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ABSTRACT

The key to using a strong gravitational lens system to measure the Hubble constant is to obtain
an accurate model of the lens potential. In this paper, we investigate the properties of gravi-
tational lens B16084-656, a quadruply imaged lens system with an extended source intensity
distribution. Our analysis is valid for generic quadruply lensed systems. Limit curves and
isophotal separatrices are defined for such systems, and we show that the isophotal separatri-
ces must intersect at the critical curves and the satellite isophotes must be tangent to the limit
curves. The most recent model of B1608+-656 by Koopmans et al. satisfies these criteria for
some, but not all, of the isophotal separatrices within the observational uncertainty. We study
a non-parametric method of potential reconstruction proposed by Blandford, Surpi & Kundic
and demonstrate that although the method works in principle and elucidates image formation,
the initial potential only converges to the true model when it is within ~1 per cent of the true

model.
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1 INTRODUCTION

Strong gravitational lens systems provide a tool for measuring cos-
mological parameters. With the measured relative arrival time delays
between the multiple images of the lensed source and a model of the
lens potential, one can deduce a value of the Hubble constant. In ad-
dition, strong gravitational lens systems can be used to probe galaxy
mass distributions, including dark matter, since the lens potential is
directly related to the lens mass distribution (Refsdal 1964).

Several strong gravitational lenses with either two images (‘dou-
bles’) or four images (‘quads’) have been observed. The ones with
extended source distributions are of special interest since they pro-
vide additional constraints for the lens potential due to surface
brightness conservation. The traditional approach to modelling the
lens mass distribution is to postulate a parametric form for the lens
distribution and minimize some chi-square to fit the data. The
method is limited by the choice of the parameters; as the obser-
vational quality improves, the original parametric model generally
becomes inadequate to fit the data [Williams & Saha (2000) con-
sider a pixellated mass distribution which is non-parametric, but
use only the nuclear image positions and not information from the
extended source to constrain the distribution]. Ideally, we want a
method that employs the extended source information to obtain a
non-parametric form of the lens potential whose accuracy is limited
solely by the observational noise in the data. Koopmans (2005) has
also taken this approach.
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In Section 2, we study a quadruply imaged gravitational lens sys-
tem in detail with an extended source, B1608+656, showing the
various criteria that the isophotes of the extended source must sat-
isfy. In Section 3, we examine a method of potential reconstruction
proposed by Blandford, Surpi & Kundic (2001) to correct the poten-
tial values pixel by pixel from a starting perturbed potential model.

2 PROPERTIES OF A QUADRUPLY
LENSED SYSTEM

We will focus on the quadruply imaged gravitational lens system
B1608+-656 in this section. Fig. 1 shows an image of the system
taken by the Hubble Space Telescope (HST) through the F§14W
filter (Surpi & Blandford 2003). The source is at a redshift of z, =
1.39 (Fassnachtetal. 1996) and its images are labelled by A, B, C and
D. The system has two lens galaxies, G1 (the primary lens) and G2
(the secondary lens), that are at a redshift of z4 = 0.63 (Myers et al.
1995).! The galaxy G1 is about five times more massive than G2.
B1608+-656 is unique in that all three relative time delays between
the four images are determined with accuracies of a few per cent.
The time delays relative to image B forimages A, Cand Dare 31.5 +
1.5,36.0 = 1.5 and 77.0 £ 1.5 d, respectively (Fassnacht et al. 1999,
2002).

Section 2.1 that follows is a review of the theory of gravitational
lensing. Readers familiar with lensing may wish to proceed directly

! The quoted redshift is that of G1. We assume that G2 is at the same redshift
as G1 since G2 is too faint for its redshift to be measured.
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Figure 1. The original reduced HST/F814W image of B1608+656. The
four images are labelled A, B, C and D; the two lens galaxies are G1 and G2
(Surpi & Blandford 2003; similar image in Koopmans et al. 2003).

to Section 2.2, which analyses the Koopmans et al. (2003) model of
B1608+-656.

2.1 Gravitational lensing

Readers familiar with gravitational lensing may wish to skip this
section. We follow Kochanek, Schneider & Wambsganss (2004) for
the theory of gravitational lensing.

Let us denote the angular coordinates on the source and image
planes by 3 = (81, B2) and @ = (6, 0,), respectively. The lens
equation governing the deflection of light rays is

B8=0—-a), 6

where a(0) is the scaled deflection angle that is the gradient of a
scalar function called the lens (or deflection) potential:

a(0) = Vy(0). 2)

In terms of the dimensionless surface mass density, denoted by «(8),
the lens potential is

v(0) = l/ d*60’k(0")In |6 — 0’| 3)
"2

T

The time delay function relative to the case of no lensing is

1 Dy4D 0 — B)?
nam=;7%4uﬁoF—%2

- 10(9)} ; (C))
where Dy, D and Dy are, respectively, the angular diameter dis-
tance from us to the lens, from us to the source and from the lens to
the source.

The constant coefficient in equation (4) is proportional to the
angular diameter distance and hence inversely proportional to the
Hubble constant in a flat Lambda cold dark matter (ACDM) uni-
verse. Therefore, by measuring the relative time delays between the
various images, we can in principle deduce the value of the Hubble
constant if we know the source position (3) and the lens potential

[ (O)].

To characterize the magnifications of images in gravitational lens-
ing, a Hessian is used

B
AO) = —. 5
) 50 &)
Using the lens equation (1), the above equation can be written as
=90 —v12(0)
A) = , 6
@O=1 yu®) 1-v20) ©

where the subscript 1 (or 2) in i indicates a derivative with respect
to 0 (or 6,). The magnification matrix is defined as u = A~! and
the associated magnification factor is

wo) = )

detA(0)’
According to equation (7), the positions 8 with det A(@) = 0 have
divergent magnification; the loci of such points on the image plane
define the critical curves. Using the lens equation (1), critical curves
on the image plane are mapped to caustic curves (or simply caustics)
on the source plane. The caustic curves separate regions of different
image multiplicities.

2.2 Gravitational lens B1608-+656

To investigate the anatomy of the quad B1608+656, we use the
mass distribution model proposed by Koopmans et al. (2003). The
parametric form of the dimensionless surface mass density for each
of the two lens galaxies is a singular power-law ellipsoid:

1=y
21 2
2 Ggalz
K(egall s egalz) =b egah + s (8)
qi
where (6 44, , 0 4a1,) are coordinates relative to the galaxy centre and
b, q; and y' are parameters to fit the data. The origin of coordinate 6
is set at the position of image A. Each of the lens galaxies is centred
at the coordinates (6,1, 6;) and is rotated by a major-axis position
angle Op, that is measured from north to east (top to left). There
is an additional external shear centred on G1 whose contribution to
the lensing potential, in polar coordinates relative to the shear centre
[(r, @) with B4, = r cos(¢) and O, = r sin(¢)], is

1
Wexl(osh) = Eyexlrz COS(2¢)’ (9)

where y .y is a parameter characterizing the shear strength. The
rotation of the external shear is given by the position angle .y. We
adopt the parameter values of the SPLE1+D(isotropic) model in
Koopmans et al. (2003) and list them in Table 1.

Table 1. Values for parameters in equations (8) and (9) for the B1608+656
SPLE1+D(isotropic) model in Koopmans et al. (2003).

Lens galaxy Gl G2
b 0.526 0.269
q 0.604 0.318
y' 2.05 2.12
Centroid (01, 012) (0.425, —1.069) (—0.291, —0.928)
Position angle 6pa (°) 77.0 68.4
Y ext 0.077
Shear position angle 6 ¢x; (°) 134

© 2005 The Authors. Journal compilation © 2005 RAS, MNRAS 366, 39-48
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Figure 2. Left-hand panel: source is near the centre within the astroid caustic of the B1608+656 SPLE1+D(isotropic) model in Koopmans et al. (2003).
Middle panel: the corresponding five images (A, B, C, D and E), the lens galaxy positions (G1 and G2) indicated by open triangles, and the critical curves.
Right-hand panel: crucial time delay contours for demonstrating Fermat’s principle. The time delay at each image position is a minimum (L for ‘low’) or a
saddle (S). The scales on the source plane and image plane are different due to magnification of the images.

2.2.1 Critical and caustic curves

The critical curves on the image plane and the caustic curves on the
source plane of the SPLE1+4D(isotropic) model in Koopmans et al.
(2003) are shown in Fig. 2 in the middle panel and the left-hand
panel, respectively. The locations of the lens galaxies are indicated
by open triangles on the image plane. The marked source and image
locations will be discussed in the next section. With the two elliptical
lens galaxies, the large critical curve loop is a deformed version of an
elliptical curve of one singular power-law ellipsoid (equation 8). The
corresponding diamond shaped caustic curve, known as an astroid,
is typical for elliptical mass distributions. An astroid is composed
of four folds (branches of smooth curves) joining at four cusps. An
individual power-law ellipsoid has an astroid that is symmetrical
with respect to the semimajor and semiminor axis of the lens. With
the two lens galaxies in the SPLE1+4D(isotropic) model, we have
an asymmetry in the astroid and two additional small triangular
caustics, called the deltoids, that map into the small loops on the
image plane.

2.2.2 Image positions and time delay surface

It is instructive to see how the images move on the image plane as
the source is displaced. Understanding such movements is important
for analysing quads and for defining the limit curves in the next sec-
tion. Fig. 2 shows the locations of the images, labelled by A, B, C,D
and E (middle panel), when the source is at the centre of the astroid
caustic (left-hand panel). Despite having five images, the system
is called a quad because the central image is usually de-magnified
and lies near the lens galaxies, making it nearly observationally
invisible.? The arrival time delay contours in the right-hand panel
show that the image locations are at the time delay extrema or sad-
dles, except for the extrema where the surface mass densities are
non-smooth (Kochanek et al. 2004). At the centroids of G1 and G2
whose locations are given in Table 1, the time delay achieves local
maxima, but there are no corresponding images because the sur-
face mass densities are singular at the galaxy centroids in the model
described by equation (8). Ignoring the central image (E, which is
finitely de-magnified), the two images (C and D) inside the critical
curve are time delay saddles, and the two images (A and B) outside
the critical curve are time delay minima. This is true in general for
quads.

2'We refer the reader to Winn, Rusin & ‘Wambsganss (2004) for candidates
of central image detections in gravitational lens systems.

© 2005 The Authors. Journal compilation © 2005 RAS, MNRAS 366, 39-48

Fig. 3 shows the image locations and the time delay contours as
the source moves across a fold from within the caustic. As the source
approaches a fold, two of the images (B and C for the upper fold of
interest) that are separated by the critical curve come together. When
the source is on the fold, the two images merge to become one at the
corresponding point on the critical curve. Finally, when the source
moves across the fold, the merged image disappears. The merging
and disappearance of the two images can be explained by using
the lemniscate time delay contour (the saddle with two minima) in
the right-hand panels. When the source approaches a fold, the time
delay saddle of the lemniscate joins with one of its two associated
local minima; after the source crosses the fold, only one time delay
minimum remains.

Fig. 4 shows the image locations and the arrival time delay con-
tours as the source moves from within the astroid caustic across a
cusp in a direction that is roughly along the semimajor axis of the
lens distribution. As the source approaches the cusp, three of the
images (A, B and C in this case) come together. Two images (A and
B) are outside and one image (C) is inside the critical curve. When
the source is on the cusp, the three images become one on the critical
curve. Finally, when the source moves across the cusp, one image
remains outside the critical curve. (We label the remaining image
by the one that comes alphabetically first among the three merging
images.) The time delay contours in the right-hand panels depict
this behaviour: the time delay saddle of a lemniscate merges simul-
taneously with both of its two minima and leaves a single minimum
in the end.

Fig. 5 is similar to Fig. 4 but with the source displacing towards
a cusp that is roughly along the semiminor axis of lens distribution.
The three merging images now have one image (B) outside and two
images (C and D) inside the critical curve (shown in middle panels).
In terms of the time delay contours (right-hand panels), this corre-
sponds to the simultaneous merging of the saddle of the lemniscate
with one of its minima and with the saddle of the enclosing limagon,
leaving only the limagon saddle in the end.

2.2.3 Inner and outer limits

The movements of the image locations shown in Figs 2—5 allow us to
define limit curves (Blandford & Narayan 1986). Consider moving a
hypothetical point source on the caustic curve. As the source traces
around the folds of the caustic, the two non-merging images trace out
the limit curves. For the astroid, the non-merging image inside the
critical curve is on the inner limit and the image outside the critical
curve is on the outer limit. For the deltoids, both non-merging images
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Figure 3. Left-hand panels: source position displaced across a fold from inside (top) to outside (bottom) of the astroid caustic curve of B1608+656
SPLE1+D(isotropic) model. Middle panels: image positions (A, B, C, D and E) corresponding to the source positions shown in the left-hand panels, lens

galaxy positions (G1 and G2) indicated by open triangles, and the critical curves. Right-hand panels: corresponding time delay contours. Letter L (for low) or
S at each image location represents a time delay minimum or saddle, respectively.
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Figure 4. Left-hand panels: source position displaced across a cusp approximately along the semimajor axis from inside (top) to outside (bottom) of the
astroid caustic curve of B1608+656 SPLE1+D(isotropic) model. Middle panels: image positions (A, B, C, D and E) corresponding to the source positions
shown in the left-hand panels, lens galaxy positions (G1 and G2) indicated by open triangles and the critical curves. Right-hand panels: corresponding time
delay contours. Letter L (for low) or S at each image location represents a time delay minimum or saddle, respectively.

are outside the corresponding critical curves. The deltoids thus have
only outer limits composed of two images and no inner limits. Fig. 6
is the plot of the limit curves for the SPLE1+4D(isotropic) model
in Koopmans et al. (2003). The inner and outer limit for the astroid
are shown in green and orange, respectively. The outer limits for the
deltoids are shown in cyan.

We focus only on the limit curves of the astroid since they are
typical for elliptical lens mass distributions. Both the inner and the

outer limits are tangent to the critical curve twice, corresponding to
source placement at the cusps of the caustic. The limit curves mark
the boundary of the region containing four images.

2.2.4 Isophotal separatrices

An isophote is an intensity contour. We assume the source inten-
sity distribution has a single maximum with nested, non-crossing

© 2005 The Authors. Journal compilation © 2005 RAS, MNRAS 366, 39-48
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Figure 5. Left-hand panels: source position displaced across a cusp approximately along the semiminor axis from inside (top) to outside (bottom) of the
astroid caustic curve of B16084-656 SPLE14-D(isotropic) model. Middle panels: image positions (A, B, C, D and E) corresponding to the source positions
shown in the left-hand panels, lens galaxy positions (G1 and G2) indicated by open triangles and the critical curves. Right-hand panels: corresponding time
delay contours. Letter L (for low) or S at each image location represents a time delay minimum or saddle, respectively.
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Figure 6. The limit curves are plotted with the critical curves (in black) for
the SPLE1+D(isotropic) model of B1608+656. The orange (green) curve
is the outer (inner) limit associated with the astroid. The limit curves are
each tangent to the critical curve of the astroid twice. The cyan curves are
the outer limits of the deltoids.

contours. An isophotal separatrix on the image plane corresponds
to a source intensity contour that is tangent to the caustic curve. The
isophotes must cross at the critical curve and be tangent to the limit
curves as we explain below.

© 2005 The Authors. Journal compilation © 2005 RAS, MNRAS 366, 39-48

Consider an extended elliptical source intensity distribution cen-
tred at (851, Bs2) = (0.088, —1.069) with an axis ratio of 0.634
and a semimajor axis position angle of 22°1.% The left-hand panel in
Fig.7 shows four coloured intensity contours of the extended source.
The two intermediate isophotes are very close together (light blue
and dark blue). The right-hand panel in Fig. 7 shows the mapped
isophotes (same colours) with the critical curves (black) and limit
curves (red). Each coloured set of isophotes must intersect at the
critical curve and be tangent to the inner and outer limit. This is
most clearly shown by the purple isophotes that consist of a lemnis-
cate (separatrix) with two elliptical satellite isophotes on the image
plane. The lemniscate isophote must cross at the critical curve, and
the two satellite isophotes must each be tangent to either the inner
or the outer limit.

To explain the crossing and tangency conditions, let us consider
the purple isophotes in detail. The crossing point of the lemniscate
on the critical curve corresponds to the tangency point of the source
isophote to the astroid caustic curve. Recall from Section 2.2.2 that
two of the four images of a hypothetical point source merge on
the critical curve as the source moves across the fold from within.
Therefore, a segment of the source isophote to either side of the
caustic tangency point will map to two segments on the image plane,
one inside and one outside the critical curve, that connect at the
critical curve. The entire source isophote that is within the caustic
will thus correspond to a lemniscate crossing the critical curve on
the image plane with one lobe inside and one lobe outside the critical
curve. The tangencies of the image isophotes to the limit curves can
be understood on the basis of the definition of limit curves, which
are the inner and outer boundaries of the four-image region that are

3 This source model differs from the Koopmans et al. (2003) source model
in the position angle, but the difference is irrelevant for the purpose of de-
scribing isophotal separatrices.
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Figure 7. Left-hand panel: four isophotes (in colours) of an extended source intensity distribution that are tangent to the astroid caustic curve (black). Right-
hand panel: the mapping of the isophotes in the left-hand panel with the critical curve (black) and limit curves (red). These isophotes must cross at the critical

curve and their satellite isophotes must be tangent to the limit curves.

marked by the two non-merging images as a hypothetical source
traces around the caustic. The two satellite isophotes correspond to
image isophotes traced by the two non-merging images that must
touch the inner and outer limits when the source isophote is tangent
to the caustic. Since the inner and outer limits are the four-image
boundaries, the touchings of the satellite isophotes to the limit curves
become tangencies. Similar reasoning applies to the crossings and
tangencies of the other three sets of isophotes.

The crossing of the isophotes at the critical curves and the tan-
gency of the isophotes to the limit curves provide qualitative tests
on how good a lens model is.

2.2.5 Observational data

We use the result of Section 2.2.4 to qualitatively test the
SPLE1+D(isotropic) model in Koopmans et al. (2003) by super-
imposing the critical and limit curves of the model on the intensity
contours of the observational data. Fig. 8 shows the isophotal sepa-
ratrices (in black in various line styles) of the deconvolved residual
HST/F814W image of B1608+656 (Koopmans et al. 2003) with
the critical curves (red) and limit curves (green, orange, cyan). We
check the crossing and tangency conditions for each of the four sets
of isophotal separatrices, using Fig. 7 as a guide for the approximate
crossing and tangency locations. For the dashed isophotes, the con-
ditions for the crossing of the separatrix at the critical curve and the
tangency to the limit curves are violated. For the solid isophotes,
the crossing at (0, 8;) ~ (—0.8, —1.1) is not at the critical curve, but
the tangency requirements at ~(0.9, —1.4) and ~(0.4, 0.3) are satis-
fied within the noise. For the dotted isophotes, the crossing at ~(0.7,
—1.9) is at the critical curve within the noise, but the isophotes near
~(—0.5, —0.9) and ~(1.1, 0.2) are not tangent to the limit curves.
Finally, for the long-dashed isophotes, the crossing at ~(1.3, —0.6)
is on the critical curve, and the isophotes near ~(—0.5, —0.6) and
(—0.3, —2.4) are tangent to the limit curves, within the noise. There-
fore, the SPLE1+4D(isotropic) model proposed by Koopmans et al.
(2003) satisfies the crossing and tangency conditions stated in Sec-
tion 2.2.4 for some, but not all, of the isophotal separatrices. As a
result, the model proposed by Koopmans et al. (2003) must not rep-
resent the true lens potential of the system, especially in the regions
where the crossings and tangencies fail. Recall that we need an ac-
curate model of the lens potential to calculate the Hubble constant.
In the next section, we examine a method of potential correction.

"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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Figure 8. The deconvolved residual HST/F814W image of B1608+656
(Koopmans et al. 2003). The isophotal separatrices (in black in various line
styles) are shown with the critical curves (red) and limit curves (green,
orange and cyan) of the SPLE1+D(isotropic) model in Koopmans et al.
(2003). Some of the isophotal separatrices are not intersecting at the critical
curve of the model and some of the satellite isophotes are not tangent to the
limit curves of the model.

3 POTENTIAL RECONSTRUCTION

3.1 Theory of potential reconstruction

The method of potential reconstruction was first suggested by
Blandford et al. (2001). Following the notation in Section 2.1, let
1(0) be the observed image intensity of a gravitational lens system
with an extended source. For a given potential model, ¥ (6), one can
obtain the best-fitting source intensity distribution (Warren & Dye
2003). Let 1(3) be the source intensity translated to the image plane
via the potential model, 1/ (8). We define the intensity deficit on the

© 2005 The Authors. Journal compilation © 2005 RAS, MNRAS 366, 39-48
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image plane by
81(0) = 1(0) — I(B). (10)

The intensity deficit is zero everywhere with the true lens potential
distribution.

Consider a lens potential model that is perturbed from the true
potential, ¥(0), by §v(0):

V(0) = ¥0(0) + 5v/(6). an

We can correct the potential model perturbatively by solving for the
perturbation §/(@). For a given image [fixed 8 and 1(0)], we can
relate a change in position on the source plane, §3, to the potential
perturbation using the lens equation (1):

5y (0
L]

Expanding 7(3) to first order in §3 and using equation (12) in
equation (10), we obtain

_3I(B) 58 = AI(B) 95y(0)
FYe] Y 00

The source intensity gradient %ﬂﬁ) implicitly depends on the poten-

tial model /(@) since the source position 3 (where the gradient is
evaluated) is related to yr(0) via the lens equation (1). To first order,
using the perturbed model ¥ (0) is equivalent to using the true model
¥ o(0) in the evaluation of the source intensity gradient %‘3)

We can solve equation (13) for the potential correction, §v/(6),
provided that we start at a potential model that is close to the true
potential. (We quantify what ‘close’ means in the next section.) One
method to solve for the potential correction is to integrate along the
characteristics of the partial differential equation (13). The solution
is

12)

81(0) = (13)

6
46, 51()
Y (0) = 31//(9A)+/ TG (14)
04 ’T
where
do, = (d6? +d62)'"” (15)

2 2
B | _ 31(B) + 91(B) (16)
s ap B )’
and 6 is an arbitrary reference point that is conveniently chosen to
be at the location of one of the images, say A. (The reference point
is arbitrary because the potential is determined up to a constant.)

The characteristic curves, on which we must integrate to obtain the
potential correction, are given by curves that satisfy

do,  91/0p
do, ~ 9I1/8B,

Each point on a characteristic curve thus follows the source intensity
gradient (evaluated at the corresponding source location given by the
lens equation 1) that is directly translated to the image plane without
distortions via the magnification matrix. Due to the direct transla-
tion of the source intensity gradient, the characteristic curves differ
from the curves on the image plane that map to the source intensity
gradient curves. The structure of the characteristic curves allows us
to determine whether the potential solution given by equation (14)
is unique. This is demonstrated in the next section.

‘We can repeat the process for a perturbative and iterative potential
reconstruction method. We expect the potential to be closer to the

an
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true potential after each iteration, which is indicated by a decrease
in the magnitude of the intensity deficit.

The potential reconstruction method is non-parametric. We can
pixellate the potential distribution to match the observed image
pixellation, and the potential correction at each pixel is given by
equation (14).

To summarize, the four steps for the method are as follows. (i)
Start with a potential model close to the true potential, (ii) calcu-
late the intensity deficit (equation 10) of each pixel, (iii) calculate
the potential correction of each pixel (equation 14) by integrating
along the characteristics (equation 17) and (iv) obtain the corrected
potential and repeat the process [Steps (ii)—(iv)] until the intensity
deficit approaches zero. In the next section, we examine a quadruply
imaged toy model to test the method of potential reconstruction.

3.2 Example toy model

To demonstrate the method of potential reconstruction discussed in
the previous section, we consider a toy model with a simple lens
potential that produces a quad like B1608+656.

The toy system has a non-singular isothermal ellipsoid lens whose
potential takes the form

Vo(6y, 62) = (67 +262 +0.1) ", (18)

We take the perturbed potential to be the original potential that is
rotated clockwise by 121. The source intensity distribution has ellip-
tical contours with axis ratio of 0.634 and position angle of 147°2.
The source nucleus is located at (B, Bs2) = (0.1, 0.05) and has an
intensity peak of 100, in arbitrary units. We assume that the data
are perfect with no noise, but we discretize the image plane region
[—2, 2]x[—2, 2] into a 201x201 grid in order to correct for the
perturbation of every pixel. In Fig. 9, the left-hand panel shows
the caustic curves (dashed) of the original potential and the source
intensity contours (dotted), and the right-hand panel shows the cor-
responding critical curves (dashed) and image intensity contours
(dotted). Analogous to B1608+656, there is an astroid caustic in
the left-hand panel. The additional elliptical caustic curve is due to
the non-singular nature of the lens potential. Different regions sep-
arated by the caustic curves have different image multiplicities. In
the enclosed region intersected by the astroid and elliptical caustic
curves, a source has five images on the image plane. In the region
within the caustic curves excluding the intersection, a source has
three images. In the region outside the caustic curves, a source has
one image. The astroid caustic is mapped to the outer critical curve
and the elliptical caustic is mapped to the inner critical curve. As for
B16084-656, we focus on the astroid caustic and the outer critical
curve. Among the isophotes in the right-hand panel, the four isopho-
tal separatrices that are shown match to the four isophotes tangent
to the astroid caustic in the left-hand panel. The separatrices inter-
sect at the outer critical curve, as required (Section 2.2.4). Fig. 10
shows the arrival time delay contour of the source nucleus of the
toy model. The quad has similar time delay extrema (two saddles
within the critical curve and two minima outside the critical curve)
to the SPLE1+4-D(isotropic) model of B1608+4-656.

We simplify the potential correction method by using the origi-
nal source intensity distribution and the characteristic fields of the
original potential (instead of reconstructing from the perturbed po-
tential). In reality, we would have to use the reconstructed source
(Warren & Dye 2003) and the characteristic fields of the perturbed
potential. This would involve simultaneous determinations of the
source and lens potential distributions and the investigation of the
partial degeneracy between them, which are beyond the scope of this
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Figure 9. Left-hand side: the caustic curve (dashed) of the original toy potential model with the intensity contours (dotted) of the source. Four of the intensity
contours are tangent to the caustic curves. The four mappings of the connecting characteristics (solid) are each tangent to the caustics. Right-hand side: the
critical curves (dashed) of the original toy potential model and the image intensity contours (dotted), four of which are isophotal separatrices intersecting at the
outer critical curve. The four connecting characteristics (solid) between the four images each cross the outer critical curve once.
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Figure 10. The time delay contour associated with the source nuclear posi-
tion of the toy model. The image locations of the source nucleus (see Fig. 9
right-hand panel) are at time delay saddles (S), minima (L) or maxima (H).

paper. We use the simplifying assumptions on the source intensity
and characteristic curves as the first step to testing the method of
potential reconstruction via integration along characteristics. Only
if the method works robustly in this simplified regime is the consid-
eration of the more general problem relevant.

Fig. 11 shows the characteristic field given by equation (17). The
field has ‘attractors’ (where field lines come together) and ‘repellors’
(where field lines curve away) at the image locations of the source
nucleus. Using equation (4) and noting that the Jacobian matrix of
T(0, B) with respect to 0 is equivalent to A in equation (5) up to a
constant coefficient, one can show that the attractors (or repellors)
are associated to time delay minima/maxima (or saddles) for a source

Figure11. The characteristic fields of the toy potential model. The attractors
are associated with images that are time delay minima/maxima and the
repellors are associated with time delay saddles.

distribution that has non-crossing intensity contours. A comparison
between Figs 10 and 11 confirms this fact.

We need to follow along the characteristics to correct for the
potential perturbation given by equation (14). In Fig. 11, almost
all of the characteristic curves end at one of the three attractors;
but there are special characteristic curves that connect the attractors
and repellors. These four connecting characteristics between the
four images (excluding the central image), shown in the right-hand
panel of Fig. 9 in solid lines, allow us to fix the potential offsets
between the images and hence uniquely determine the potential up
to a constant. The left-hand panel of Fig. 9 shows the mapping
of these connecting characteristics on to the source plane (solid
lines). As one may expect, the mapping of each of the connecting
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Figure 12. Top row, left- to right-hand side: the intensity deficit before potential correction, after one iteration and after two iterations of potential correction.
The maximum initial intensity deficit (top left-hand side) is 14 near the image positions (the peak nuclear source intensity is 100). Bottom row, left- to right-hand
side: potential perturbation before correction, after one iteration and after two iterations of correction. The initial potential perturbation magnitude (bottom
left-hand side) is on average around 0.5 per cent of the original potential. Since the potential is determined up to an arbitrary constant, the potential perturbation
is plotted with respect to the mean to enhance small-scale features. The plotting scales of the middle and right-hand panels (after corrections) are the same as

the left-hand panels (before corrections) for comparison.

characteristics between an attractor and a repellor is a loop on the
source plane that is tangent to the astroid caustic curve due to the
connecting characteristics intersecting the outer critical curve.

In addition to the characteristic curves, the intensity deficit is
required for potential correction in equation (14). To get the intensity
deficit defined in equation (10) for the pixels on the image plane,
first we use the perturbed potential model, the lens equation (1),
and the original source intensity distribution to get 7(3), then we
subtract it from 7(0) obtained from the original potential. Fig. 12
shows the initial intensity deficit and the initial potential perturbation
[6v(0) in equation 11] before the perturbative and iterative potential
correction, in the top and bottom left-hand panels, respectively. We
use plots of §y(0) to check that the perturbation approaches zero
after corrections.

In each potential reconstruction iteration, we use the current per-
turbed potential model to obtain the intensity deficit [§7(0)] and
the source intensity gradient [| %ﬁﬂ) |1 at every pixel on the image
plane; we then use equation (14) to correct the perturbed potential
by integrating along the characteristic curves of the original poten-
tial model. Two iterations are performed and the resulting intensity
deficit and potential perturbation after each iteration are shown in
Fig. 12. The middle and right-hand panels show the intensity deficit
(potential perturbation) in the top (bottom) after one and two iter-
ations, respectively. The middle and right-hand panels are plotted
on the same scales as that in the left-hand panels. Comparing the
right-hand panels to the left-hand panels, the intensity deficit and
potential perturbation converge to zero after two iterations (apart
from numerical error), signifying that the method of potential re-
construction along characteristics works in theory with perfect data.

A possible limitation of this method is that the intensity deficit
needs to be zero at the image locations; otherwise, according to
equation (14), the integrand diverges at the image locations, which
are the end points of integration. For the above example, we are
saved from this divergence by discretizing the image plane and thus
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only reaching the image points within some tolerance, but never
ending at the image (divergent) points. The potential correction is
most significant near the image points for any non-zero intensity
deficit in the region. Therefore, integrating along the characteristics
may place limitations on the magnitude of potential perturbation
that we can correct, which we discuss in the next section.

This method of potential reconstruction works only for small po-
tential perturbations like the example we considered where the per-
turbation magnitude is on average (over the image grid) 0.5 per cent
of the original potential. By increasing the rotation of the original
potential distribution to get the perturbed potential (i.e. increasing
the perturbation), we require more iterations for convergence, as
expected. When the rotation of the original potential gets to ~425,
which corresponds to an average potential perturbation magnitude of
~1.5 per cent, the method ceases to converge. Therefore, the method
of potential correction by integrating equation (14) along character-
istics works in theory with perfect data with a small (<1 per cent)
potential model error. Unless a better algorithm is found for treating
larger potential perturbation and real data with noise, the method
proposed by Blandford et al. (2001) will not in practice be useful.

The example toy model considered provides a practical insight
into the theory of potential reconstruction. In reality, we do not have
useful data everywhere due to the presence of noise; for an extended
source, we can observe emission in an Einstein ring connecting the
four images. Based on the analysis of this section, the Einstein ring
must be large enough to enclose the connecting characteristics in
order to obtain proper potential offsets between the images. This
condition must hold for any potential reconstruction algorithm based
on equation (13).

4 CONCLUSIONS AND FURTHER WORK

We have considered the gravitational lens system B1608+656 to
investigate the properties of quads. We have defined limit curves
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as the loci of non-merging images as the source traces the caustic
curve. For the typical astroid caustic curve of a quad, there are inner
and outer limits (relative to the critical curve) that are each tangent
to the critical curve twice. We have shown that isophotes that are
tangent to the astroid caustic curve on the source plane map to
isophotal separatrices on the image plane. These separatrices must
intersect on the critical curve and their associated satellite isophotes
must be tangent to the limit curves. We have shown that the current
model proposed by Koopmans et al. (2003) for B1608+4-656 does
not satisfy these qualitative constraints for some of the isophotal
separatrices.

We have investigated a perturbative and iterative method of poten-
tial reconstruction proposed by Blandford et al. (2001). The method
requires solving a partial differential equation for the potential cor-
rection, which we have done by integrating along the characteristic
curves. We have used a toy model that is a quad like B1608+656
to test the method, assuming perfect data. For small perturbations
whose magnitudes are on average <1 per cent of the original poten-
tial, the method has worked and we have had the perturbed potential
converging to the true potential. However, the method has failed
to converge when the perturbation magnitude increases to around
1.5 per cent of the original potential. This may be due to the non-
zero intensity deficit near the image locations which restricts the
integration along characteristics. We hope to use the knowledge we
have acquired about the anatomy of the quads and the characteris-
tic fields of the potential correction equation to find a more robust
method of potential correction that can be applied to real data with
noise.
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