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A Maximum Likelihood Method to Improve Faint-Source Flux and Color Estimates
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ABSTRACT. Flux estimates for faint sources or transients are systematically biased high because there are far
more truly faint sources than bright. Corrections that account for this effect are presented as a function of signal-
to-noise ratio and the (true) slope of the faint-source number-flux relation. The corrections depend on the source
being originally identified in the image in which it is being photometered. If a source has been identified in other
data, the corrections are different; a prescription for calculating the corrections is presented. Implications of these
corrections for analyses of surveys are discussed; the most important is that sources identified at signal-to-noise
ratios of 4 or less are practically useless.

1. INTRODUCTION

Given a noisy photometric measurement of a very faint
source, what is the best estimate of its true flux?

The best answer to this question is “I don’t know—integrate
longer to reduce the noise!” However, in some cases, this is
not possible. For example, the ultradeep images of the Hubble
Deep Field (HDF) (Williams et al. 1996) represent so much
Hubble Space Telescope (HST) observing time that in practice
they cannot be much improved. From the ground they cannot
even in principle be improved because any ground-based im-
ages significantly deeper than existing ones (see, e.g., Djor-
govski et al. 1995; Metcalfe et al. 1995; Smail et al. 1995;
Hogg et al. 1997a, 1997b) would be totally confusion-limited
(see, e.g., Condon 1974). As another example, observations of
transients, such as gamma-ray bursts or supernovae, cannot be
improved because they cannot be repeated, even in principle.

Given that in some cases deeper imaging is not an option,
the reason the question does not have a trivial answer is that
the number counts of faint sources tend to rise with decreasing
flux, so more sources are available for “upscattering” to a given
measurement than are available for “downscattering.” A fa-
miliar analogy is with trigonometric parallaxes, where low sig-
nal-to-noise ratio measurements are biased large, since given
any observed parallax po and associated error, there is a finite
range of true parallaxes p consistent with it, but there are far
more sources in the sky with small parallaxes than largep ! po

. The “Lutz-Kelker” corrections that account for this arep 1 po

easy to compute and apply (Lutz & Kelker 1973; Hansen 1979);
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they have been essential in providing unbiased distances in
astronomy.

There is a conceptually similar set of corrections for low
signal-to-noise ratio measurements of faint-source fluxes. In
this article, these corrections are computed and discussed. As
in the case of parallaxes, the corrections depend on how the
sources are selected and on the intrinsic distribution of the
measured quantity, in this case the true number-flux relation.
Unfortunately, the number-flux relation is not exactly known
in most cases of interest, since the faint-source photometry is
usually being performed in order to determine this very rela-
tion! Furthermore, in many cases of interest, the correction
presented here does not represent the largest source of system-
atic error. However, unlike the other sources of error, this cor-
rection applies to all flux-selected sources, independent of in-
strumentation or analysis technique.

One note of terminology: the systematic bias discussed here
is often improperly referred to as the “Malmquist bias.” The
Malmquist bias is the effect that in a flux-limited sample, there
is a larger than representative fraction of high-luminosity
sources because they can be seen to greater distances and hence
over a larger volume (Malmquist 1924; Mihalas & Binney
1981). It is because of the intrinsic scatter in source luminos-
ities. Malmquist bias is removed, e.g., when one computes a
luminosity function from star counts. It does not involve any
kind of measurement error; it does not go away if one obtains
more precise photometry! The bias corrected for here results
from the observational scatter in fluxes; the measurement er-
rors. It does indeed go away when the fluxes are remeasured
at much higher precision; it only needs to be considered when
low signal-to-noise data are being used. What is discussed in
this paper is closely related to Eddington bias, the effect of
low signal-to-noise flux measurements on faint-source number-
magnitude relations. Statistical corrections to observed number-
magnitude relations are computed by Eddington (1913); flux
corrections for individual survey sources are computed here.
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Fig. 1.—Likelihood curves for several number-magnitude exponents q and signal-to-noise ratios (worst), 5 (middle), and 10 (best)r 5 3

2. COMPUTATION OF CORRECTIONS

Consider the simplest case, in which a source is being pho-
tometered in the image in which it was first detected. That is,
it is being measured in the data in which it was selected. The
likelihood (probability per unit flux) that a source hasp(SFS )o

true flux S given that it is observed to have flux is relatedSo

to the likelihood that it is observed to have when itp(S FS) So o

has S by Bayes’s theorem:

p(SFS ) ∝ p(S FS)p(S), (1)o o

where a proportionality is used because the normalization is
being ignored (for now) and p(S) (probability per unit flux) is
the true underlying distribution of fluxes, given by the (true,
not observed) number-flux relation. If the number of sources
N (!m) brighter than magnitude m as a function of m is a power

law,

d log N d log N
2.5 5 2 5 q, (2)

dm d log S

then the conditional probability becomes

2(q11) 2S (S 2 S )op(SFS ) ∝ exp 2 , (3)o ( ) [ ]2S 2jo

where it is assumed that the observational error is Gaussian-
distributed and j is the uncertainty in the observed flux , orSo

is the signal-to-noise ratio r. Figure 1 shows these like-S /jo

lihood curves for number-flux exponent , 1.5, 1.0, andq 5 2.0
0.5 and signal-to-noise ratios , 5, and 10. This figurer 5 3
demonstrates that measurements at a signal-to-noise ratio of 3
do not strongly constrain the true flux, whatever the slope of
the number counts, but particularly if the counts have the Eu-
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clidean4 slope of (or greater). It is worth emphasizingq 5 1.5
that the above equation and the curves plotted in Figure 1 are
essentially identical to those computed for parallax corrections
(Lutz & Kelker 1973; Hansen 1979), except that the parallax
corrections are computed for only one particular exponent
value.

If the flux measurement was unbiased, the peak in the like-
lihood function would be at . However, takingp(SFS ) S/S 5 1o o

the derivative , it is found that the maximum likelihooddp/dS
true flux SML is in fact

S 1 1 4q 1 4ML 5 1 1 2 , (4)Î 2S 2 2 ro

where q is the number-magnitude exponent defined above and
r is the signal-to-noise ratio. There is no finite maximum like-
lihood value at all if ; an example is the ,2r ! 4q 1 4 q 5 1.5

curve in Figure 1. The above equation specifies a cor-r 5 3
rection that should in principle be applied to all flux mea-
surements in a flux-limited sample. When the signal-to-noise
is good enough ( ) the correction can be approxi-2r k 4q 1 4
mated as

S q 1 1ML 2≈ 1 2 when r k 4q 1 4, (5)2S ro

or in terms of the magnitude correction ,Dm { m 2 mML o

1.086q 1 1.086 2Dm ≈ when r k 4q 1 4. (6)2r

Things change slightly if the likelihood is computed in the
magnitude (i.e., log flux rather than flux) domain; after all,
maximum likelihood techniques are sensitive to the “metric”
of the space in which the likelihood is computed. When com-
puted purely in the magnitude or log flux domain, the correction
is

1.086q 1 2.171 2Dm ≈ when r k 4q 1 8. (7)2r

The fact that the solution depends on the type of data space
(log or linear) demonstrates that the specific value of the cor-
rection is not completely specified, because it only provides a
“best guess” (a subjective estimate) for the true flux. It is worthy
of note that the Lutz-Kelker parallax corrections are similarly
subjective, as are essentially all statistical estimators.

4 Another note on terminology: what is called the “Euclidean” slope really
ought to be called the “no-evolution, nonexpanding” slope, because even in
a Euclidean space, the number counts have at large distance if eitherq ( 1.5
the universe is expanding or the sources are evolving.

More robust than maximum likelihood estimates are confi-
dence intervals, because these do not depend on the choice of
“metric.” Confidence intervals are found by integrating the
likelihood curves. Unfortunately, the areas under the curves
shown in Figure 1 do not converge; the likelihood distributions
are not normalizable! This nonnormalizability comes from the
divergence of as (not visible in some of thep(SFS ) S r 0o

curves in Fig. 1 simply because at high r the divergence hap-
pens at very small ). There are two respects in which thisS/So

divergence or nonnormalizability is unphysical: first, there can-
not be an infinite number of sources in the visible universe;
there are not even an infinite number of atoms in the universe!
Second, most ultradeep images of the sky, including the HDF,
are close to their confusion limits, beyond which the observed
number counts have to “cut off” no matter how much integra-
tion time is employed. Neither of these effects can be simply
taken into account in general; they depend on the data quality
and the sources under study.

The equations in this section have assumed that observational
errors are Gaussian-distributed, which is not true for all pho-
tometric measurements. The equations are easily generalized
(although they do not necessarily remain analytic) with the
Gaussian in equation (3) replaced by whatever error distribution
is appropriate for the measurement in question.

3. AN EMPIRICAL TEST

The correction can be tested with any imaging data in which
the number-flux relation is known. Here, the HST HDF data
in the F606W (0.6 mm) bandpass are used. Noise was added
to the “Version 2” mosaics of the HST images1024 # 1024
of the HDF (Williams et al. 1996) to make the pixel-to-pixel
sky noise 10 times as bad as in the original mosaics. The higher
noise mosaics will be referred to as the “bad” images and the
originals as the “good” images. A catalog of sources was chosen
in the bad images down to very faint levels using the
“SExtractor” source detection package (Bertin & Arnouts 1996)
in essentially its default mode: smooth with a 2 pixel FWHM
triangular filter and select sources whose central pixel in the
smoothed image is above a given threshold. These sources were
then photometered with the NOAO “IRAF” software in
matched 00.16 (2 pixel) diameter apertures in both the bad and
good images. The bad/good flux ratios are plotted against sig-
nal-to-noise ratio in Figure 2 along with the expected correction
computed with equation (4) and the (known) count slope

(Williams et al. 1996). The correction does very wellq 5 0.5
down to signal-to-noise ratios . At , a significantr ≈ 3 r ! 4
number of spurious (zero flux in the good image) sources start
to appear. Figure 2 shows, as with the Lutz-Kelker corrections,
that the corrections are on the same order as the intrinsic scatter
due to measurement error, so some sources have underestimated
rather than overestimated fluxes. However, the correction is
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Fig. 2.—Ratios of flux measurements in the “bad” image, in which sources
in the HDF were detected, to the flux measurements in the “good” image. The
bad image is simply the good image plus additional noise (see text). The solid
line is the expected ratio of the maximum likelihood flux to the observedS /SML o

flux given by eq. (4) for the number-magnitude exponent (see text).q 5 0.5

still necessary if an unbiased estimator of the true flux is
desired.

4. CHANGING THE SELECTION TECHNIQUE

The next case to consider is photometry of a source in one
image (say the I band) after it is detected (and its position is
known) in another image (say the V band). In this case, Bayes’s
theorem is still used, but for p(S) the true distribution of

colors is used rather than the I-band number counts.V 2 I
Actually, rather than the color distribution, it is better to think
of the conditional I-band flux distribution (proba-(I) (V )p(S FS )
bility per unit flux), given that the V-band flux is known(V )S
(in what follows, it is assumed that the V-band detection is at
very high signal-to-noise ratio so the V-band flux is well
known). Because, unlike the number counts, these conditional
distributions are not generally power laws, the flux correction
depends not only on the shape of the distribution but also on
where in the distribution the observed flux lies.So

Fortunately, when the signal-to-noise ratio r is large enough,
it is possible to linearize Bayes’s formula around the observed
flux so only the local power-law slope(I)So

(I) (V )d log p(S FS )
Q { 2 (8)(I)F Fd log S (I)So

of the distribution of source fluxes is important. The likelihood
function (probability per unit flux) for the true I-band flux

given the observed flux and the known V-band flux(I) (I)S So

is then(V )S

(I) 2(Q11) (I) (I) 2S (S 2 S )o(I) (I) (V )p(S FS , S ) ∝ exp 2 , (9)o ( ) [ ](I) 2S 2jo

which leads to the maximum likelihood correction

(I)S Q 1 1ML 2≈ 1 2 when r k 4Q 1 4, (10)(I) 2S ro

or in terms of the magnitude correction ,Dm { m 2 mML o

1.086Q 1 1.086 2Dm ≈ when r k 4Q 1 4. (11)2r

Note that the correction can be positive or negative, depending
on the sign of the local slope Q.

Corrections applicable when more complicated selection pro-
cedures have been used can be computed in analogous ways.

5. SUMMARY AND DISCUSSION

Maximum likelihood corrections for faint-source flux mea-
surements have been computed for the case in which the
sources are measured at low signal-to-noise in the data in which
they were originally selected. It is found that since the number-
flux relation tends to be rising at the faint end, the low signal-
to-noise flux measurements are usually overestimates of the
true flux. At signal-to-noise ratios , flux measurements (ofr ! 4
this type—i.e., in the data in which the sources were selected)
are almost meaningless because they are consistent with almost
any true flux between zero and the measured value.

The bias considered here tends to “steepen” measured num-
ber-flux relations at the faint end; i.e., the measured

is more negative than the true value becaused log N/d log S
the very numerous faint sources are scattered up to brighter
levels. This effect is only significant at very faint levels, where
it is usually mitigated or in fact canceled out by incompleteness.
The best way to correct measured number-flux relations for
both the flux bias and incompleteness is to perform full com-
pleteness simulations, which, if done correctly, will account
for both effects simultaneously (see, e.g., Smail et al. 1995;
Hogg et al. 1997b), and of course a full accounting for all
systematic errors requires detailed modeling of every stage in
the observing and analysis procedures. Although the correc-
tions presented here do not comprehensively account for most
of these systematic biases, they are very general, improving
flux estimates for individual sources independent of observa-
tional technique.



MAXIMUM LIKELIHOOD METHOD 731

1998 PASP, 110:727–731

These corrections ought to be applied to the source fluxes
at the faint end of the catalogs from all huge (and therefore
difficult to improve upon) surveys, such as the Palomar Ob-
servatory Sky Surveys, the Infrared Astronomical Satellite
(IRAS) survey, and from future huge surveys such as the 2
Micron All Sky Survey and the Sloan Digital Sky Survey. In
fact, the IRAS catalogs were corrected at the faint end for some
related biases but not this bias per se (IRAS Explanatory Sup-
plement 1988). Also, all transients discovered at low signal-
to-noise ratios in transient searches, such as faint gamma-ray

bursts, of which no additional measurements can be made after
the fact, should have these corrections applied.
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