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Using only the general factorization and nondegenerate threshold properties of multi-
peripheral models, we demonstrate the existence of damped oscillatory components for
both the total cross section and the rate of growth of average multiplicity, with identical
frequencies and relative amplitudes. For weak oscillation, however, they are shown to
be 180° out of phase. Relevant experimental information on this fine structure is also
discussed.

A nonleading complex conjugate pair of Regge poles in the vacuum channel at the forward direction
is well known to correspond to a damped oscillatory component of the high-energy total cross sections.
Motivated by the multiperipheral nature of high-energy production processes, Chew and Snider! (cs)
have recently conjectured the actual existence of such pairs of poles. They verified their assertion by
carrying out a model calculation using a simplified version of the multi-Regge equations. Their con-
jecture enables them to relate possible features of data on total cross sections to the rate of growth of
average multiplicity with energy.

We present here a further consequence of the CS conjecture, which is independent of the detailed dy-
namical origin of the complex poles. Using only the general factorization property of multiperiheral
models, we demonstrate the existence of a damped oscillatory component for the rate of growth of
average multiplicity. This oscillation has the same frequency, 27n/Ima, in Ins as that of the total
cross section; but they are, in general, not in phase with each other. In particular, for weak oscilla-
tion, they are 180° out of phase.

By way of introduction, we shall first demonstrate the generality of the CS conjecture by exhibiting
an analytic solution of the Amati-Bertocchi-Fubini-Stanghellini-Tonin (ABFST) integral equation in the
limit of large exchange mass. This also serves to establish our convention.? An exception to this gen-
eral consequence of multiperipheralism is pointed out but is discarded on physical grounds.

The absorptive part A(s;u«,v) of the forward scattering amplitude for the process p +k —p +k in the
ABFST model satisfies a linear integral equation.? In the simplest case of a single-particle rung of
mass {, the kernel is ng% *)((p~p’)?~u?), and the internal propagator has a mass m. The usual pro-
cedure of solving this integral equation is first to reduce it to a one-dimensional equation®?® by per-
forming a partial-wave analysis

© ds
- s(1+1) .
a,(u,v):ﬁz Z(uv)lz[X(s:u, 0) " DA(s; u, ), (1)
where p? =u, k2=v, (p +k)>=s and

X= [s=u~v +AV2(s, u,v)]/2(uv)2.

This analysis is performed with #, v kept negative. Poles of a, are Lorentz poles, and the leading
ones will control the asymptotic behavior of A(s;u,v). The inversion formula, with the contour to the
right of any singularity of the integrand, is

Alsyu,v) = [ 1m (d1/2m)X 11 (X2=1)"V2a,(u, 0). (2)

The locations of poles will depend on the dynamics of the model used. In particular, there may only
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be real poles. This is indeed the case for the model with zero linkage mass, u?=0, where the exact
pole spectrum®* at /=0 is known. Evidently, the presence of complex poles is associated with the fi-
niteness of linkage mass. The study of the integral equation for finite values of u?, however, has
used either numerical methods® or the trace approximation, which in general is only a weak-coupling
approximation. Although qualitative features of the solution have been found, an analytic solution is
highly desirable. We shall provide such a solution® in the limit of large u2.

In the ABFST model, the propagator term serves as the damping factor in the momentum transfer
squared, #’. The major contribution to the integral equation comes from small values of —«’. In the
limit of large u?, with m? fixed, the leading order terms of the partial-wave integral equation become

o omg? 2 s(i+1) g2 o du’ il/z 2 ](1“) ,
a,(u,v)= 2(uv)2 [(uv)“zJ + 1672(1 +1) L w(mP—u')? \—u ()72 a,(u’,v). (3)

We may also cut off the integral at a fixed large negative value —A, Equation (3) now has a separable
kernel and can be solved exactly to yield

a,u,v)= (n/z)gz(mgég(pz)'(lu) )
where
— _ g2 (#2)-(z+1) 0 (=)' *1d
D(1)=1-D,(1) =1~ 1672 (I+1) .[A (m2=u)? * (5)

D(l) is meromorphic in /, with poles at negative integers. Restricting ourselves to the region Rel <0,
we find, for large u?,

e £ (Y01
b 1+161rmz<mz> sinnl” (6)

The zero of D(I) can then be found by examining the transcendental equation D(a;)=0. This equation is
similiar to that obtained by CS using what is essentially a weak-coupling approximation to the multi-
Regge integral equation. We, on the other hand, have arrived at Eq. (6) by considering the limit of
large linkage mass. In this limit, the transcendental equation can further be approximated by o =-1
+ye "“(@*1) where we have introduced w=1In(u?/m?), and y =g2/16m®m?. This results in a spectrum of
complex poles similiar to that obtained by CS. Its characteristic features are the position of the lead-
ing pair of complex poles with Ima, ~2m/w, and the spacing between poles, Alma ,~27/w. The depen-
dence of complex pole positions on coupling strength y is mostly contained in their real parts.

Our analysis is also applicable if, on average, several particles are emitted at each link. We inter-
pret i as an average linkage mass. In realistic models,® m is the pion mass and p? is typically 1
GeV?. With u2/m? =50, our large-exchange-mass limit result may actually be physically relevant.
The generalization of our method to the multi-Regge model can also be carried out without altering
the relevant structure of D(!). In particular, the spacing in Ima is still determined by u2/m?.

As emphasized by CS, the oscillatory behavior is a reflection of the inability to increase the number
of linkages without a corresponding increase in Ins by a finite amount, a characteristic shared by all
multiperipheral models. This increment is determined by the ratio of the linkage mass and the aver-
age momentum transfer between links. In the case of large p2, with the damping parameter m? in mo-
mentum transfer fixed, the increment in Ins will have to be large, leading to a large period of oscilla-
tion. This is reflected in the / plane by the presence of complex poles with small imaginary parts.
For small u? the situation is simply reversed. In the limit u2-0, no limitation exists on the num-
ber of linkages at a finite value of Ins. No oscillation is thus expected by these multiperipheral con-
siderations. All complex poles will move away from the finite region of the / plane, in agreement with
the exact u? =0 result. However, we shall exclude this possibility on physical grounds.

Our analysis thus far, together with the work of CS, strongly suggests the existence of complex con-
jugate poles if a multiperipheral description of high-energy production processes is correct. The ex-
act pole spectrum cannot at this stage be determined, because it is highly model dependent. However,
if it is known from other sources such as experiments on total cross sections, meaningful predictions
on other experimental observables can be obtained, without having to specify how these poles are gen-
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erated. One such observable is the single-particle distribution spectrum.” Another one is the average
multiplicity at high energy.
The average multiplicity for high-energy production processes is defined by

<n>e<§=’;1 nA,,)/<§;l A,)=N/A, (1)

where A, is the n-particle intermediate-state contribution to the forward absorptive part A. The
knowledge of the pole spectrum in the [/ plane yields A, and we shall demonstrate that information can
also be extracted for N, and therefore also for (n). We make use of the recursive relation A,=A,
®A,.;, for arbitrary 1 <j<n-1. It then follows that, upon summing » and j,

d*p’ A(p, ~p"A(p’, k) (8)
(2m)*  (mP-p)?

N(p,k)= (n)A=A(p, k) +2
To utilize the knowledge of the pole spectrum of A, we perform a partial-wave analysis. Defining
partial wave N(;u,v) by Eq. (2), we find Eq. (8) can be diagonalized® exactly,

Ja,(w,u’)a,w’,v)
(mP=u')? .

_ 1 odu’(—u’
N(l;u,v) —a,(u,v)+(2ﬂ)3(l+1)[w (9)

Using a spectral representation for a,(«,v),
)

u,v
ay(u,v) =D LiaY) (10)
i=0 l-ai
where Ree,,, SRea;, we find that N(/; «,v) contains both double and single poles at o;, 1=0,1,2,---.

Using the inversion formula, Eq. (2), we find that each double pole will lead to an asymptotic behavior
of the form c¢;s “1ns, where the single poles will lead to d;s %,

If two of the secondary poles are complex conjugate poles, it follows that the average multiplicity
(n) will also have a damped component, with an s~ @®0~Re®1) damping and a period 27/Ime, in Ins, «,
being the Pomeranchukon. What is not determined at this stage is the phase of this oscillation relative
to that of the total cross section. To obtain this information, we shall make use of our earlier result.
As we have mentioned, the large link mass limit may actually represent the real situation very well.

The major advantage of studying the large u2 limit is the simplification on the #, v dependence of
a,(u,v). It follows from Eq. (4) that

1/2
a,u, v)z%al(mlza my*). (11)
17

Substituting Eq. (11) into Eq. (9), we find
2 mz‘ IJ'Z 1+1
N(I;mp2, m,2) =a,(m,?, mzz) + <-1;> (}z_) <7—n-2-> Dl(l)a,(mlz’ m?)a (m?, m,?), (12)

where we have distinguished between incoming particles m,, m, and the “propagating” particles m.
D,(7) is given by Eq. (5), satisfying the condition D,(e;) =1, 7=0,1, «--.

Let us denote the Regge residues of a,(m,?, m,?), a,(m? m?), and a,(m?, m2?), at a;, as g,;*%, B,
and B,(%2), respectively. We again find that N(I, m,?, m,?) has the following /-plane pole structure:

ci(l'Z) eij(l.z) B; (1,2)

N,(m2, m,?) =§_~—(l—ai)2 + ; (=a)i-a) + i;(l"ai)’ (13)

where

2 2\ +1 2 2\l +1
S [ L A [ AR w

They can also be written slightly differently using the factorization property:

Bi(l.o)ﬁi(o.za='3i(o,o)/3i(1,2)_ (15)

The asymptotic behavior of N and A can now be found by Eq. (2). But instead, let us consider the
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idealized situation® where the / plane only contains the Pomeranchukon @,, and a pair of complex con-
jugate poles a, =a,*, Letting Aa, = ay~a,, we find, asymptotically, i.e., (s/m,m,)>1,

(1,2) B (0,0) 2\-Aay B (1,2) s - Aoy
(n)= <—97——;0 s )> lns{l +2 Re([J-—~B0 ) <7—n’%> -1} <—’~———30(1,2 )> (—————mlm) )} +const, (16)

where Eq. (15) has been used. The presence of the term (s/mlmz)'A"‘1 leads to a damped oscillatory
component with period (ZTT/ImCil) in Ins. In general, all f’s are complex, so that the phase of the os-
cillation is still undertermined at this stage. However, for a weak oscillation, i.e., [, © /8 @ |« 1
using also the fact that |(u2/m?) %%1|<«< 1, we obtain!®

(n)e= < EZ’OD(lns){1—2Re[<%%—z—;><mlsm2>ﬂal]} +const. (17)

We find that in this case the phase of (n) relative to that of total cross section is 180°, Furthermore,
the amplitude of oscillation is the same as that of total cross section,!

Independent of the large-link-mass result, we expect this special phase relation to hold when the os-
cillations involved are weak. To reach this conclusion only the general factorization property of multi-
peripheral models is needed. This is because the contribution to the oscillation of (n) from N in Eq.
(7) is always of second order in |Bl/ﬁol and that from A is of first order. In the ABFST model where
only pions are kept as propagating particles, the former is smaller than the latter by a factor of the
order 1,31 (0’0)/ﬁ0(°'°) |. The smallness of this factor corresponds to a weak oscillation in the 7-7 ampli-
tude and has been verified numerically for realistic couplings.® In more general multiperipheral mod-
els, for our conclusion to hold, we need all oscillations associated with internal propagating channels
to be weak.

Experimental tests of multiperipheralism in the past have concentrated on the verification of its pre-
dictions of gross structures of high-energy reaction cross sections. Here on the other hand, we are
looking at fine structures which follow from multiperipheral considerations. Existing accelerator ex-
periments show that weak oscillatory total cross sections may exist in 7p and kp reactions. Cosmic-
ray data on pp average multiplicity, however, seem to indicate that it is free of oscillations.!! Care
must be taken in interpreting these observations because of the competing contributions from second-
ary Regge trajectories. Nevertheless, if we accept these tentative experimental indications, it follows
from Eq. (17) that multiperipheralism suggests the observation of oscillation in {%),,'* and (n),, but
not in 0, ,. Verification of this fine structure requires high-precision experiments rather than higher
energies.
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