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Abstract—We present a detailed study of the polarization
properties of four-wave mixing in multiquantum-well (MQW)
semiconductor optical amplifiers (SOA’s). In particular, the po-
larization selection rules relevant to all processes contributing
to the generation of the four-wave mixing signal are rigorously
derived and discussed. We then show the importance of these
results in applications where four-wave mixing is used as a
spectroscopic tool to study the optical nonlinearities of semicon-
ductor gain media. For illustration, we demonstrate two novel
applications of polarization-resolved four-wave mixing. The first
is a new technique for measuring the recombination lifetime in
SOA’s, based on mixing of a pump wave with polarized amplified
spontaneous emission noise. In the second, we use the same
polarization selection rules to measure the interwell transport
lifetime in alternating-strain MQW amplifiers. Finally, we also
discuss the possibility of studying the dynamics of the optically
induced phase coherence between spin-degenerate states.

I. INTRODUCTION

SEMICONDUCTOR lasers and semiconductor optical am-
plifiers (SOA’s) are characterized by large ultrafast optical

nonlinearities [1]–[7] that strongly affect their dynamic and
spectral properties. For instance, the large nonlinear gain
compression typical of diode lasers is directly related to the
maximum modulation bandwidth achievable in these devices
[8]. Furthermore, the same saturation processes are responsible
for cross-talk among different optical channels and for the
distortion and chirping of short pulses [9] in SOA’s. These
features obviously pose serious limitations to the use of
these amplifiers as in-line repeaters in optical communication
networks, for which gain linearity is highly desirable. On the
other hand, the nonlinear interaction among different channels
in SOA’s makes them promising candidates for applications
involving wavelength conversion [10] and, in general, all-
optical signal processing.

In general, three mechanisms contribute to the strong depen-
dence of both the gain and the refractive index of a semicon-
ductor on the optical field intensity; namely: carrier depletion,
carrier heating and spectral hole burning. Carrier depletion
refers to the reduction of the overall carrier density, and hence,
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of the optical gain, brought about by stimulated electron-hole
recombination, and as such takes place on a characteristic time
scale on the order of the recombination lifetime, typically
a few hundreds of picoseconds. Stimulated recombination, as
well as free-carrier and two-photon absorption, also heats the
carrier distributions above the lattice temperature, which leads
to a further compression of the gain [3], [4]. The lifetime
associated with this mechanism is the carrier–LO phonon
scattering time, which has been measured to be approximately
650 fs [5], [11]. With both of these mechanisms, the nonlinear
gain reduction is accompanied by a large change in the
refractive index. Spectral hole burning refers to the reduction
of the occupation probabilities of the electronic states (hence
once again of the gain coefficient) resonantly interacting with
the optical field [1], [2]. This reduction persists on a time
scale set by carrier–carrier scattering (typically on the order
of 100 fs). In addition to the above interband and intraband
nonlinearities, multiquantum-well (MQW) active regions are
characterized by an additional, structure-dependent source of
optical nonlinearity. This is related to interwell carrier trans-
port and phonon-mediated capture/escape processes between
QW states and the overlaying continuum of unconfined states
[12]–[18]. The relevance of this mechanism to the maximum
modulation bandwidth of quantum-well (QW) lasers is now
well established.

In recent years, nondegenerate four-wave mixing (FWM)
in SOA’s [11], [19]–[22] has emerged as a useful frequency-
domain technique for the direct observation of these nonlin-
earities. In these experiments, two input waves at different
frequencies, the pump and the probe, are coupled into the
semiconductor active layer, so that the overall optical intensity
includes a harmonic component at their difference frequency.
The gain and refractive index are then modulated at this
frequency by way of all of the mechanisms just discussed.
The resulting dynamic gain and index gratings partially scatter
the input waves into new sideband signals, whose relative
intensities are measured as a function of the pump-probe de-
tuning frequency. The ultrashort relaxation lifetimes governing
intraband dynamics can then be accurately determined, since
they are mapped to a wide frequency span. Furthermore,
because of the large magnitude and ultrafast nature of the
nonlinearities involved, FWM in SOA’s is also a promising
candidate for the implementation of broadband wavelength
conversion in wavelength division multiplexed communication
networks [23], [24].
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The efficiency of any nonlinear optical process such as
FWM strongly depends on the polarization states of the
optical waves involved. This issue is particularly important
in (multi)QW gain media due to the large anisotropy in
their optical response, which immediately follows from the
presence of a preferred direction in the active region, the
growth axis. In this paper, we present a detailed study of
the polarization properties of the optical nonlinearities of such
gain media, as embodied in the FWM susceptibility tensor
[25]. The importance of this study is twofold. On the one
hand, in applications such as wavelength conversion, it is
of paramount importance to minimize the dependence of the
conversion efficiency on the polarization of the input signal.
This issue has been considered elsewhere [25], [26]. Secondly,
as is shown in the bulk of this paper, the same polarization
properties can be exploited to extend the scope of FWM as
a spectroscopic tool.

In the first part of the paper (Section II) the FWM suscep-
tibility tensor is rigorously derived. The simplest theoretical
description of FWM processes in SOA’s [19], [21] treats
the semiconductor gain medium as a collection of inhomo-
geneously broadened, independent two-state systems (each
corresponding to a different point in space). While this
approach has been successfully used to account for the depen-
dence of the FWM conversion efficiency on the pump-probe
detuning frequency, it is inadequate to describe polarization
effects. In order to include such effects, we consider here a
multi-state model for the case of (multi)QW SOA’s, including
the spin-degenerate states in the lowest conduction and valence
subbands at a same. The results of this analysis are given
a simple interpretation in terms of photon transition diagrams,
and the FWM polarization selection rules are then derived
and discussed.

Section III is devoted to several applications of these results.
In particular, in Section III-A, we first present and demonstrate
a simple method of measuring the recombination lifetime,
based on FWM of a single-frequency pump wave with prop-
erly polarized amplified spontaneous emission noise. Next,
in Section III-B, polarization-resolved FWM is used to study
interwell carrier dynamics in a SOA consisting of alternating
pairs of tensile and compressively strained QW’s. The model
of Section II is extended to account for interwell coupling,
which then allows us to infer from the experimental data
an estimate for the interwell transport lifetime. Finally, in
Section III-C, we discuss the possibility of obtaining FWM
with a TE-polarized pump and a TM-polarized probe (or
vice versa), in which case the dynamic gratings arise from
modulation of the optically induced phase coherence between
spin-degenerate states. However, we find that in the device
used in our experiments this contribution is exceedingly small
due to large birefringence.

II. GENERAL THEORY

A. FWM Susceptibility Tensor

In the following analysis, we consider the usual case of a
pump wave of frequency and a probe wave of

frequency traveling along the plane of the QW. The pump
is assumed to be significantly stronger than the probe so that
only the FWM signal at frequency need be
considered. The FWM susceptibility tensor is defined
so that the harmonic component of the induced polarization
density at is , where the
indexes and refer to the pump components involved in the
scattering process and the modulation process, respectively.
We calculate this tensor from the microscopic expression for

,

(1)

where the index runs over the two spin-degenerate states
in the conduction (valence) subband (only one conduction and
one valence subbands are considered). Strict conservation of
the two-dimensional (2-D) crystal wavevector in optical
transitions is assumed. Furthermore,is the electric dipole
moment operator, and the density matrix of the electronic
system. Note that here and in the following, the explicit
dependence on is omitted for notational simplicity.

The time evolution of the polarization function is cou-
pled by the optical field to that of the occupation probabilities

and of the coherence functions (with
) according to the usual two-band Bloch equations [27]

(2)

(3)

(4)

where is the transition energy, and several
phenomenological time constants have been included to ac-
count for damping processes. In particular, is the usual
dipole dephasing lifetime, and is the rate at which

relaxes to its quasiequilibrium value (i.e., the quasi-
Fermi distribution for , zero otherwise), due to
carrier–carrier scattering. In the following, we will take for
simplicity for all and for

. Notice that forward and exchange scattering processes
(i.e., carrier–carrier interactions leaving the overall distribution
unchanged) contribute to but not to , so the latter is
expected to be somewhat longer.

Since is a function of the carrier density and subband
temperature , we obtain a closed set of equations by
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including the rate equations [21]

(5)

(6)

where and are the interband recombination and car-
rier–phonon relaxation lifetimes respectively, is the lattice
temperature, and and are the chemical potential and heat
capacity of subband . Notice that these equations
assume an active region consisting of perfectly uncoupled
QW’s. The inclusion of interwell transport leads to additional
contributions to and is considered in Section III-B.
Finally, we point out that intraband absorption via plasma
heating and two-photon absorption, which may also give a
nonnegligible contribution to the FWM susceptibility, are not
considered here.

In the presence of two excitation frequencies, and ,
dynamic gratings in the gain and refractive index are formed
through carrier density modulation (CDM), carrier heating
(CH), and spectral hole burning (SHB). These mechanisms
arise respectively from the dependence of the carrier density

, the carrier temperatures , and the occupancy distribution
and coherence functions on the optical field intensity,
which involves a beat note at the pump-probe detuning fre-
quency . Subsequent scattering of the
pump from these gratings produces a harmonic component of
the polarization function at the converted signal frequency

. Based on these arguments, we assume solutions of the form

c.c.

c.c.
(7)

In order to calculate , and hence (through (1) and
the definition of ) the FWM susceptibility tensor, we
substitute (7) in the equations of motion (2)–(6), approximate
the dependence of on and with a Taylor series about
quasiequilibrium, and retain only terms up to third-order in the
input field amplitudes. After some lengthy but straightforward
algebra, we find the expression for given in Appendix A,
(16)–(19), having general validity within the above framework
and for isotropic in-plane dispersion relations. A more compact
expression is obtained by neglecting any dependence ofon

, which is in particular a valid approximation in the absence
of significant valence-band mixing [28] (e.g., in highly strained
QW structures, such as the device used in the experiments
described here); the FWM susceptibility tensor is then given

by

(8)

Here, is the th component of ( for TE and
TM components), denotes averaging over all directions
of on the plane of the QW, and , , , and

are scalar susceptibilities whose explicit expressions
are not essential here and are obtained from (16)–(19) as
discussed in Appendix A. Furthermore, in the last term on the
right-hand side (the term proportional to ), the index

is defined so that, given (for instance, if denotes
spin-up, denotes spin-down), and similarly for.1

B. FWM Polarization Selection Rules

The polarization dependence of the FWM susceptibility is
entirely contained in the summations over the indices in
(16)–(19) [or (8)], where the dipole moment matrix elements
in each product have been written in a time-ordered fashion.
Notice the different structure in these summations for the cases
of carrier density modulation and carrier heating on the one
hand, and spectral hole burning on the other. As shown below,
this difference is easily explained in terms of the different
nature of these mechanisms.

In the case of CDM and CH, the formation of the dynamic
gratings (through beating of and ) and the generation
of the converted signal (through scattering of from
these gratings) are two entirely distinct processes, hence the
two separate summations. In particular, as illustrated schemat-
ically in Fig. 1 (left diagram), grating formation involves
individual two-photon processes in which a photon is absorbed
from the pump and simultaneously emitted into the probe
wave. Provided that the final state of the electronic system in
each such process is the same as the initial one (in the figure),
its occupation probability is correspondingly modulated at
the detuning frequency, and then so are the overall carrier
density and temperature (since they depend on the states’
occupancy integrated over the whole subband). Similarly, the
pump is scattered by the resulting gratings into the FWM
signal through individual two-photon processes (such as the

1If one neglects the difference between the relaxation lifetime�1 and the
dephasing lifetime�2 (so that�SHB(1) = �SHB(2)), as was explicitly done
in [25], (8) can be cast in the form given there.
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Fig. 1. Photon transition diagrams illustrating the generation of the FWM
signal by CDM (CH). Both the modulation of the carrier density (temper-
atures) and the scattering of the pump into the FWM signal occur through
individual two-photon processes, as shown on the left and right diagrams
respectively. It is important to point out that the electronic transitions involved
in these two steps need not be the same.

one shown in the right diagram of Fig. 1), each of which also
involves a single electronic transition (betweenand in the
figure). It is important to emphasize that the pump-scattering
transitions need not be the same as those involved in the
grating formation. Indeed, the states on the one hand
and on the other, as given in Fig. 1, may even be
localized in different spatial regions of the active medium. For
this reason, FWM by CDM and CH is particularly suited to
study the effect of transport processes on the nonlinear optical
properties of the given device.

In the case of SHB, however, gain/index modulation and
pump scattering occur simultaneously through individual four-
photon transitions (hence the single summation). Two quali-
tatively distinct types of processes are possible, depending on
the intermediate states, as illustrated in the diagrams of Fig. 2.
In the case shown in Fig. 2(a), the second intermediate state is
the same as the initial state, and the gain and index modulation
occurs directly through modulation of its occupancy [i.e.,
dynamic spectral hole burning, described by the term propor-
tional to in (8)]. As shown in Fig. 2(b), however,
photons at the FWM frequency can also be generated
in four-photon processes in which the second intermediate
state is different from the initial one. Such processes [which
contribute to the term proportional to in (8)] can
still be described in terms of grating formation and pump
scattering, but the gratings in this case result from modulation
of the optically induced relative phase coherence between the
initial and the second intermediate state. The corner frequency
of the corresponding contribution to the FWM efficiency is
set by the lifetime of this coherence, which, as discussed in
connection with (3) and (4), is the dephasing lifetime(and
not the relaxation lifetime which limits the “ordinary” SHB
contribution).

The FWM polarization selection rules can be immediately
derived from (16)–(19) [or (8)], given knowledge of the dipole
moment matrix elements . These are computed from the
standard expressions for the spin-degenerate conduction and
valence band states in a QW [28] (given in (21) of Appendix
A). Once substituted in the summations of (16)–(19) [or (8)],
they result in the expressions listed in Appendix A [(22)–(24)].
As can be seen from there, two qualitatively different sets of

(a) (b)

Fig. 2. Photon transition diagrams illustrating the generation of the FWM
signal by SHB. In the process shown in (a), the “dynamic gratings” result
from modulation of the occupation probability of the initial state of the
electronic system. In the process shown in (b), they result from modulation
of the optically induced phase coherence between the initial and the second
intermediate state. Opposite polarization selection rules apply to these two
types of processes.

selection rules are found to apply for processes relying on
modulation of the occupation probabilities and for processes
relying on modulation of the phase coherence between distinct
states.

The former include CDM, CH, and SHB processes of the
type illustrated in Fig. 2(a). All such processes are found
to give a nonzero contribution only to tensor components
of the form . In words, this means that: 1) formation
of the dynamic gratings by modulation of the occupation
probabilities can only occur through beating of the same
components of the pump and probe waves (and either
both TE or both TM) and 2) the TE (TM) component of
the pump can be scattered from these gratings only into a
TE-(TM-)polarized FWM signal .

On the other hand, FWM processes relying on modulation of
relative coherences [i.e., SHB processes of the type shown in
Fig. 2(b)] exhibit exactly the opposite behavior. The dynamic
gratings in this case are induced through beating of orthogonal
pump and probe components, and scatter each component of
the pump into a signal with orthogonal polarization. Therefore,
these processes contribute tensor components of the form
and with .

Notice that these selection rules can be given a simple
explanation for the special case of highly-strained QW’s,
in which, to a high degree of approximation, the relevant
valence-band states have pure light-hole (for tensile strain)
or heavy-hole (for compressive strain) character. In this case,
it is well known that the optical transition between any pair of
conduction-band and valence-band states is only allowed to be
either TE- or TM-polarized (never both). The above selection
rules then immediately follow by inspection of the diagrams of
Figs. 1 and 2. Furthermore, compressive wells have negligible
gain for TM waves, so that the FWM polarization selection
rules further simplify to , and
no processes based on modulation of relative coherences are
allowed.

C. Polarization Dependence of the FWM Conversion Efficiency

Based on the results discussed in the previous Subsection,
we can write the FWM signal field at the SOA output in terms
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of the input fields as follows:

(9)

where and are the th components of the polarization unit
vector of the pump and the probe respectively at the SOA input
( 1, 2 for TE and TM components). Furthermore, we define
the “transfer tensor” , where the factor

accounts for wave propagation effects; its expression is
derived in Appendix B [(30)].

Equation (9) can in principle be used for detailed numerical
verifications of experimental results, provided all the relevant
material and operational parameters are known. Here, we
simply use it to provide a qualitative explanation of the
experimentally observed polarization dependence of the FWM
conversion efficiency [25]. This same argument is exploited in
the applications discussed in the next section. First, notice that
the last two terms in (9) are negligible in the sub-terahertz
detuning range (where the contribution from SHB is small
compared to those from CDM and CH [11]), since both
and are proportional to . In fact, we will
neglect their contribution in most of the remainder.

With this approximation, the polarization selection rules
appropriate to CDM and CH apply, and each component of
the FWM signal is generated through scattering of the same
component of the pump from two “types” of gain and index
gratings, i.e., those formed by beating of the TE components
of the input waves (“TE-induced gratings”) and those formed
by beating of their TM components (“TM-induced gratings”).
The degree to which these two contributions to add
up depends on the relative phase between the two types of
gratings, which, in turn, varies with the angle between the
polarizations of the beating waves. In particular, as illustrated
in the inset of Fig. 3, if the pump and the probe have parallel
polarizations, the two types of gratings are in phase, so that
their contributions to add constructively and the FWM
conversion efficiency is maximum. Vice versa, if the pump and
the probe are orthogonally polarized, the two types of gratings
are out of phase and tend to cancel each other. However,
since the amplitudes associated with the two contributions (i.e.,

and ) are in general unequal (see the Appendixes),
this cancellation is incomplete. As a result, unlike the case
of a perfectly isotropic gain medium, the FWM conversion
efficiency of a QW SOA can be finite even for orthogonally
polarized pump and probe waves.

This prediction was experimentally verified by measuring
the FWM conversion efficiency for different combinations of
the pump and probe polarizations. The SOA used has an active
region consisting of three pairs of tensile and compressively
strained QW’s, and was designed to have a polarization-
independent small signal gain [29]. We point out, however,
that the above discussion is quite general to any (multi)QW
SOA, regardless of strain. The detuning frequency was chosen
to be small enough (1.5 nm) so that the difference in the

Fig. 3. Converted signal power as a function of the linear polarization angle
of the probe relative to the TM direction, with linearly polarized pump at
�45�, and 1.5-nm detuning. The continuous line is a theoretical fit to (9),
with fitting parametersMiikk. The insets show the formation of the dynamic
gratings through beating of TE and TM components of pump and probe. The
TE-induced gratings and the TM-induced gratings are in phase with each
other for parallel input polarizations and out of phase for orthogonal input
polarizations.

birefringence experienced by the two input waves is small
and thus the angle between their polarization states remains
essentially constant throughout the interaction length. This
ensures that any observed variation in the FWM conversion
efficiency with the input polarizations is due to the interference
between the different types of gratings just described, as
opposed to averaging effects associated with birefringence. A
typical set of data is shown in Fig. 3, where we plot FWM
signal power as a function of the angle of linear polarization
of the probe with a linearly polarized pump at45 . The
continuous line is a fit to (9), with the coefficients used
as fitting parameters. These results are qualitatively consistent
with the discussion of the previous paragraph; in particular,
notice the finite FWM conversion efficiency observed even in
the case of orthogonal input polarizations.

III. A PPLICATIONS

A. Measurement of the Recombination Lifetime

As a first application of the FWM polarization selection
rules, we show in this section how they can be used to
determine the stimulated recombination lifetimein a very
straightforward manner [30]. The approach we use here takes
advantage of the polarization selection rules by measuring a
FWM signal generated along the TE direction from “TM-
induced” dynamic gratings. Since the technique requires both
TE and TM transitions, the method is not suitable for SOA’s
with only compressively strained QW’s.

The experiment is schematically explained in Fig. 4. Instead
of using a laser source as a probe, we use the broad amplified
spontaneous emission (ASE) noise from an erbium doped
fiber amplifier, filtered in a 1.6-nm optical bandpass filter and
centered about the pump laser frequency. We refer to the ASE
as the probe, despite the fact that it is not a single-frequency
source but rather an incoherent superposition of frequencies.
The previous discussion remains valid, with an additional sum
over all frequencies in the right hand side of (9). The ASE
source is polarized along the TM direction and coupled into
the SOA, along with a single-frequency pump wave polarized
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Fig. 4. Schematics of the FWM processes taking place with the polarizations
used in the recombination lifetime measurement. In the upper panel, we show
the modulation of the carrier density by beating of the input waves (TM
components only). In the lower panel, we show the scattering of each pump
component into the corresponding FWM component. The probe is not a single
frequency source but rather a continuum of frequencies within a 100-GHz
bandwidth. The modulation occurs at all these frequencies, and the FWM
signal is therefore also a continuum of frequencies.

at 45 with respect to the growth axis (i.e., equal TE and TM
components). The TM components of these input waves will
modulate the carrier density at all frequencies within the half-
bandwidth of the optical bandpass filter (0–100 GHz). This
modulation will result in gain and index modulation for both
polarization modes in the SOA, and thus generate a FWM
signal along both the TE and the TM directions (from the

and terms in (9), respectively).
We select only the TE polarized waves at the output of

the SOA by way of a polarization filter. This yields a signal
which, upon direct detection, contains the pump-FWM signal
beatnote in the RF-frequency domain. On the other hand,
since the probe has no component along TE, the pump-probe
beatnote (which would otherwise overpower the pump-FWM
RF signal) is suppressed with the polarizer. Furthermore, the
use of a broad superposition of probe frequencies centered
around the pump allows us to map out the detuning frequency
dependence of the FWM efficiency (in this case giving the
CDM response) in just one scan of the RF-spectrum. The TM
components at the SOA output also contain a pump-FWM
signal, but the pump-ASE probe beatnote is much stronger at
the detector. In fact, we used this latter signal to normalize out
the RF-frequency dependence of our detection system.

The results are shown in Fig. 5, where we have plotted the
normalized FWM signal versus detuning frequency, measured
in an alternating-strain SOA. The corner frequency appears
very clearly, from which the stimulated recombination rate
can be immediately inferred; its value is shown in the inset
for different bias currents to the SOA.

B. Measurement of the Interwell Carrier Transport
Lifetime in an Alternating-Strain MQW SOA

As we pointed out in Section II-B, in conjunction with
Fig. 1, an important feature of FWM by CDM (and CH) is

Fig. 5. Results of the recombination lifetime measurement. The
TE-polarized FWM efficiency (normalized by the TM polarization emission)
is plotted as a function of detuning frequency for SOA bias currents ranging
from 50 to 150 mA (left to right). The roll-off associated with the stimulated
recombination lifetime is clearly seen; the corresponding 3-dB roll-off
frequency(1=2��s) is shown in the inset as a function of the bias current.

that the formation of the dynamic gratings and the scattering
of the pump into the converted signal are entirely distinct
processes. As such, they do not even need to take place
in the same spatial region of the SOA. For example, in a
MQW SOA with interwell coupling, we may consider a FWM
process in which the gratings are formed in one well and
then transferred to a neighboring well where the pump is
then scattered [31], [32]. The strength of this process strongly
depends on the interwell transport rate ; in particular, we
expect it to become negligibly small at detuning frequencies
much larger than this rate. As a result, FWM can be used
to measure , provided that the contribution to the overall
FWM signal associated with the above process can somehow
be isolated from all other contributions. As we will show
in the following, this can be done by taking advantage of
the FWM polarization selection rules in an alternating-strain
SOA. This technique [32] provides an extremely clean way of
studying interwell transport, which is an issue of considerable
importance given its relation to the maximum achievable
modulation bandwidth of MQW lasers [12], [13], [15]. Notice
that the use of polarization selection rules to discriminate
between the contribution from tensile and compressive wells in
a similar SOA has also been recently employed in pump-probe
time-domain measurements [18].

The FWM polarization configuration required in this work
is illustrated in Fig. 6: once again, the SOA consists of
alternating pairs of tensile and compressive wells; the probe
is linearly polarized along the growth axis (TM polarization),
whereas both the TE and the TM components of the pump
are nonzero (and equal to each other for simplicity). We only
consider detuning frequencies below 100 GHz, so that CDM
provides the strongest FWM mechanism. Then, as shown in
the upper panel of Fig. 6, the beating of the input waves only
results in “TM-induced gratings,” which can be generated only
in the tensile wells. Here, each polarization component of
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Fig. 6. Schematics of the FWM processes taking place with the polarizations
used in the interwell transport lifetime measurement. As shown in the upper
panel, modulation of the carrier density is generated directly (through beating
of the TM components of the input waves) only in the tensile wells, from
which it can then be transferred to the neighboring compressive wells. Each
polarization component of the pump is then correspondingly scattered into the
same component of the FWM signal as shown in the lower panel.

the pump is then scattered into the same component of the
FWM signal. Furthermore, if the carrier density modulation
underlying the dynamic gratings can be transfered into the
neighboring compressive wells, an additional contribution to
the TE component of the converted signal can be generated
there. The lower panel of Fig. 6 gives a schematic representa-
tion of the different processes contributing to the FWM signal
field , which can accordingly be written as

(10)

In these expressions, the subscript denotes the TE and
TM directions respectively, and we have taken
and . Furthermore, the superscripts
and are used to distinguish between quantities in the tensile
and compressive wells, and the term proportional to
describes the contribution involving interwell transport.

With this choice for the polarization states of the input
waves, information about the interwell coupling is obtained by
plotting ( denoting the optical power in theth com-
ponent of the FWM signal ) versus detuning frequency. The
wave propagation factors can be regarded as independent
of over the small detuning range (100 GHz) considered
in this work (see Appendix B), so that we may regard

. Consequently, we
expect this curve to approach a constant value (proportional to

) as exceeds the interwell transport rate. Any
feature observed at lower detuning frequencies, on the other
hand, can be ascribed to interwell coupling. These expectations

(a)

(b)

Fig. 7. Results of the interwell transport lifetime measurement. The optical
powers in the TE (circles) and TM (squares) components of the FWM signal
(a), and their ratio (b) are plotted versus detuning frequency. The continuous
lines are fits to the model theory discussed in the text. As emphasized by the
dashing, the fit becomes inaccurate in Fig. 7(a) at detuning frequencies above
50 GHz, where carrier heating, not included in the fit, becomes important.
However, since its contribution is approximately the same for both the TE
and the TM components, the fit remains good for their ratio in Fig. 2(b). An
approximate transport lifetime of 16 ps is inferred from the data.

are borne out by the data shown in Fig. 7, where we plot
the measured optical powers in the TE and TM components
of the FWM signal [Fig. 7(a)], and their ratio [Fig. 7(b)].
The experimental setup consisted of a high sensitivity optical
heterodyne detection system, and is described elsewhere [11].

The experimental data shown in Fig. 7 can be fitted using
the theoretical framework of the previous section, provided
this is properly generalized to include a simple model for the
interwell carrier dynamics. In particular, we assume that the
transfer of carriers between neighboring wells mainly results
from phonon-assisted capture/escape processes between 2-D
QW states and semiclassical wavepackets of three-dimensional
(3-D) states localized near the same well [14], [15]. We
describe the dynamics of these wavepackets as dominated by
classical diffusion. Drift, on the other hand, is expected to
be of minor importance, due to the nearly flat-band conditions
typical of forward-bias SOA operation [14], [15]. Tunneling is
also neglected, which is a fair assumption given the relatively
large barrier width (100 Å) in the SOA under study.
Furthermore, the dynamics of holes, which are known to
a have a shorter capture lifetime [15], is not considered
explicitly.
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With these assumptions, the Bloch equations (2)–(4) remain
appropriate, except that two distinct sets of such equations are
required for the two types of wells. The interwell coupling is
then introduced in the model by replacing the rate equation
for the carrier density, (5), by the following:

- -
-

(11)

(12)

Here, - denotes the number density of electrons confined
inside the QW under consideration; - is the density of
unconfined electrons localized near the same QW so as to
be involved in the capture/escape processes; is the
density of unconfined electrons as a function of position

along the growth axis; and are the quantum
escape and capture lifetimes; is the diffusion coefficient;
and again the superscript refers to quantities of
tensile and compressive wells. In principle, the rate equations
for the carrier temperatures should also be generalized in a
similar fashion; however, in the experiment described here
the detuning frequency is kept small enough that inclusion of
CH effects is not critical. Finally, we point out that when
the interwell coupling results from resonant tunneling, this
description becomes inappropriate and one has to include the
coupling directly in the density matrix equations of motion;
this has been done in [33], where it is shown that such coupling
introduces a resonance peak in the terahertz FWM response.

The coupled equations (11), (12) can be solved given an
appropriate set of boundary conditions satisfied by near
each QW. For instance, we may require

- and - - , where

denotes the position of the center of theth tensile well, of
width (and similarly for each compressive well). Notice
that these conditions introduce further approximations to the
model, since they implicitly assume an infinite chain of pairs
of oppositely strained wells, and furthermore neglect any
diffusion process occurring over the finite width of the wells.
In any case, regardless of the detailed form of the boundary
conditions (provided they are linear), the solution of (12) can
be used to recast (11) in the following form (in the frequency
domain):

-
-

-
-

(13)

where is an effective escape rate from each tensile
well, and is the overall transport rate from each
compressive well to each neighboring tensile well. Simple
expressions for these quantities can be obtained if: 1) we use
the boundary conditions on mentioned above; 2) we take

the diffusion length to be much larger than
the barrier width (which is certainly the case at the detuning
frequencies of interest here); and 3) we neglect differences
between the two types of wells. The result is

(14)

Notice how both rates are complex-valued functions of the
detuning frequency (the frequency of the carrier density
modulation being coupled between adjacent wells). This de-
pendence results from the dependence of the diffusion
length; the complex character implies that a phase shift is
introduced in the escape/transport process. At low detuning
frequencies, where diffusion is essentially instantaneous, in-
terwell transport is mainly limited by quantum escape, and

(the factor of two appears because, if the
two types of wells have equal capture lifetime, as assumed in
(14), each escaped carrier from a well can be transferred to
an adjacent well or recaptured in the same well with equal
probability).

Given the rate equations (13) and the density matrix equa-
tions (2)–(4) for both types of wells, one can proceed as before
to solve for the FWM susceptibility tensor components. The
contribution from each compressive well can be written as

, where (including the CDM terms
only, as appropriate to the experiment under consideration)

(15)

(the contribution from each tensile well can be written in
exactly the same manner with the superscriptsand
interchanged). Again, we are neglecting here any dependence
of on , as appropriate to highly strained QW’s; full
expressions for the scalar susceptibilities just defined are given
in Appendix A.

The continuous lines in Fig. 7 are the fits to the model
theory just described. The agreement with the experimental
data is excellent, except for the points at detuning frequencies
in excess of about 50 GHz, where carrier heating (not included
in the model) is known [11] to cause an increase in the FWM
conversion efficiency. Note, however, that since this increase is
approximately the same for both the TE and TM components,
the fit remains good for their ratio in Fig. 7(b). From this fit,
we obtain an estimate of 16 ps for the low-detuning interwell
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transport lifetime , as well as .2 Furthermore, if we assume
that and are related to the quantum capture/escape
lifetimes as given by (14), we find 8 ps, and
1.5 ps; we point out however that these estimates further rely
on the simplifying assumptions used to derive (14), and they
should be interpreted accordingly. Anyway, we note that these
values are consistent with previous reports [12]–[18] and with
the observed maximum modulation bandwidth of QW lasers.

C. Investigation of the Optically Induced Phase
Coherence Between Spin-Degenerate States

In the presence of an external optical field, a relative phase
coherence may be established between two spin-degenerate
states in, say, the conduction band (even if the dipole moment
between them is obviously zero), if the field couples both
states to a same state in the valence band. In particular, if
the optical intensity involves a beat note at some frequency

(as in the case of FWM), this phase coherence (described,
in (2)–(4) by the density matrix elements with )
will be modulated at the same frequency. As was discussed
in Section II-B, this can only occur if the beating involves a
TE-polarized pump and a TM-polarized probe (or vice versa);
the TE (TM) component of the pump is then scattered into a
TM-(TE-)polarized FWM signal.

This contribution to the converted signal [described by
the last two terms on the right-hand side of (9)] can be
easily isolated by setting the polarization state of one of
the input waves exactly along the TE direction, and that
of the other along the TM direction. The observation of
a FWM signal under this condition would allow to study
the dephasing dynamics of the spin-spin phase coherence
just described. In particular, by measuring the corresponding
FWM conversion efficiency versus detuning frequency (and
appropriately subtracting all propagation effects), one could
extrapolate the dephasing lifetime.

However, this FWM mechanism is strongly limited in
the device used in our experiments, due to the high degree
of birefringence typical of most strained MQW SOA’s. We
estimated the refractive index experienced by TM (TE) waves
by measuring the frequency spacing between neighboring TM
(TE) residual modes of the SOA; the difference

was found to be quite large, approximately equal to
. As a result, the phase mismatch between the input waves

is in this case significant. This leads to a strong reduction in
the FWM conversion efficiency, which can be quantified using
(30) below for . For simplicity, we assume that the
total optical intensity is uniform along the interaction length
(as appropriate to the high-saturation regime of operation),
and furthermore we neglect the frequency dependence of the
gain coefficient and refractive index (as appropriate to sub-
TeraHertz detuning frequencies). Then, the magnitude squared
of is found to be smaller than that of
by almost 3 orders of magnitude. In other words, the phase
matching requirement reduces the conversion efficiency for

2Again, we neglect any difference between the relevant time constants in
the two types of wells, since we believe that any such difference would be
too small to be unambiguously inferred from the data of Fig. 7.

FWM with TE-polarized pump and TM-polarized probe (or
vice versa) by almost 30 dB.

In a preliminary experiment, we found the FWM conversion
efficiency under these conditions to be exceedingly small, so
that a lock-in amplifier had to be used in conjunction with our
standard optical heterodyne system to even see the converted
signal. Possible ways of maximizing its strength are currently
under investigation.

IV. CONCLUSION

We have reported the results of an extensive theoretical
and experimental study of the polarization properties of FWM
in MQW SOA’s. These results, we believe, are useful for a
thorough understanding of the microscopic processes respon-
sible for the generation of the FWM signal. Furthermore, we
have shown how they can be used in FWM spectroscopy
of the SOAs’ optical nonlinearities. In particular, we have
demonstrated novel techniques for the measurement of the
stimulated recombination lifetime and the interwell transport
rate of alternating-strain MQW SOA’s.

APPENDIX A
FWM SUSCEPTIBILITY TENSOR COMPONENTS

In this appendix, we give the explicit expression for the
FWM susceptibility tensor , as derived within the frame-
work described in Section II-A. The contributions associated
with carrier density modulation, carrier heating and spectral
hole burning are as follows:

(16)

(17)
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(18)

and

(19)

where we introduced the matrix element ,
the Fermi inversion factor and the complex
lineshape function

(20)

All Fermi distribution functions are to be evaluated under
conditions of quasiequilibrium (as determined by the electrical
pumping). Also, in (19), the indexis defined so that, given

(for instance, if denotes spin-up,denotes spin-down),
and similarly for . Furthermore, in writing these expressions,
we assumed isotropic in-plane dispersion relations, so that
the only quantities depending on the direction of the 2-
D wavevector are the dipole moments , and
denotes averaging over all directions of. All other quantities
appearing in (16)–(20) are defined in Section II-A.

Next, we consider the summations over the indexes,
which, once substituted in (16)–(19), entirely determine the
polarization properties of the FWM susceptibility. We consider
the general case of a QW with arbitrary (or zero) strain, for
which the doubly-degenerate conduction- and valence-band
states can be written as [28]

(21)

where are the envelope-function state vectors
for electrons, light holes and heavy holes.

With these expressions used to compute the dipole moment
matrix elements, we find

(22)

(23)

(24)

where we use and to denote the TE and TM direction
respectively. From these equations, the FWM polarization
selection rules discussed in Section II-B are immediately de-
rived.

A more compact expression for can be obtained from
(16)–(19), if the dependence of the dipole moment matrix
elements on can be neglected, which is in particular a valid
approximation when valence-band mixing is negligible [28]
(i.e., in highly strained structures). Then, the summations over
the indexes can be taken out of the sums over, which
results in the general form for given in (8). The scalar
susceptibilities , , , and introduced
there can then be immediately obtained from (16) to (19)
respectively [by comparison with (8)]. In passing, we note that
the limiting forms of (22)–(24) appropriate to highly tensile-
strained (compressively strained) QW’s are obtained by taking

.
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(25)

(26)

Finally, we give the full expressions for the scalar suscep-
tibilities and introduced in (15) as (25) and
(26) found at the top of the page. Notice how, in the limit
of no interwell coupling (i.e., for and

), reduces to the expression for in
(16), whereas vanishes. These equations (with lifetimes
taken to be the same for both types of wells) are used in the
fit to the experimental data of Fig. 7.

APPENDIX B
PROPAGATION EFFECTS

In a realistic comparison of experimental results with the-
oretical predictions, it is important to keep in mind that the
FWM conversion efficiency is strongly affected by propagation
effects. In order to include such effects in our model, we need
to solve the standard coupled-mode equations of FWM in
optical amplifiers

(27)

where

(28)

In these equations, is along the direction of wave prop-
agation, and are the modal gain coefficient and
linewidth enhancement factor for the(th) component of the
field at frequency , the internal loss coefficient and the
background refractive index. Finally, we defined the saturation
factor where and are the total
optical intensity and saturation intensity of the SOA.

Solution of these equation (and use of the FWM polarization
selection rules) allows us to write the FWM signal field at the

SOA output in terms of the input fields as follows
[(9)]

(29)

where we defined

(30)
In typical MQW SOA’s, the propagation factor is
also a strong function of the fields polarization, due to both
the anisotropy and the wavelength-dependence of the gain
coefficient and of the refractive index. These considerations
are important in order to make any quantitative predictions of
the dependence of the FWM signal intensity and polarization
on the polarizations of the input waves.
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