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Abstract-By the method of amplitude-phase decorrelation, the fun- 
damental intensity noise floor of semiconductor laser light can be re- 
duced over a wide bandwidth by the ratio 1 / (  1 + o*), where 01 is the 
linewidth enhancement factor. The method uses a dispersive element 
to convert phase noise into intensity noise. We recently demonstrated 
this technique by reducing intensity noise from a DFB laser as much 
as 7 dB below its intrinsic level [l], [2]. In this paper, we extend these 
results by characterizing the frequency dependence of the noise reduc- 
tion. Optimum reduction is achieved in the flat region of the spectrum 
and diminishes at higher frequencies approaching the relaxation res- 
onance. The correlation properties of the fluctuations are also inves- 
tigated. The cross-spectral density of the fluctuations shows they are 
decorrelated when noise is maximally reduced. Parallels between this 
technique and "detuned loading" 1171 will also be established. 

I. INTRODUCTION 
HE linewidth enhancement factor, or a parameter, has been T studied extensively in research on semiconductor lasers. 

This parameter governs many of the important features of semi- 
conductor laser dynamics, among them enhanced linewidth [3] 
and frequency chirping under direct modulation (dynamic line 
broadening) [4], [ 5 ] .  In a semiconductor laser, the resonant re- 
fractive index and the gain are functions of carrier concentra- 
tion. The amplitude and phase of the lasing field are therefore 
strongly coupled through the carrier density in the active me- 
dium. The a parameter is simply a measure of the coupling 
strength. However, the coupling is not symmetric. Field am- 
plitude fluctuations are coupled into phase fluctuations, but not 
the reverse. With regard to laser noise, this enhances the phase 
noise (i.e., linewidth), but the intensity noise level is unaf- 
fected. Nevertheless, because of the inherent correlation be- 
tween the fluctuations, an image of the intensity noise lies in 
the phase noise. We propose that this image can be recovered 
from the phase fluctuations and used to reduce the intensity noise 
far below its intrinsic level. When the intensity noise is maxi- 
mally reduced, the amplitude and phase fluctuations become de- 
correlated. 

We present a theoretical discussion of two methods to achieve 
intensity noise reduction. The first approach employs a passive 
element with a frequency-dependent transmission which is ex- 
ternal to the laser cavity. Light from the free-running laser is 
passively processed by the transmission function, and a large 
reduction in intensity noise results. Recently, we demonstrated 
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this approach by reducing the intensity noise level from a DFB 
laser by 7 dB [l] ,  [2]. The theoretical basis of the idea was 
outlined, and the effect of a power independent component of 
laser linewidth on the noise reduction was also considered. In 
this paper, we review the previous results for completeness, and 
add to them by investigating the spectrum of noise reduction, 
as well as the correlation properties of the transformed field 
fluctuations. We also describe a second approach, whereby a 
frequency-dependent loss is placed inside the laser cavity. The 
effects due to such a dispersive intracavity loss have been con- 
sidered previously in the context of detuned loading [17], but 
application to intensity noise reduction was not developed. Both 
methods can potentially reduce the fundamental intensity noise 
floor by the factor 1 /( 1 + a ' ) ,  well over an order of magnitude 
for typical values of a.  Finally, results of the experiment which 
verify the first approach are discussed. 

11. SEMICONDUCTOR LASER NOISE 

In this section we outline the main features of intrinsic noise 
in semiconductor lasers which will be important for later dis- 
cussion of noise reduction. A semiclassical description of the 
field fluctuations incorporating Langevin noise sources will be 
used to derive the relevant noise spectra and their dependence 
on laser power. At the center of this discussion is the a param- 
eter, which determines the coupling between amplitude and 
phase fluctuations in the field. Ultimately, we will show that 
this coupling can be used to reduce the intensity noise far below 
its intrinsic level. 

The electric field from a single-mode laser can be described 
as follows: 

~ ( t )  = m e r ( W ' r + q ( f J '  (1) 

where p o  is the average photon density in the lasing mode, p ( t )  
is the fluctuating part of the photon density, wL is the CW os- 
cillation frequency, and cp ( t )  is the fluctuating phase deviation. 
When p ( t )  / p ,  << 1 the field can be represented in terms of a 
dimensionless fluctuating amplitude 

where p ( t )  = p ( t )  / 2 p , .  As depicted in the intuitive model of 
Henry [6], the fluctuations arise from spontaneous emission 
which randomly perturbs the amplitude and phase of the field 
phasor. Since a semiconductor laser operates as a detuned os- 
cillator (i.e., the gain peak lies at a frequency different from the 
zero dispersion point of the resonant refractive index) the am- 
plitude fluctuations cause enhanced phase fluctuations by mod- 
ulating the camer-density-dependent refractive index of the gain 
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medium. This phase noise enhancement is measured by the a 
parameter, given in terms of the real and imaginary parts of the 
complex susceptibility function as 

( 3 )  

where n is the camer density. As defined, a is a negative num- 
ber. For DFB semiconductor lasers, a may range from - 2  to 
- 7 depending on device design [ 7 ] .  

Each of the quantities p ( t ) ,  cp ( t ) ,  and n ( t ) ,  the deviation of 
camer density from the steady-state value, evolves according 
to the small-signal rate equations 

p ( t )  = G ’ n / 2  + AR (4a) 

where G is the optical gain, G’ is the derivative of gain with 
respect to camer density, rR is the relaxation oscillation damp- 
ing time, and AR and A, are real and imaginary parts of the 
Langevin force accounting for spontaneous emission into the 
lasing mode [8]. We omit a noise term in the camer density 
equation because it has a negligible effect on the dynamics of 
p ( t )  and cp ( t )  at low frequencies where gain clamping is op- 
erative [ 9 ] .  The Langevin forcing terms are assumed to come 
from a zero-mean Gaussian probability distribution and have 
the correlation relations [ 101 
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where S is the spontaneous emission rate into the lasing mode, 
P is the average photon number in the mode, and 6 ( 7 )  is the 
Dirac delta function. The angle brackets denote ensemble av- 
eraging. By Fourier transforming the above rate equations with 
respect to frequency 0, the dynamics of n can be absorbed into 
equations for p and +, the instantaneous frequency deviation, 
to obtain the fluctuation spectra 

1 
- + i0 

(6b) 
a& 

(U: - 0’) + - 
+(0) = A, + i~ A R .  

TR 

Here, GG’p, has been replaced by U:, the relaxation oscillation 
frequency. By- Parseval’s theorem, the transformed Langevin 
terms AR and A, are delta correlated in frequency with the same 
normalizations as given in (5). 

Equations (6a) and (6b) will provide the foundation for the 
following discussion of noise reduction. In these equations, the 
role of a is seen more clearly as providing the coupling of am- 
plitude fluctuations into instantaneous frequency fluctuations. It 
should be emphasized that this is a one-way coupling, from p 
to +. The amplitude fluctuation spectrum is thus not affected by 
gain spectrum detuning and the (Y parameter. 

One consequence of a nonzero a, however, is enhancement 
of the fundamental linewidth over its Schawlow-Townes value. 
Using the low frequency limit of (6b), one finds that the power 
spectrum of the field is a Lorentzian with a linewidth [6] 

AU = AuST(1 + a’) ( 7 )  

where 

S 
AuST = - 

2 P  

is the modified Schawlow-Townes linewidth. In the ideal case, 
linewidth is inversely proportional to laser power. However, at 
high power, it is often observed that the linewidth reaches a 
constant value and thereafter remains independent of power. To 
account for this extra component of linewidth, a power-inde- 
pendent term will be added to (7), so that 

AU = AwST(l  + a’) + Aw,. ( 9 )  

The origin of this extraneous linewidth is not known, but sev- 
eral potential mechanisms have been discussed in the literature. 
These include carrier number fluctuations [ 1 1 1 ,  thermal fluctua- 
tions [ 121, and spatial hole burning [ 131. In any case, the ex- 
istence of a power-independent source of linewidth can be 
incorporated into the instantaneous frequency flucLuation spec- 
trum by adding a phenomenological noise source A”, such that 
Aw, is the spectral density of A<,. Equation (6b) then becomes 

It is assumed that 6, is uncorrelated with the other Langevin 
source arising from spontaneous emission. The presence of this 
term will later illustrate how an independent source of linewidth 
influences our ability to reduce intensity noise. 

For a directly detected field, the relative intensity noise (RIN) 
is defined as the ratio of the mean square power per unit band- 
width of the fluctuating photocurrent to the average photocur- 
rent power. By this definition, the RIN spectrum is directly 
proportional to the spectral density of the amplitude fluctua- 
tions, given by 

Since the proportionality constant is of no consequence when 
direct comparisons of RIN are made, hereafter we will define 
relative intensity noise as 

RIN = W,,,(Q). ( 1 2 )  

The way in which the RIN varies as a function of laser power 
can be divided into two regimes. For the moment, only consider 
fluctuation frequencies 0 << l / r R ,  oR, so that the intensity 
noise has a flat spectrum given by 

At low power, rR is essentially constant while U: is always lin- 
early proportional to P. This characterizes the excess noise re- 
gime, where the RIN falls as 1 / P 3 .  In the high-power limit, 
T ~ U ;  saturates to a constant value, and so the RIN falls as 1 / P ,  
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which is defined as the shot noise regime. In practice, both types 
of behavior can be easily observed by directly detecting the in- 
tensity noise with a photodiode followed by a high-gain ampli- 
fier. 

For the remainder of this paper, we will assume that the laser 
is operating in the excess noise regime when we discuss the 
method of amplitude-phase decorrelation for reducing intensity 
noise in the field. The laser noise is then sufficiently far above 
the level of vacuum field noise that a semiclassical treatment 
can be applied to all aspects of the problem. This is not to say 
that the noise reduction method we propose is invalid for a laser 
operating in the shot noise regime, however. In that case, we 
must address the question of reducing noise below the shot noise 
level, which lies in the realm of squeezed light generation [14]. 
A quantum operator description of the laser field, the vacuum 
fluctuations, and the noise measurement process is then re- 
quired. This treatment will be presented elsewhere [ 151. 

To conclude this section, we note that for a given operating 
point, (1 1) represents the intensity noise floor of the laser field. 
As previously stated, this intrinsic noise level is not a function 
of a. Even so, we demonstrate in the next two sections that the 
amplitude-phase coupling determined by 01 can be used to re- 
duce intensity noise below its fundamental floor. 

111. INTENSITY NOISE REDUCTION WITH A PASSIVE 
EXTERNAL TRANSMISSION FUNCTION 

In this section we discuss a scheme to reduce semiconductor 
laser intensity noise which exploits the fundamental amplitude- 
phase coupling in the field fluctuations [ 11, [2]. The technique 
relies on the observation that although the intensity noise level 
is independent of a ,  the enhanced instantaneous frequency fluc- 
tuations measured by a contain an image of the intensity noise. 
It is this image resulting from the correlation between p (U) and + ( Q )  which can be recovered to reduce the intensity noise be- 
low its intrinsic level. In what follows, we show that an exter- 
nal, passive element with a frequency dependent transmission 
(see Fig. 1) can accomplish this task by transforming the field 
in the desired way. We emphasize that no feedback to the laser 
source is involved in this scheme. The fluctuating field is pas- 
sively processed after leaving the laser cavity. For an ideal laser 
source with no extraneous component of linewidth, the intensity 
noise can potentially be reduced by the amount 1 /( 1 + a'), 
the inverse of the linewidth broadening term. This reduction is 
independent of laser power, and is achieved by altering the cor- 
relation between the fluctuating quantities. We quantify the ef- 
fect of the transmission function on the field's correlation 
properties by calculating the cross-spectral density of the fluc- 
tuations. For the ideal laser mentioned above, maximum inten- 
sity noise reduction will coincide with decorrelation of 
amplitude and instantaneous frequency fluctuations. Even in the 
case of a laser with an extraneous linewidth component, large 
reductions in intensity noise exceeding an order of magnitude 
are possible. The dependence of noise reduction on output 
power will then be discussed. 

A. Transformation of Field Fluctuations 

Before analyzing the noise reduction method quantitatively, 
we can form an intuitive picture of how a frequency-dependent 
transmission function affects the field fluctuations. Suppose that 
we send the radiation through such a function T (  U ) .  The fluc- 
tuations in instantaneous frequency can be viewed as the lasing 
frequency jittering about the lasing linecenter wL. Assuming that 

LASER 

Fig. 1. Free-running laser and passive. external transmission function 
T ( w ) .  The intrinsic intensity noise in the input light can be reduced when 
T (  w )  has the right slope. 

T ( u )  has nonzero slope in the vicinity of wL, the frequency 
jitter is converted into jitter in the transmitted amplitude. Since 
these new amplitude fluctuations are correlated with the intrin- 
sic amplitude fluctuations in the field, they can be made to can- 
cel each other when they are superposed. Thus, the intensity 
noise can potentially be reduced by choosing a proper trans- 
mission function. 

It is straightforward to evaluate the effect of the transmission 
function on the fluctuations [2]. Assume that T ( w )  is slowly 
varying over the range of fluctuation frequencies we are inter- 
ested in. It will be seen that this is an excellent assumption 
when T( U )  is realized by a Michelson interferometer. A Taylor 
expansion of T about the lasing line center is then possible, 
yielding 

T(U,  + Q )  = T(UL)  + Q T ' ( W L )  (14) 

where T' is the derivative of the transmission function with re- 
spect to frequency. In terms of a Fourier component of the input 
and output fields, we then have 

A , ( Q )  = T(UL + Q ) A , ( Q )  

= T ( u L )  A , ( Q )  + n T ' ( q )  A , (Q)  (15)  

where the slowly varying amplitude is defined as 

A ( t )  = [ 1 + p( t ) ]e '@" '  (16)  

so that E ( t )  = A c t ) &  exp ( i u L t )  [see (2)]. By inspection, 
(15) is the Fourier transform of the equation 

A,(t)  = T(u,)  A , ( t )  - i T ' ( w L )  h i ( t )  (17)  

which can be used to derive the effect of T (  w ) on the amplitude 
fluctuations in the output field, with the result, 

= G i ( t )  + T'[+i( t )  - i i i ( t ) ] .  (18) 

Similarly, the derivative with respect to time of (17) in con- 
junction with (18) gives 

+o(t) = +i(t) .  (19) 

Products of small-signal quantities have been neglected in writ- 
ing the above relations. Transforming back, we find 

P , ( Q )  = (Ti? + QTk)p,(Q) + Tk+i(t)  

+ o ( Q )  = ( ; . i (Q) 

(20a) 

( 20b ) 

where the subscript R denotes the real part of T. 
Equation (20a) shows that p,( Q )  is the sum of two parts de- 

pending on both the amplitude fluctuation and instantaneous 
frequency fluctuation of the input field. The inherent correlation 
between pi and 'p i  will enable intensity noise reduction at the 
output by controlling T and T ' .  The instantaneous frequency 
fluctuation of the output field, on the other hand, is not affected 
by the transmission function, as (20b) shows. Thus, we usually 
will not make a distinction between Cpi and +,. 

To account for the fact that T ( w )  attenuates the mean field 
in addition to transforming the fluctuations, we normalize p,, ( Q )  
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by TR and so obtain 

P A Q )  = (1  + Q f ) P , ( Q )  + f c p f ( Q )  (21) 

where f = T k / T R  and will hereafter be referred to as the 
"slope" of T. By making this definition, the RIN spectra of the 
input and output are simply 

RINf = W P , P , ( Q )  

= WP,>@,!( Q ) (22) 
and we see that RIN, -+ RIN, as f + 0, that is, in the limit of 
zero transmission function slope. 

In reality, the factor Qf appearing in the transformation equa- 
tion (21) is usually much smaller than one and can be neglected 
for the range of frequencies and slopes that will be encountered. 
In particular, the results of Section V will show that to achieve 
noise reduction, f will typically be 0.03 GHz-' or less, so Qf 
<< 1 for all frequencies of interest. With this observation, (21) 
becomes 

P J Q )  = P , ( Q )  + E+,(O) (23) 
which is the final transformation equation 

B. Spectral Density of Transformed Fluctuations 
If we assume for now that we have an ideal laser source, that 

is, one without an extraneous linewidth component, then the 
spectral density of the output amplitude fluctuations may be 
computed using (6a) and (6b). 

L J 

This expression simplifies if we restrict our attention to fre- 
quencies Q << l / r R ,  wR, where the RIN spectrum is flat. In 
this case 

and using 

the RIN of the input and output fields may be easily related. 

RIN, = [ ( T R W ; ~ ) ~  + (1  4- (YTRW;~)']RIN;. (27) 

By minimizing this function with respect to f ,  the optimum 
slope is found to be 

which gives the maximum noise reduction 

1 
RIN, = - RIN;. 

1 + a2 

For a typical a! = - 5 ,  the intensity noise floor can be reduced 
below its intrinsic level by a factor of 26. This lower limit on 
noise reduction is governed by the factor ( 1 + a ' ) ,  the same 
factor which enhances the fundamental linewidth of the laser 
over its Schawlow-Townes value. As the slope is changed from 
its optimum value, different amounts of noise reduction (or en- 

-1 5 

-20 " " " " " " " ' 

Normalized Slope 

Fig. 2. Relative level of output intensity noise versus normalized slope. 
For the optimum slope (28), noise is reduced below its intrinsic level by 
1 / (  I + a'), where a = -5 is assumed. This figure characterizes noise 
reduction in the flat part of the intensity noise spectrum. 

- 4  - 3  - 2  - 1  0 1 2 3 4 

hancement) will occur in accordance with (27). This is shown 
in Fig. 2 where the output noise is seen to vary quadratically 
with slope about the minimum. According to (28), the optimum 
slope is a function of rRw; and generally will vary with laser 
bias point. Even so, the maximum reduction (29) remains in- 
dependent of laser power. 

The complete RIN spectrum of the output field is given by 
(24). For a given value of f ,  the amount of noise reduction is a 
function of frequency. Fig. 3 shows the RIN spectrum calcu- 
lated from (24) for several values of transmission slope. Typical 
values for rR (2.6 X lo-'' s/rad) and wR (9.4 x lo9 rad/s) 
characteristic of a DFB laser at low bias are taken from the 
literature [ 161. An a! of -5 is also used. The heavy curve is the 
intrinsic intensity noise level of the input field, corresponding 
to f = 0. When f is at the optimum value given by (28), the 
low-frequency noise is reduced by 1 /( 1 + a')  in accordance 
with (29), but the amount of reduction diminishes at higher fre- 
quencies. If the slope is too large, 3fOpl for this example, then 
the low-frequency noise is enhanced over its intrinsic value, in 
agreement with (27) and Fig. 2. For the range of slopes in the 
figure, the noise level at the resonance is not noticeably af- 
fected. We also notice that the high-frequency noise beyond the 
resonance is enhanced even when the low-frequency noise is 
reduced. This is not surprising because at high frequencies the 
phase noise is dominated by its independent component [ 3, term 
in (6b)l which is being converted to an additive component of 
intensity noise. 

The optimum slope which minimizes the output intensity 
noise at frequency Q is 

-1 a D ( Q )  
= 2 1 + a!'D(Q) 

where 

The variation in optimum slope is shown in Fig. 4 ,  where 
f O p l  ( Q )  is plotted normalized by the optimum low-frequency 
slope fopt  from (28). Noise reduction at higher frequencies 
therefore requires a fairly constant slope as Q approaches wR. 
Beyond the resonance the optimum slope tends to zero, which 
indicates that noise reduction is becoming impossible at these 
high frequencies. 

A plot of the maximum achievable noise reduction versus fre- 
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Fig. 3 .  Output intensity noise spectrum for different slopes calculated from 
(24). The heavy curve is the intrinsic noise level ( (  = 0).  Spectra are 
measured relative to intrinsic noise level at low frequency. Noise is re- 
duced in  flat region by I / (  I + a ? )  when ( = (,,,,. or enhanced ( (  = 
3(,,,,) as slope is varied. High-frequency noise is enhanced for all slopes. 
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Fig. 4.  Left-hand side: maximum intensity noise reduction as a function 
of frequency. Noise is reduced by 1 /( 1 + a 2 j  where the noise spectrum 
is flat. Beyond the resonance, noise cannot be reduced below the intrinsic 
level. Right-hand side: normalized optimum slope to achieve intensity noise 
reduction versus frequency. E,, , ,  ( Q )  tends to zero at high frequency where 
noise reduction is not possible. 

quency also appears in Fig. 4. This function is obtained by eval- 
uating RIN,, (24) at the optimum slope for each frequency (30), 
and is the envelope of minimum noise levels in the progression 
of noise spectra in Fig. 3 .  normalized by the intrinsic noise 
spectrum. This shows how the noise can be reduced by 1 /( 1 
+ a * )  at low frequency, the magnitude of reduction decreases 
as the resonance frequency is approached, and no reduction is 
possible at frequencies beyond the resonance. 

C. Correlation Properties 

To further illustrate the effect of the transmission function 
T (  w )  on the field fluctuations, it is useful to compute the sym- 
metric cross-spectral density of p and Cp, defined as 

This function gives the degree of correlation between the Fou- 
rier components of the field’s intrinsic amplitude and instanta- 
neous frequency fluctuations. For the input field, a logarithmic 
plot of the magnitude of (33) in Fig. 5 shows that there is al- 
ways correlation except in the high-frequency limit, which fits 
with the intuitive model of [6]. Since the fluctuations are cou- 

.fin I 1 .  I -- 
0 01 0.1 1 0  t o  

S?/Z:: (GHz) 

Fig. 5 .  Magnitude of cross-spectral density of p (  0 j and + (  Q )  of the input 
field normalized by low-frequency value, and of the output field (heavy 
curve) for E = (,,p,. showing decorrelation of the fluctuations at low fre- 
quency. The function changes sign after the resonance, appearing as a sharp 
feature of this logarithmic plot. 

pled through perturbations to the carrier density, there cannot 
be any significant correlation at timescales much shorter than 
the characteristic response time rR. As expected, the above 
function is directly proportional to a.  To be precise, the fact 
that CY is negative means that p, and Cp are anticorrelated. 

After passing through the transmission function, the ampli- 
tude fluctuation is transformed according to (23), and the cross- 
spectral density of the output field becomes 

The correlation is now a function of C;, the transmission func- 
tion slope. Fig. 5 also shows the magnitude of this function 
evaluated at the optimum value of 4 used to generate the nor- 
malized noise reduction spectrum in Fig. 3. By comparing these 
two figures we see that noise reduction coincides with reduced 
correlation in the fluctuations. In fact, when the noise is maxi- 
mally reduced at low frequency, the cross-spectral density ap- 
proaches zero, indicating that the low-frequency fluctuations 
have been decorrelated by the transmission function. (Note: it 
is useful to take the log of the magnitude of (34), as in Fig. 5, 
because the large dynamic range at low frequencies is clearly 
seen, but an artifact of this is a sharp feature after the resonance 
where the function changes sign.) In addition, a new correlation 
at high frequency arises from the independent source of phase 
noise [A, term in (6b)l which is being converted to additive 
intensity noise by the transmission function. 

The fact that the cross-spectral density is driven to zero at 
low frequencies when 4 = top, can be understood by consider- 
ing the fluctuations in the time domain. In the adiabatic limit. 
we have from (4a)-(4c) 

where f i  ( t )  = r R & p  ( t )  is a rescaled amplitude fluctuation in 
order that j ( t )  and Cp(t) be dimensionally equivalent. Let a2 
= ( A i  ) = ( A: ) be the variance of the Langevin terms (di- 
rectly proportional to the integration bandwidth) so that 

( f i ; ( t ) ’ )  = U’ (36a 

(Cp;(t)?) = U * ( l  + f f 2 )  ( 36b 1 
are the variances of the input field variables f i !  ( t )  and +, ( t )  
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If the laser were operating in the tuned condition, corre- 
sponding to a = 0, then contours of constant probability den- 
sity would be circular, as shown in Fig. 6. For the detuned case, 
the contours are ellipses tilted with respect to the coordinate 
axes. The variance of the instantaneous frequency fluctuation is 
enhanced by 1 + a’ and the variance of the amplitude fluctua- 
tion is unchanged. This tilted ellipse represents the state of the 
input field, where the degree of tilt, and corresponding thinness 
of the ellipse measures the correlation between the fluctuations. 

Using (23), (35a), and (35b), when ,$ = ,$opt, the output field 
variables are 

& ( t )  = - AR - - a AI (37a) 1 + a 2  1 + a 2  

+ , ( t )  = A, + aAR (37b 1 
which are clearly uncorrelated. The variances are given by 

($bO(t ) ’ )  = uZ(1 + a’). (38b) 

The output field ellipse is also shown in Fig. 6. For the opti- 
mum slope, we see that the transmission function has rotated 
the ellipse to align it with the coordinate axes. The output field 
variables bo ( t ) and Go ( t ) are decorrelated while the variance 
of the amplitude fluctuation has simultaneously been reduced 
by the factor 1/( 1 + a2). 
D. Effect of Power-Independent Linewidth 

To complete this discussion, we must consider the effect an 
extra, non-Schawlow-Townes, component of linewidth has on 
the RIN of the output field. We can foresee that, in general, the 
amount of noise reduction will diminish, since the extraneous 
linewidth is presumed to come from a phase noise source [A, 
term in (lo)] which is not correlated with the other fluctuations. 
It is then straightforward to substitute this augmented instanta- 
neous frequency fluctuation spectrum into the transformation 
equation (23) to compute the output RIN. In the low-frequency 
limit, we find analagous to (27) 

where @ = AwO/AusT is the ratio of the power-independent 
linewidth to the Schawlow-Townes linewidth. /3 increases lin- 
early with laser power, since AmsT has inverse power depen- 
dence. Evaluating the above relation at the slope which 
minimizes the output intensity noise, 

the maximum noise reduction is now given by 

Thus, for nonzero f i ,  the ability to reduce intensity noise is di- 
minished compared with the ideal case (29). Furthermore, the 
amount of reduction is now a function of laser power, the net 
reduction becoming smaller as output power increases. This be- 
havior will be shown to agree with measurements on a DFB 
laser diode in Section V. 

For the complete output spectrum it can be easily seen that 

TUNED 

$ }  
................. 1 

DETUNED I ,  

a+o , ~ o m  o m  

P, Po 
, ,  . ,  
, #  

, ,  , ,  , ,  , ,  , ,  , ,  
I ,  , .  . .  . .  

I ,  I ,  

:... ... .__......__..............,. I 
Y o o ~ m 

Input Field T(o) f Output Field 

Fig. 6.  Contours of constant probability density for tuned (a = 0 )  and 
detuned (a # 0 )  operation. For detuned case, tilted ellipse of input field 
is rotated by T (  w )  to decorrelate the variables and reduce variance of 8, ( t ) 
by 1 / (  1 + a’). 

the presence of the extra linewidth component will add a uni- 
form offset to the noise level by the amount (‘/3A.wST [see (24)]. 
Therefore, the magnitude of reduction at any frequency will de- 
crease as the laser is run at higher bias. 

To summarize the results of this section, we have studied the 
effect of an external, passive transmission function on the in- 
tensity noise of the laser field and found that large reductions 
below the intrinsic level are possible when the transmission 
function has the right slope. The method works by exploiting 
the inherent correlation between the field fluctuations. Optimum 
intensity noise reduction simultaneously decorrelates the am- 
plitude and phase fluctuations at the output. 

I V .  INTENSITY NOISE REDUCTION BY INTRACAVITY 
Loss ELEMENT 

A dispersive transmission function external to the laser cavity 
can reduce intensity noise, as was just shown. The same is true 
if the element is placed inside the cavity, where it then consti- 
tutes a dispersive loss. Contrary to the external case where the 
element acts on the field but does not affect the laser, the inter- 
nal loss element influences the laser dynamics, and must be in- 
corporated into the rate equations. The underlying mechanism 
for intensity noise reduction is similar in both cases, however, 
and the maximum amount of reduction is again given by the 
factor 1/(1 + a’). 

This method for noise reduction will only be discussed briefly, 
because the effects of such an intracavity dispersive loss have 
been studied in work on “detuned loading” in semiconductor 
lasers [ 171, [ 181. In fact, it was shown experimentally that phase 
noise reduction and modulation speed enhancement could be 
achieved simultaneously through such an approach [ 191. The 
application to intensity noise reduction was not pursued in the 
literature. Here, our intent is to quantify how well the intensity 
noise is reduced when the loss element has the right slope. In- 
tuitively, this mechanism for intensity noise reduction relies on 
amplitude-phase correlation, but contrary to the passive case 
there is a feedback mechanism through the optical gain. In other 
words, the enhanced phase noise (frequency jitter), which con- 
tains an image of the intensity noise, causes jitter in the instan- 
taneous cavity loss owing to the dispersive loss function. The 
gain adjusts to compensate the fluctuating loss and so quiets the 
intensity noise, assuming the loss function has the right slope. 
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Fig. 7. Laser with frequency-dependent intracavity loss y( U ) .  The intrin- 
sic intensity noise can be reduced when y ( U )  has the right slope. 

As mentioned above, there is reduction in the phase noise as 
well, but we will focus on the intensity noise here. 

The dispersive intracavity loss y ( U) is shown schematically 
in Fig. 7. The equation of motion for the slowly varying field 
amplitude (1 6) is given by [ 181 

A = k(G - y(w))(l - i a ) A  + A (42) 

where A = AR + iA, is the Langevin noise source. A linear 
expansion of y about the lasing frequency is assumed possible, 
so that 

Y(W) = Y ( W L )  + 2t6w (43) 

where t is the slope of y and 6w is the complex instantaneous 
frequency deviation, given by 

The small-signal equation of motion then results 

. G’n( t )  (1  - i a ) A  A 
A = -  +- 

where G‘ is the differential gain and n ( I )  is the carrier density 
deviation. Substituting (16) for A in terms of p and cp, we find 

(45 1 2 1 - i t  1 - i t  

At low frequencies where n ( t )  and p ( t )  track each other, this 
becomes [using (4c)J 

where 
then be found using the normalizations given in (5). 

+ 0 in this adiabatic limit. The spectral densit) 

47 1 

can 

48) 

Minimizing with respect to t gives top[ = CY for the optimum 
slope, and so compared with the intrinsic RIN (spectral density 
when 4 = 0), the optimum RIN is 

(49) 

which agrees with the theoretical minimum for the passive case 
(29). If the laser has an extraneous component of linewidth not 
due to spontaneous emission, then the remarks of Section I11 
would apply here as well, and the maximum reduction would 
be diminished. 

In summary, we have shown that an intracavity dispersive 
loss can potentially achieve the same level of intensity noise 
reduction as the passive transmission function studied in Sec- 
tion 111. In the flat part of the noise spectrum, both methods 
predict that reduction by the factor 1 /( 1 + a’) is possible, 

assuming the laser does not possess a significant power-inde- 
pendent component of linewidth. 

V. EXPERIMENTAL RESULTS 

We have described two ways to reduce laser intensity noise 
below the intrinsic floor: an extracavity approach using a pas- 
sive transmission element and an intracavity approach which 
incorporates a dispersive loss. In this section experimental re- 
sults which verify the first approach are presented [l], [2]. The 
transmission function is implemented with a Michelson inter- 
ferometer. Intensity noise from a DFB laser shows significant 
reduction which requires only a small optical path difference in 
the Michelson. The level of noise reduction as a function of 
frequency, laser bias, and transmission function slope agree with 
the theoretical predictions. 

We note that Michelson interferometers are often used to 
characterize phase noise in semiconductor lasers 1201, [21]. In 
these experiments, however, the interferometer is said to be 
strongly unbalanced, where the path difference is on the order 
of 10 cm. In our experiment the interferometer is only slightly 
unbalanced. Optimum path differences for noise reduction are 
on the order of 1 mm. 

A schematic diagram of the experimental setup appears in 
Fig. 8. The single-mode laser source used in this experiment is 
an InGaAsP distributed feedback laser from Ortel operating at 
1.3 pm. The threshold current is 21.8 mA. The light is colli- 
mated by an antireflection coated lens and sent through an op- 
tical isolator (Newport ISO- 13H) with 60 dB isolation to prevent 
feedback from influencing the measurement. After passing 
through a Michelson interferometer with a maximum 87% in- 
tensity transmission, the output light is focused onto a high- 
quantum efficiency (90%) InGaAs p-i-n detector. The noise 
photocurrent is amplified by a low-noise high-gain (52 dB) am- 
plifier over the frequency band 0.01-1 GHz, and input to a mi- 
crowave spectrum analyzer (HP 8558B). Lock-in detection is 
also employed to improve the sensitivity. With this arrange- 
ment, the intrinsic intensity noise from the DFB laser can be 
measured in both the excess and shot noise regimes, well above 
the thermal noise level of the detection system. 

One arm of the Michelson is controlled by both a micrometer 
for coarse motion and a piezoelectric transducer for submicro- 
meter motion. The dependence of intensity noise on the inter- 
ferometer slope is then characterized by measuring the noise at 
a given frequency and bandwidth while scanning the Michelson 
by one wavelength starting from a known amount of path dif- 
ference. If the scan begins at maximum transmission, for in- 
stance, then the input field samples a transmission slope ( T k  in 
this case, not 0, which changes smoothly from 0 to m6/2c to 
0 to -m6/2c to 0, where 6 is the optical path difference, c is 
the speed of light, and m is the fringe visibility. In this way, a 
range of slopes can be tested in one scan, and the extremes of 
this range are set by the amount of path difference. 

A linewidth versus power measurement was taken for the 
DFB laser which appears in Fig. 9. It shows that the linewidth 
varies inversely with power until it saturates at high power at a 
value of 7 MHz. This represents the power-independent line- 
width component which will be shown to affect the magnitude 
of noise reduction that can be obtained. 

Fig. 10 shows the results of an intensity noise measurement 
for a series of path differences at a laser bias of 23.3 mA. The 
output power is 0.34 mW and the RIN is -130 dB/Hz. The 
noise was measured in a 100 kHz band at 130 MHz. Noise 
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Fig. 8. Schematic diagram of the experimental arrangement including 
Michelson interferometer. 
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Inverse Power (mw . I )  

Fig. 9. Measured linewidth versus inverse power for DFB laser used in 
experiment. The high-power linewidth saturates at 7 MHz. 

power is plotted as a function of transmitted intensity, propor- 
tional to the mean detector photocurrent. This is not the RIN, 
but the directly detected noise power which is related to RIN, 
by multiplying the RHS of (39) by 1 T 1 4 .  At zero path difference 
we see the intrinsic noise level as the light is merely attenuated 
by the Michelson. If the Michelson is unbalanced, then the de- 
pendence of noise level on transmission slope becomes appar- 
ent. Loops of noise are observed whereby the noise is reduced 
below the intrinsic level for positive slopes and enhanced when 
the slope is negative. At the extremes of transmitted intensity 
for a given loop, the noise level returns to the intrinsic value as 
it should since this corresponds to zero slope. As the path dif- 
ference increases, the loops grow in area and the noise reduc- 
tion switches to noise enhancement at some transmitted 
intensities. 

With (39), theoretical noise loops can be calculated. Using (Y 

= -2.3,  a value which is consistent with our data, rRw$ = 34 
x lo9 rad/s ( w R  measured experimentally and rR taken from 
the literature [22]), and 6 = 0.35 from the linewidth data, the 
calculated loops (Fig. 11) agree well with the measured loops. 

In Fig. 12, cross sections of experimental and theoretical 
loops at the half-intensity transmission point are shown in terms 
of noise power normalized by the intrinsic noise level versus 
path difference. The optimum noise reduction is 7 dB at 4 mm 
path delay, which agrees with the theoretical calculation. Also 
shown are data from measurements at a higher bias of 25.7 mA, 
where 0 is 1.08, rRw$ = 82 X lo9 rad/s, output power = 0.83 
mW, and RIN is - 140 dB/Hz. Because ,6 is bigger at higher 
bias, the amount of noise reduction decreases as predicted by 
(41). Also, the increase in rRw$ means the optimum slope is 

gt 
5 8[ 
5 7  

NORMALIZED INTENSITY TRANSMISSION 

Fig. 10. Measured detector noise power versus normalized intensity trans- 
mission through the Michelson for optical path differences of 0 mm (in- 
trinsic noise level), 1, 4, and 7 mm. Loop areas increase with increasing 
path difference. Both reduction and enhancement of noise level are appar- 
ent. 
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Fig. 11. Theoretical noise loops for optical path differences of 0, 1,4 ,  and 
7 mm. Loop areas increase with increasing path difference. 
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Fig. 12. Measured noise power at half-intensity transmission through 
Michelson versus optical path difference for laser bias of 23.3 mA (filled 
circles) and 25.7 mA (open squares). Power is normalized by its intrinsic 
value at zero path difference. Low-bias data show 7 dB noise reduction at 
4 mm path difference. Theoretical calculations of noise power (lines) from 
(39) also appear. 

decreased and occurs at a shorter path difference of 1.6 mm, in 
accordance with (40). These data agree well with the theoretical 
plots. Note that the free-spectral range of the Michelson is 75 
GHz for a path difference of 4 mm. The linear expansion of the 
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Fig. 13. Maximum noise power reduction versus frequency for 23.3 mA 
laser bias. Measured (dots) and theoretical (line) values are shown. Mag- 
nitude of reduction decreases at higher frequencies in  accordance with (24). 

transmission function (14), on which the theoretical analysis of 
Section 111 is based, is therefore justified. 

The amount of noise reduction continued to diminish as laser 
power increased. It can be seen however that for a laser having 
a smaller excess linewidth (smaller 0 at a given output power), 
larger amounts of noise reduction are possible at higher powers 
and at shorter path differences. These small path differences 
needed to achieve noise reduction suggest that a monolithically 
integrated version of this technique may be feasible. 

For the low bias case at 23.3 mA, Fig. 13 shows the maxi- 
mum measured noise reduction as a function of frequency. The 
theoretical curve calculated from (24) and the known value of 
0 also appears. As predicted, the amount of reduction dimin- 
ishes at higher frequencies where the intrinsic noise spectrum 
is no longer flat. Note that an additional benefit from a laser 
with a smaller component of excess linewidth is that noise re- 
duction becomes possible at high bias levels. The resonance 
frequency is therefore pushed out to higher frequencies, leading 
to noise reduction over a wider bandwidth. 

Using a Michelson interferometer, we have reduced intensity 
noise from a DFB laser by as much as 7 dB, which agrees with 
the theoretical results of Section 111. The measured dependence 
of the noise level on interferometer slope, laser bias, and fre- 
quency are also accounted for by theory. A component of power- 
independent linewidth, 7 MHz for this DFB laser, inhibits in- 
tensity noise reduction at higher bias levels. A laser with a 
smaller extraneous linewidth would show better reduction at 
higher bias. 

VI. CONCLUSION 

In conclusion, we have discussed a simple technique, ampli- 
tude-phase decorrelation, for reducing the intensity noise floor 
in a free-running semiconductor laser. Taking advantage of the 
inherent coupling between the amplitude and phase fluctuations 
in the laser field, the intensity noise can potentially be reduced 
by the factor 1 /( 1 + a ’), independent of laser power, by using 
a passive external element with a frequency-dependent trans- 
mission. Optimum intensity noise reduction results in decorre- 
lation of the fluctuations. This technique was shown to share 
some conceptual similarities with detuned loading, where a dis- 
persive loss function is placed inside the laser cavity. In that 
case the maximum intensity noise reduction is also 1 / (  1 + a 2 ) .  
In practice, the presence of a power-independent linewidth will 
limit the amount of reduction that can be achieved, and the 

magnitude of reduction will diminish as laser power increases. 
However, we verify that the intensity noise from a DFB laser 
diode at low bias can be reduced by as much as 7 dB, in agree- 
ment with theory, when the passive technique is implemented 
with a Michelson interferometer. A semiconductor laser with a 
smaller component of extraneous linewidth should show even 
more intensity noise reduction over a wider range of output 
powers. 

Note Added in Proof: The authors performed amplitude-phase 
decorrelation experiments on a DFB laser with a larger a pa- 
rameter than the device discussed here, which showed up to a 
10.8 dB reduction in the intensity noise level. 
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