q
(1)
i +

1

4
∆tL

(
q
(1)
i

)
, (22)

qn+1
i =

1

3
qni +

2

3
q
(2)
i +

2

3
∆tL

(
q
(2)
i

)
. (23)

This method has previously been implemented for the pressure-equilibrium models of Allaire

et al. [1] [14–16, 18, 19] and of Kapila et al. [2] [20, 21, 46]; here, we also utilize it for the

pressure-disequilibrium model of Saurel et al. [3].

3.2. Pressure-relaxation procedure

The pressure-disequilibrium model (13) requires pressure-relaxation to converge to a sin-

gle, equilibrium pressure. We use the infinite-relaxation procedure of Saurel et al. [3]. At each

time step it solves the non-relaxed, hyperbolic equations (µ → 0) using (18), then relaxes

the disequilibrium pressures for µ → +∞. The latter is combined with a re-initialization

procedure to ensure the conservation of total energy, and thus converges to the mechanical-

equilibrium model of Kapila et al. [2] (10). When multi-stage time integration is used, the

relaxation procedure is performed at each stage. Thus, there is only one pressure at the

end of each stage and the reconstructed variables are the same for all models. As a result,

simulations of the pressure-disequilibrium model are only about 5% more expensive than the

models of Allaire et al. [1] and Kapila et al. [2] for the spherical-bubble-collapse cases we

consider subsequently.
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Air, pb

Water, p∞

R0

Figure 1: Problem configuration for a collapsing spherical bubble.

4. Setup of the spherical-bubble-collapse problem

As a step towards understanding the practical differences between the presented models

and methods, we consider the behavior of a collapsing spherical bubble. The problem setup

is shown in Figure 1. We initialize the bubble with radius R0 and the computational domain

has size L = 320R0, which is sufficiently large to avoid boundary effects. Initially, the bubble

has a uniform internal pressure pb, and the exterior pressure increases gradually up to the

far-field pressure p∞ according to the Rayleigh–Plesset equation [20, 47]:

p(R) = p∞ +
R0

R
(pb − p∞) . (24)

In the following, this pressure initialization is labeled as initial interface equilibrium with

Ṙ0 = 0. We consider cases with both modest and high initial pressure ratios, as shown in

Table 1. The water is parameterized by γl = 2.35 and π∞ = 109 Pa [15, 23, 42, 48–50].

Case p∞ [Pa] pb [Pa] p∞/pb

1: Low-pressure-ratio 105 104 10

2: High-pressure-ratio 5× 106 3550 1427

Table 1: Nominal initial conditions for the cases simulated.

We simulate the flow on a cubical, rectilinear grid with NR0 nodes in each coordinate

direction per initial bubble radius near the bubble (R 6 1.5R0); far from the bubble (R >

1.5R0), the grid is stretched nonuniformly to accommodate the large computational domain

L. To reduce computational cost, one octant of the domain is computed, with symmetry
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boundary conditions mimicking the bubble dynamics in neighboring regions. We performed

two simulations for each pressure ratio, one without mesh stretching and another with the

complete physical domain (no symmetry boundary conditions), and compared them against

the simulations presented hereafter to confirm that our results are insensitive to both of

these procedures.

When using the WENO5 method, the bubble interface is smeared in the radial direction over

few grid cells. The smearing procedure is commonly employed in multicomponent models

when fifth-order WENO reconstruction is used [14–16, 20–22, 35, 51–55], as it appears that

unphysical oscillations or numerical instabilities can occur without it. The initial interface

smearing procedure we employ involves smearing the volume fraction across the interface

using an hyperbolic tangent function [20]

αg =
1

2

[
1− tanh

(
R−R0

2D

)]
, (25)

where D is the characteristic length of the corresponding computational cell; the conservative

variables then follow from simple mixture relations, allowing thermodynamic consistency.

The physical artifacts associated with this procedure are discussed in section 5.3.2.

In the following, we use the radial bubble-wall evolution to compare the performance of

the three different multicomponent models. We define an effective bubble radius, R, as

R =

(
3Vb
4π

) 1
3

, where Vb =
N∑
i=1

αg,iVc,i (26)

is the total volume of the gas phase, N is the total number of grid cells, and αg,i and Vc,i

are the gas volume fraction and the volume of cell i, respectively. The radial bubble-wall

evolution is presented in a non-dimensionalized form where

tc = 0.915R0

√
ρl
p∞

(27)

is the nominal total collapse time from its initial (maximum) radius R0 [47]. In our imple-

mentation, we compute about 69 × 103 and 18 × 103 time steps per tc for cases 1 and 2,

respectively.
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Figure 2: Radial bubble-wall evolution for (a) p∞/pb = 10 with NR0
= 25 and (b) p∞/pb = 1427 with

NR0
= 50. Solutions are computed using the 5-equation models with WENO5 as well as the Keller–Miksis

equation.

5. Results

5.1. Effect of K∇ ·u on the 5-equation model

We first reconsider the behavior and influence of the K∇ ·u term from the 5-equation

models on the spherical-bubble-collapse problem using the WENO5 scheme as previously pre-

sented by Tiwari et al. [20].

Figure 2 shows that in both pressure-ratio cases, only the model with K∇ ·u agrees with

a nominal exact solution following the Keller–Miksis equation [56]; a compressible form of

the Rayleigh–Plesset equation. In this case, the initial interface smearing does not affect this

agreement.

The inability of the 5-equation model without K∇ ·u to represent spherical bubble col-

lapse was previously observed by Tiwari et al. [20], who attributed the better results to

enforcement of the second law of thermodynamics [2]. We seek here an alternative explana-

tion in terms of the dynamics.

Figure 3 shows key quantities and K∇ ·u along a radial coordinate at two instances in

time. For t ≈ 0, the initial interface smearing results in a mixture region at the interface,

for which K 6= 0, but K∇ ·u ≈ 0 because ∇ ·u ≈ 0. However, during the collapse, ∇ ·u 6= 0
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t = 0.85tc
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Figure 3: Liquid volume-fraction, pressure, andK∇ ·u for varying radial positionR and the case p∞/pb = 10

and NR0
= 25 using the 5-equation model with K∇ ·u. Times (a) t ≈ 0 and (b) t = 0.85tc are shown.

and the fluid volume fractions are modified. We see that K∇ ·u is positive and is larger

on the liquid side of the interface. As a result, the liquid volume fraction increases faster,

particularly on the liquid side of the interface, than it would without the K∇ ·u term. This

keeps the interface relatively sharp and results in the larger interface velocity observed in

Figure 2.

This behavior can be explained via the bubble pressure evolution. Initially, the pressure is

small inside the bubble and increases gradually outside of it. During the collapse, the bubble

pressure increases, which reduces the bubble volume due to compression of the gas. This

is dynamically coupled to the interface and intensifies the collapse. Further, the pressure

always increases in the radial direction. Thus, the gas in the mixture region is more highly

compressed on the water side of the bubble interface, and so its volume fraction decreases

more rapidly. This process also intensifies the bubble collapse. Note that this second effect is

not present into the 5-equation model without K∇ ·u, since this term accounts for expansion

and compression in mixture regions.
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Figure 4: Radial bubble-wall evolution for (a) p∞/pb = 10 and (b) p∞/pb = 1427. Solutions are computed

using WENO5.

5.2. Comparison of the 5- and 6-equation models

While the 5-equation model with K∇ ·u can accurately represent spherical bubble dy-

namics in some cases, it is also often numerically unstable. This is a result of significant

compression and expansion near the interface, which can occur during strong shock or ex-

pansion waves. Here, we consider the 6-equation model as a potential solution to this issue;

under infinite pressure-relaxation, it theoretically converges to the 5-equation model with

K∇ ·u. However, when discretized, the equation sets are different and equivalence has nei-

ther been demonstrated for high-order schemes, such as the WENO5 method we consider, nor

for the challenging spherical-bubble-collapse test problems. To test our implementation and

confirm their convergence to one another, comparison between these methods are presented

for shock tube and vacuum problems in Appendix A and B, and consider the collapse of a

spherical air bubble in water next.

Simulation results for nominal low and high pressure ratios are shown in Figure 4 for

both the 5-equation with K∇ ·u and 6-equation models, following the previous subsections.

Both methods agree closely for both cases with the analytic solution of the Keller–Miksis

equations [56], which are initialized at equilibrium with Ṙ0 = 0. The high pressure ratio

case of Figure 4 (b) also shows the spatial convergence of the models.
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Figure 5: Radial bubble-wall evolution for initial interface equilibrium and p∞/pb = 10. (a) Results for all

schemes and flux limiters as labeled (fixed resolution NR0 = 25) and (b) spatial convergence of the numerical

methods.

Since the 6-equation model has closely matched the 5-equation model with K∇ ·u for

all three of our challenging test cases, we consider it a potential surrogate to the 5-equation

model that does not inherit its stability issue. Next, we investigate the behavior of the

6-equation model when solved by numerical schemes of different character and accuracy.

5.3. Numerical schemes for the 6-equation model

The 6-equation model can be solved via a number of different interface-capturing nu-

merical methods. We compute its solution using the methods described in section 3 for a

collapsing spherical bubble of varying initial pressure ratio and interface states as a critical

assessment of the viability of the numerical schemes for cavitating flows.

5.3.1. Spherical bubble collapse with initial interface equilibrium

We first consider the case of initial interface equilibrium, Ṙ0 = 0. Figure 5 (a) shows the

interface evolution for p∞/pb = 10, spatial resolution NR0 = 25 and for the FV1, MUSCL2,

WENO3 and WENO5 schemes. In addition to the MC [57] slope limiter, the Minmod [31, 58]

limiter is implemented for the MUSCL2 scheme (note that the MC limiter is used when not

specified for the MUSCL2 scheme). Here, the slope limiters attempt to reduce numerical
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dissipation of the scheme. As mentioned in section 4, the interface is initially smeared for

the WENO5 cases to guarantee numerical stability. However, the MUSCL2 and WENO3 schemes

do not require this procedure to remain stable, and thus all interfaces are kept sharp at

the grid level in these cases. In Figure 5 (a) we see that the MC slope limiter performs

significantly better than the Minmod limiter and similarly for the WENO3 scheme, although

the corresponding results are still less accurate than those of the WENO5 scheme.

To confirm that numerical dissipation is the cause of the discrepancy between the results

of the MUSCL2, WENO3 and WENO5 schemes, we consider the spatial convergence of the numer-

ical methods. In Figure 5 (b), this convergence is presented in terms of the discrete L2 error

ε as

ε =
1

Nt

Nt∑
i=0

‖R(ti)−RKM(ti)‖
RKM(ti)

, (28)

where Nt is the number of time steps in the temporal window t ∈ [0, 2tc], and R(ti) and

RKM(ti) are the bubble radius at time ti of our simulations and the Keller-Miksis solution,

respectively. We see that all methods converge at first order, matching the expected rate

for the numerical solution of flows with discontinuities [30, 31, 59]. The WENO5 method

has the smallest ε, and so we conclude that for small initial pressure ratios higher-order

reconstructions have smaller errors as they suppress numerical diffusion. In this case, the

interface smearing procedure we employ for the WENO5 scheme has no apparent consequence

on simulation accuracy.

For the flow configurations we consider, the spherical bubble interface is known to be

physically stable [47, 60], and so non-spherical interfaces are an artifact of the numerical

method; we use this property to assess the performance of the numerical methods. The

bubble sphericity is computed as [61]

Ψ =
π

1
3 (6V ′b )

2
3

Ab
, (29)

which is the ratio of the surface area of a sphere with the same volume as the bubble V ′b ,

to the surface area of the bubble Ab. By this definition, a spherical shape has Ψ = 1 and

distorted shapes have Ψ < 1. We define the bubble as the region with αg ≥ 0.5 and its
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Figure 6: Evolution of the bubble sphericity for p∞/pb = 10 and NR0
= 25. Nominal bubble shapes as

represented by α = 0.5 isosurfaces are also shown for times t = 0.7tc, t (R = Rmin), and 2tc.

surface is the isosurface of αg = 0.5. We compute V ′b and Ab using high-order interpolation

of the data.

Sphericity and bubble shape evolution for the small pressure ratio case are shown in

Figure 6. We see that the WENO5 scheme maintains sphericity during the entire collapse–

rebound process. The MUSCL2 and WENO3 schemes develop grid-specific artifacts, which are

visible beginning at t = 0.7tc; these are presumably due to anisotropic dispersion on the

grid with faster propagation of the interface along the Cartesian coordinate directions. By

the time of minimum radius t(R = Rmin), the bubble shape is significantly distorted, and at

t = 2tc distortions are still visible.

The radial bubble-wall evolution and convergence results for the larger pressure ratio

p∞/pb = 1427 are shown in Figure 7. In Figure 7 (a), we only show the Keller–Miksis solution
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Figure 7: Radial bubble-wall evolution for initial interface equilibrium and p∞/pb = 1427. (a) Results

(fixed resolution NR0
= 50) and (b) spatial convergence of the MUSCL2, WENO3 and WENO5 schemes.

until t = 1.05tc, just after the minimum bubble radius is achieved, since the subsequent

rebounds for large pressure ratios are well-known to be physically inaccurate [62]. We see

that MUSCL2 is marginally more accurate at predicting the minimum bubble radius and

collapse time than the WENO5 method. This seems to be a result of two factors; first, the

interface moves more quickly for larger pressure ratios and thus, the MUSCL2 results are less

polluted by numerical diffusion over the significantly fewer time steps to reach collapse than

were required for the low pressure-ratio case; second, the initial smearing introduced for

the WENO5 method results in an initial diffusion greater than that what ultimately develops

during MUSCL2 and WENO3 simulations.

In Figure 7 (b) we plot the observed spatial convergence of the numerical schemes. Here,

we only compute ε over the temporal window t ∈ [0, 1.05tc], commensurate with the physical

accuracy of the Keller–Miksis solution over this interval. We again observe approximately

first-order convergence for all numerical methods we consider. However, in this case, MUSCL2

has the smallest error ε and WENO5 the largest. Again, this appears to be a result of the

dissipation introduced by the initial smearing procedure used for the WENO5 simulations.

The bubble sphericity and illustrations of the bubble surface are shown in Figure 8.

Almost no grid-based artifacts on the bubble surface are visible until t ≈ tc for all numerical
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Figure 8: Bubble sphericity evolution for p∞/pb = 1427 and NR0
= 50. Nominal bubble shapes (α = 0.5)

are also shown for times t = 0.5tc, 1.02tc, and 1.35tc.

18



Figure 9: Bubble sphericity and associated bubble interface for varying mesh resolution NR0
at time

t = 1.35tc for the p∞/pb = 1427 case and MUSCL2 method. For NR0
= 100 and 150 the adaptive-mesh-

refinement technique of Schmidmayer et al. [27] is used to minimize computational expense.

methods, at which point Ψ decreases significantly. Compared to the low-pressure-ratio case,

the interface evolves more quickly and all methods conserve sphericity for t . tc. However,

after the collapse, significant distortions are visible and Ψ does not reach unity for any of the

methods. Furthermore, we see that the WENO5 method results in stronger distortions than

the MUSCL2 or WENO3 schemes immediately after the collapse. For larger t, the WENO3 scheme

develops further distortions, eventually reaching similar Ψ values as WENO5 result, whereas

the MUSCL2 scheme maintains sphericity after the initial collapse.

For NR0 = 50, the minimum radius is about 0.09R0, which corresponds to about 4.5 cells

per bubble radius in each direction and seemingly leads to a significant amount of anisotropy.

Thus, we investigate the effect of mesh resolution on the bubble shape in Figure 9. We see

that sphericity indeed improves with increasing the mesh resolution, Note that we only shows

results for MUSCL2, but similar behavior is expected for the WENO schemes.

For initial interface equilibrium, we conclude that the WENO5 scheme converges more

quickly and can better maintain sphericity when the pressure ratio is relatively small, and

thus the maximum interface velocity is much smaller than the Mach number. However, when

the pressure ratio is much larger, and so the interface velocity exceeds the Mach number,
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Figure 10: Wood speed of sound for water-air mixture. Here, cwater = 1625 m/s and cair = 350 m/s.

all the schemes show similar performance, with MUSCL2 only modestly outperforming the

others.

5.3.2. Spherical bubble collapse with initial interface disequilibrium

Lastly, we consider the case of initial interface disequilibrium, and thus Ṙ0(t = 0) 6= 0.

We enforce this by setting the internal and external interface pressures to different values as

p =

pb for 0 ≤ R ≤ R0,

p∞ otherwise.

(30)

This condition represents the discontinuities present, for example, during bubble wall impact.

The other initial conditions are identical to previous test cases and thus of section 4.

With the initial interface smearing employed for the WENO5 scheme (or indeed after a

sufficient number of time steps for any scheme due to numerical diffusion) the interface has

non-negligible thickness, giving rise to a mixture region (α 6= 0 or 1). As shown in Figure 10,

the Wood speed of sound (12), which is also the speed of sound of the 5-equation model

with K∇ ·u, varies in this region and is much less than that of either of the pure phases

(α = 0 and 1). After the pressure relaxation procedure, the effective speed of sound of the

6-equation model also converges to the Wood speed of sound (see Appendix B).
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Figure 11: Radial bubble-wall evolution for initial interface disequilibrium, p∞/pb = 1427 and NR0 = 50.

Solutions are computed using the 6-equation model, and the Keller–Miksis result is shown as surrogate truth.

Figure 11 shows that the smearing procedure employed to keep the WENO5 scheme stable

results in an inaccurate solution for the collapse of a bubble in initial pressure disequilibrium.

We also see that the MUSCL2 and WENO3 schemes behave similarly when the interface is initially

smeared, though this procedure is not required for numerical stability in these cases; for both

schemes, the non-smeared cases agree closely with the Keller–Miksis dynamics.

The poor performance associated with the initial interface smearing procedure appears

to be due to a wave-trapping phenomenon that results from a lower mixture sound speed,

reducing the initial interface velocity. This is illustrated in Figure 12 for the MUSCL2 method.

Pressure contours are shown in the t–R space for three degrees of initial smearing (a)–(c).

When the interface is not smeared, the pressure waves travel at the pure-phase speed of

sound. However, when either the volume fraction or both the volume fraction and mixture

pressure are spatially smeared, these waves evolve in a more complex manner due to the

reduced sound speeds within the interface mixture region. Pressure waves that escape the

mixture region again travel at the liquid speed of sound. The difference between Figure 12 (b)

and (c) shows that smearing of the volume fraction α and pressure p both modify the

pressure-wave behaviors uniquely, though both ultimately pollute the bubble dynamics.
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Figure 12: Pressure in the time and radial-direction space for initial interface disequilibrium, p∞/pb = 1427

and NR0
= 50. Solutions are computed using the 6-equation model with the MUSCL2 scheme for three initial

configurations: (a) no initial smearing, (b) smearing on only the volume fraction α, and (c) smearing on

both α and pressure p.

5.4. Interface-sharpening techniques for collapsing spherical bubbles

The numerical dissipation inherent in any interface capturing scheme will eventually

smear even initially sharp interfaces. Thus, problems involving multiple interface pressure-

disequilibrium events, such as a collapsing ellipsoidal bubble near a wall [63, 64], would

benefit from keeping interfaces as sharp as possible.

We buttress the 6-equation model and the MUSCL2 and WENO3 schemes with the THINC

interface-sharpening method [65] as an illustration of the behavior of interface-sharpening

methods for spherical bubble dynamics. We use THINC, rather than anti-diffusion [66] or

regularization methods [20], as its conservative property matches the conservative methods

we already employ and the others displayed significant numerical instabilities for our methods

(particularly for high-pressure-ratio cases). We note that our implementation of the THINC

method faithfully represented the solutions to the 1D shock tube problem of Appendix A and

2D shock–bubble gas–gas interaction problems (such as that of Shyue and Xiao [65] and Deng

et al. [67]), and so we can proceed with a faithful comparison for collapsing spherical bubbles.

Further, we noticed that the THINC method has numerical instabilities when coupled to the

WENO5 scheme; this seems to be a result of significant interface sharpening, which were

previously shown to trigger instabilities for this method, and so we do not consider WENO5
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Figure 13: Radial bubble-wall evolution for initial interface equilibrium and numerical methods as labeled;

(a) p∞/pb = 10 and NR0
= 25, (b) p∞/pb = 1427 and NR0

= 50.

herein.

Case MUSCL2 MUSCL2 + THINC WENO3 WENO3 + THINC

1: p∞/pb = 10 0.32 0.16 0.44 0.16

2: p∞/pb = 1427 0.36 0.1 0.5 0.08

Table 2: Interface thickness T/R0 at specific times and for the cases as labeled. Case 1: NR0
= 25 and t = 2tc;

case 2: NR0
= 50 and t = 1.35tc Here, T is computed via the number of cells satisfying 0.01 6 α 6 0.99.

Figure 13 shows the radial bubble-wall evolution for the low- and high-pressure-ratio

interface-pressure equilibrium cases we considered in section 5.3.1. When compared to non-

THINC-equipped methods, the THINC results have about 44% larger error ε for the low-

pressure-ratio case and 59% smaller ε for the high-pressure-ratio case; however, in all cases

the error is already relatively small. Despite having an inconsistent effect on the error, the

THINC scheme does keep the bubble interface sharper, as shown in Table 2.

Figure 14 compares bubble shapes with and without THINC. We see that the THINC

method results in significantly less spherical shapes for the low-pressure-ratio cases, though

for the high-pressure-ratio cases the shapes are nearly the same. In general, we see that

the THINC method is better behaved when coupled to the MUSCL2, rather than the WENO3,
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Figure 14: Nominal bubble shapes (α = 0.5) for times and methods as labeled: (a) p∞/pb = 10 and

NR0
= 25, (b) p∞/pb = 1427 and NR0

= 50.
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scheme.

Thus, we conclude that the THINC method did not reliably improve the accuracy of our

results, and in most cases disturbed the interface sphericity. As such, it only offers a partial

solution when considering collapsing bubbles with multiple pressure-disequilibrium events.

6. Discussion and conclusion

We analyzed the ability of diffuse-interface models and their associated numerical meth-

ods to represent the collapse and rebound of spherical gas bubbles in a liquid. We confirmed

that the 5-equation model of Allaire et al. [1] is unable to accurately represent a spherical

bubble collapse and demonstrated how the additional K∇ ·u term introduced by Kapila

et al. [2] is required to ensure good agreement with the Keller–Miksis solution [54]. Since the

5-equation model with K∇ ·u is known to produce instabilities in some numerical experi-

ments [3, 22], we investigated the 6-equation pressure-disequilibrium model as a potential

surrogate. We observed good agreement between these models for challenging test problems,

including a 1D water-air shock tube, a 1D vacuum developing in a water-air mixture, and

the collapse of a 3D spherical bubble. Thus, the 6-equation model is a good candidate to

remedy the stability issues of the 5-equation model with the K∇ ·u source term.

We also considered the behavior and pathologies of the 6-equation model when coupled to

MUSCL and WENO numerical methods for a collapsing spherical bubble. We first analyzed

bubbles at initial interface pressure equilibrium. For this, the bubble interface evolution of

the WENO5-based solution more closely matched the associated Keller–Miksis surrogate-truth

solution than did the MUSCL2 and WENO3 schemes for relatively small pressure ratios. This

was due to the more substantial numerical diffusion intrinsic to the lower-order schemes, and

despite the fact that the WENO5 scheme required an initially smeared interface to maintain

simulation stability. When the initial pressure ratio was larger, all three methods showed

similar results, quickly converging to the Keller–Miksis solution. Further, we noticed that

the relatively small bubble size at the collapse time resulted in significantly distorted inter-

face shapes. However, these shapes were shown to be more spherical for finer spatial meshes.
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Thus, an adaptive-mesh-refinement technique would be helpful for maintaining bubble in-

terface sphericity at the same computational cost as a uniform mesh near the bubble.

When the bubble interface was in initial disequilibrium, we saw that the smearing pro-

cedure implemented for the WENO5 method precluded an accurate solution for large pressure

ratios. This was a result of the relatively large degree of initial diffusion, which produced

a mixture region with a much smaller speed of sound that polluted the dynamics. We

also noted that the numerical dissipation inherent in any interface capturing scheme will

eventually smear even initially sharp interfaces and, therefore, these schemes would benefit

from keeping interfaces as sharp as possible. Interface-sharpening techniques are one way to

minimize this dissipation, and we surveyed the THINC method [65] for the same spherical

bubble collapse problems. While the THINC method did keep the interfaces sharper, in

most cases it further disturbed the interface sphericity; additionally, we did not observe a

consistent increase in simulation accuracy. Thus, further investigation and possibly method

improvement are required to maintain surface sharpness while guaranteeing a conservative

behavior and numerical stability.

Ultimately, we saw that WENO-based schemes were preferable for bubble dynamics that

involve small pressure ratios, and thus slower interface dynamics, and the MUSCL and

WENO-based schemes performed similarly for large pressure ratios and thus fast interface

speeds. Thus, the WENO5 scheme is generally preferred, except in cases involving interface

pressure discontinuities, for which the interface smearing required to keep the scheme stable

pollutes the dynamics. As such, the instability of high-order WENO schemes for interface

problems warrants future attention.
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Figure 15: Shock tube problem setup and initial and boundary conditions.

Appendix A Water-air shock tube

We consider a water-air shock tube, whose initial configuration is shown in Figure 15 [3,

15, 27]. The domain has length L, the initial discontinuity is located at L∗ = L/7 and 103

nodes are used. Here, the water has stiffened-gas parameters γl = 4.4 and π∞ = 6× 108 Pa [3,

25, 68].

We simulate the flow in the shock tube using both the 5-equation with K∇ ·u and 6-

equation models and the WENO5 numerical scheme. A uniform and one-dimensional mesh of

103 nodes is used. Results for the primitive variables at t = 241 µs are shown in Figure 16. A

rightward shock wave propagates into the air, followed by a contact discontinuity, observable

in (a) and (b), that delimits the interface between the two phases; left-going expansion waves

propagate into the water. We observe good agreement between the numerical implementa-

tions of both models and the exact solution. Indeed, differences can only be seen at the

tail of the expansion waves and near the contact discontinuity. Note that these differences

diminish with increasing resolution.

Appendix B Vacuum generation into a water-air mixture

We consider a vacuum generation into a water-air mixture [3, 50]. The problem setup

is shown in Figure 17; there is a uniform initial pressure p = 105 Pa and densities ρl =

103 kg/m3 and ρg = 1 kg/m3, and a flow is generated by the initial discontinuity in velocity.

Again, 103 nodes are used and the water has stiffened-gas parameters γl = 4.4 and π∞ =

6× 108 Pa.

Figure 18 shows the results of the primitive variables at t = 1.85 ms for the vacuum
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Figure 16: Water-air shock-tube interaction problem at t = 241 µs. Numerical and exact solutions are as

labeled above.
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Figure 17: Problem setup for a vacuum generation into a water-air mixture.
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Figure 18: Cavitating water-air mixture problem at t = 1.85 ms. Numerical and exact solutions are as

labeled above.
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problem using the same methods and computational parameterization as Appendix A. The

discontinuity in velocity generates left- and right-going expansion waves, and thus generates

a p = 0 vacuum in the center of the domain. Mixture compressibility ensures that the

water volume fraction, and thus the mixture density, decreases in the vacuum region. We

observe good agreement between the numerical simulations and exact solution. However,

the 6-equation model generally performs better, with no pressure oscillations at the head of

the expansion waves.
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