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Abstract 
This paper presents initial results on the control 

of mechanical systems for which group symmetries 
exist (i.e.? the dynamics are invariant under the ac- 
tion of a Lie group) that are not fully annihilated 
by the addition of nonholonomic constraints. These 
types of systems are characterized by the persistence 
of momentum-like drift terms which are not directly 
controllable via the inputs to the system. We show 
that for systems with nonholonomic constraints (in 
direct contrast with unconstrained systems with sym- 
metries or systems with holonomic constraints) there 
exists the possibility for controlling these momentum 
terms. The snakeboard is used as a motivating exam- 
ple, and some comment is given as to the utility of 
these equations for general robotic locomotion. 

1. Introduction 
Making use of modern advances in geometric me- 

chanics, researchers have made great progress in an- 
alyzing the mechanics of locomotion. The problem 
of locomotion can be found in many different areas 
of study because it asks the fundamental question of 
how does a system use its control inputs to move from 
one place to another. By utilizing the inherent math- 
ematical structure found in these types of problems, 
one can formulate the dynamics of a wide variety of lo- 
comotion problems in a very intuitively appealing and 
insightful manner. Doing so leads to a stronger com- 
prehension of the mechanics of locomotion, but leaves 
open some very basic questions about the control of 
such types of systems. 

An important by-product of the mechanics research 
in locomotion has been the development of a the- 
oretical bridge between systems with two different 
types of nonholonomic constraints. On one hand, 
there are systems with external (often called kine- 
matic) constraints which include wheeled vehicles 81, 

of snakes [5], paramecia [lo], and even legged loco- 
motion [4]. On the other hand, unconstrained sys- 
tems with Lie group symmetries possess internal (of- 
ten called dynamic) nonholonomic constraints, which 
often take the form of momentum conservation laws. 
Examples include satellites in space [3] and the prob- 
lem of the “falling cat” [7]. 

Naturally, there are problems for which both inter- 
nal and external constraints may exist and interact in 
a nontrivial manner. Bloch et al. [l] have studied this 
case and formulated a generalized momentum to de- 
scribe the interaction of the external constraints with 
the internal symmetries. There is strong evidence to 
suggest that many different modes of locomotion (such 
as undulatory, legged, etc.) are governed by equations 
of this form. To illustrate these ideas, we will exam- 
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ine the snakeboard model [l, 61, which has been an 
important motivating example behind the theoretical 
progress for this mixed kinematic and dynamic con- 
straint case. 

Along with the problem of mechanics comes a num- 
ber of associated issues to investigate. For instance, 
extensive work has been done in the limiting cases 
of either purely kinematic or purely dynamic con- 
straints, including controllability [2, 71 and trajec- 
tory generation [8, 41. Along these lines, Bloch, Rey- 
hanoglu, and McClamroch [2], studied the case of 
fully dynamic systems with nonholonomic constraints. 
Their paper, however, required that all of the uncon- 
strained dynamics be controlled, and was not intended 
to address the special structure inherent in systems 
with Lie group symmetries. 

2. Background and formulation 
The use of Lie groups will be important for the anal- 

ysis performed in this paper, motivated principally 
from our studies of robotic locomotion, where dis- 
placements occur in some subgroup of SE(3) ,  most 
often SE(2) or SO(3). The reader should keep in 
mind, however, that the results hold for general Lie 
groups. Formally, the displacement of a robot’s body 
fixed frame is considered as a left translation. That 
is, if the initial position of a rigid body is denoted by 
g ,  and it is displaced by an amount h, then its final 
position is hg. Hence, we can describe the evolution 
of the position of the robot using a Lie group with 
respect to some inertial frame. 

The remaining components of the system are as- 
sumed to be controllable, and these configuration vari- 
ables will be represented by a shape manifold M .  
Thus, the configuration space will be the product 
manifold given by Q = G x M .  In the mechan- 
ics literature, the manifold Q defines a trivial prin- 
cipal fiber bundle that is said to have fibers, G, over 
a base space, M .  We can then decompose the co- 
ordinates on Q into fiber and base coordinates, i.e., 
q =  ( g , r )  E G x M = Q. 

The group translation induces a left action, @ . 
G x Q -+ Q that satisfies the two properties: (lj 
@(e,q) = q for all q E Q ,  and e the identity ele- 
ment of G; and (2) @(h, @(g ,  q) )  = @(hg, q)  for every 
g , h  E G and q E Q. It will be useful to consider the 
left action as a map from Q into Q ,  with the element 
h E G held fixed. Notationally, @ h  : Q -i Q is given 
by ( g , r )  I-+ ( @ ( h , g ) , r )  = (hg , r ) .  The lifted action, 
which describes the effect of @ h  on velocity vectors in 
TQ, is the tangent map, T,@& : T,Q -+ Tn,Q. 

In working with mechanical systems, we assume the 
existence of a Lagrangian function, L(q, q). We are 
interested in systems with nonholonomic constraints, 
which may take the form of no-slip wheel conditions 
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or viscous friction. Given k linear velocity constraints, 
we can write them as a vector-valued set of k equa- 
tions: 

This class of constraints includes most commonly in- 
vestigated nonholonomic constraints. 

Linear constraints can be incorporated into the dy- 
namics through the use of Lagrange multipliers. That 
is, the dynamic equations become 

where X is an unknown multiplier representing a force 
of constraint, and r is an external forcing function. 
Solving for Lagrange multipliers can be an involved 
procedure, and may hide much of the intrinsic geo- 
metric structure of the problem. 

For systems in which the Lagrangian and the con- 
straints are left-invariant, i.e., for which wi(hq) = 
Th+q@h-lw(q) and L(@hq,Tq@h4) = L(q,Q), it  was 
shown in [l, 91 that the equations of motion can be 
transformed into the following form: 

g-lg = -A(r)f + f - ' ( ~ ) p ,  (3) 

p = -r%++(r)f +p%,+(r)f + -p%,,(T)p, 
(4) 

r = U. ( 5 )  

1 .  1 
2 2 

These equations, of course, deserve a good deal of 
comment (to gain a much better insight into these 
equations, refer to  [l]). Eqs. 3 and 5 are the fiber and 
base equations, respectively. They will d e h e  velocity 
vectors for the configuration variables. Eq. 4 is called 
the generalized momentzlm equation, where p is a mo- 
mentum vector associated with the momentum along 
each of the kinematically unconstrained fiber direc- 
tions. Notice that in Eq. 5 we have assumed the base 
(shape) space to  be fully controllable, with accelera- 
tion inputs, U. 

Of particular importance, however, is the term A(T) 
in Eq. 3.  In the geometric mechanics nomenclature, 
A is said to define a connection on the fiber bundle Q. 
The connection will satisfy certain geometric prop- 
erties. Most importantly, it defines the relationship 
between control velocities on T M  and group veloci- 
ties on TG. As might be expected, derivatives of A 
will have a direct correspondence to Lie brackets of 
the control and drift vector fields. 

The I-'p term determines the effect of the momen- 
tum on the fiber equations. For the terms, c++, up+, 
and a,, of the generalized momentum equation, we 
mention only that they are strictly functions of the 
base variables, T ,  and so the generalized momentum 
equation can be written solely as a function r and 
p [9]. With the inputs as accelerations, Eqs. 3-5 can 
be written in a standard form for nonlinear control 
systems with drift: 

i. = f(z) + h i ( Z ) t i * ,  (6)  
where z = ( g , p , r , + )  E N = G x RI' x M x T,M. 

Example 1 Now let us turn to a formulation of the 
snakeboard problem in terms of the relationships de- 
rived above. The Snakeboard is a commercial vari- 
ant of the skateboard, in which the wheel trucks 

are allowed to  rotate independently. The simplified 
model of the Snakeboard (referred to  as the snake- 
board model) is shown in Figure 1. We briefly recall 
here the description of the snakeboard as developed 
in [SI. 

Fig. 1: The simplified model of the Snakeboard. 

We begin by following two assumptions made in [l, 
91 First, we assume that the wheels are controlled to 
move out of phase with each other, in opposite di- 
rections. In other words, using the symbols given in 
Figure 1, let 4 = &, = -4f. Second, along the lines of 
Bloch et al., we will assume that J + J, + 2Jw = m12. 

With these assumptions, the snakeboard has a con- 
figuration manifold given by Q = SE(2) x 8' x 8'. 
SE(2) describes the position and orientation of the 
board with respect to some inertial reference frame. 
As coordinates for Q we shall use (2, y, 6,  $, 4) where 
(2, y, 6) describes the position and orientation, 11, is the 
angle of the rotor with respect to the board, and 4 and 
-4 are, respectively, the angles of the back and front 
wheels with respect to the board. The configuration 
space easily splits into a trivial fiber bundle structure, 
with q = (g , r )  given by g = (z,y,6) E G = SE(2) 
and T = ($,$J) E M = 8' x 8'. The left action for 
a group element, h = (a1,a2,a) E G, is given by the 
map: 

@h(z,y,6,+,4) = ( x c o s a - y s i n a + a ' ,  

z sin a + y cosa + a2, + a, $, 4). 
For the snakeboard, we denote by m the mass of the 

board, 1 the length from the board's center of mass 
to  the wheels, and J ,  JT, and J ,  the inertias of the 
board, rotor and wheels, respectively. For the snake- 
board, the unconstrained Lagrangian is given simply 
by kinetic energy terms as 

The control torques are applied at the wheels and 
the rotor, and the wheels of the snakeboard are as- 
sumed to roll without lateral sliding. The nonholo- 
nomic wheel constraints for the back and front wheels 
are, respectively, 

- sin(8 + 4)i  + + 4)y - 1 cos(4)e = 0, 

- sin(6 - $)i + cos(8 - 4)y + I cos(4)e = 0 
( 7) 

(8) 

A quick set of calculations shows that both the La- 
grangian and the constraint one-forms are invariant 
with respect to  the lifted group action. The momen- 
tum is defined along unconstrained directions tangent 
to the fiber. Thus, we define the constrained fiber das- 
trabution for this problem to be the one-dimensional 
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subspace, 

a a a  
ax ay ae Sq = SP{U- + b- + C-} 

where a = -1 cos2 $cos 0, b = -1 cos2 +sine, and 
c = sin(24). All vectors in S, are tangent to the group 
G and satisfy the constraints in Eqs. 7 and 8. The gen- 
eralized momentum, p ,  is thus one-dimensional. Let 
((,)) denote the inner product defined by the kinetic 
energy metric for our mechanical system. Then 

P = ((@, X(q))) 

= (((271, e ,  11,,& &I, (a, b, c, O,O,O))) 
= max + mbG + m12c8 + J r C l )  + Jwc(& + if), 

Writing the equations in the form of Eqs. 3-5 gives 
where X ( q )  E S,. 

The generalized momentum equation is then just 

p = 2 J, cos2 4 $4 - tan 4 dp .  

Finally, the dynamics on the base space reduce to  

which is easily inverted to show controllability of the 
base variables, which we will write as 1,8 = U+ and 

Let z = (2, y, O,p,  $, 4,4, d) E N ,  and then we can 
4 = uq). 

write the snakeboard equations in control form with 

cos e sin 0 
2ml 2ml f = ( - ( Jr sin 24 11, - p )  , - (J, sin 2411, - p )  , 

tan 4 
2m12 - -(Jrsin2&,h - p ) ,  

T 
2 J,. cos2 4611, - p tan #$,q, I$, 0,O) . 

3. Local accessibility 
First, we must give notions of accessibility and con- 

trollability. Let RV(zo,  T )  denote the set of reachable 
points in N from zo at time T > 0, using admissible 
controls, u(t) ,  and such that the trajectories remain in 
the neighborhood V of zo for all t 5 T .  Furthermore, 
let 

RF ( 2 0 )  = Ut_<TRV (z0 t )  
be the set of all reachable points from zo within time 
T .  

Definition 1 The system given by Eq. 6 i s  locally ac- 
cessible if for  all B f N ,  R g ( z )  contains a non-empty 
open set of N for all neighborhoods V of z and all 
T > 0. The  system is called small-time locally con- 
trollable ( S T L C )  if z is a n  interior point of R ; ( z )  for 
all T > 0. 

For systems of the form of Eq. 6, we can check acces- 
sibility using the Lie algebra rank condition (LARC). 
To do so, let A0 = span{f, hl, . . . , h,} (spanning over 
C" functions of N ) ,  and iteratively define 

This is a nondecreasing sequence of distributions on 
N which ill terminate under certain regularity con- 
ditions. We will call C = Am the accessibility dis- 
tribution. The LARC states that the system will be 
globally (and hence locally) accessible if C = T N .  

In their paper [4], Kelly and Murray show, similar 
to [7], that the controllability of a kinematic system 
can be determined solely from the connection, A, its 
curvature, and higher derivatives. Using this as mo- 
tivation, we define a sequence of subgroups of the Lie 
algebra, g, of G. 

A, = Ah-1 + Span{[x, Y ]  I x, Y Ei Ak-1). 

0 1  = span{A(X) : X E T r M }  
b2 = span{DA(X,Y) : X , Y  E T r M }  

(9) 
bk = S P ~ ~ { L X <  - [A(z), <I, [ r ~ ,  61 : X E TrM, 

< E bk-177 E b2 @ * ' '  @ bk-l}, 

where the curvature (exterior derivative) of the con- 
nection is defined with respect to the structure equa- 
tions as 

w x ,  Y )  = dA(X,  Y )  + [ N X ) ,  A(Y)I, 
with [A(X), A(Y)]  the Lie bracket on g and d denoting 
exterior differentiation. 

Next, we examine a few of the lower order brack- 
ets in the accessibility distribution, C ,  which play an 
important role in the accessibility and controllability 
analyses to follow. The only nonzero first order brack- 
ets (those in A,) are those which bracket the control 
vector field with the drift vector field. A quick calcu- 
lation shows that 

-4 ( r )  
.).+ + (. .)' . ai := [f ,hi] = ( ( rr (2 ~ p r  .PI) 

Moving to the second order brackets, an interesting 
thing happens when we bracket hi with aj: 

Thus, the o++ term (which is a cross-coupling term for 
the base variables that drives the momenta) directly 
affects the momentum variables via the pi. brackets. 
Viewing this coupling as a map, U++ : Td x T M  + 
RP, surjectivity of CT++ implies that all of the momen- 
tum directions can be generated via this second order 
bracket. This leads us directly to a test for local ac- 
cessibility. Detailed proofs of the results here can be 
found in [9]. 

Proposition 2 Assume that U++ is onto and that 
il = c 2  + c 3  + ... , 

where the $k' s  are defined as above using the local 
form of the connection in Eqs. 3-5. Then the system 
given by these equations is locally accessible. 
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4. Local Controllability 
Unfortunately, for nonlinear systems with drift, lo- 

cal accessibility may be quite different from local 
controllability. In examining small-time local con- 
trollability, we use sufficient conditions given bysuss- 
man [ 111. For reasons of clarity and brevity, the treat- 
ment here will not be completely mathematically rig- 
orous. For details on how this can be done more rig- 
orously, please refer to [2, 9, 111. 

Let ho := f so that A0 = span(h0, hl ,  . . . , hm}, and 
let Si(X)  be the number of times that hi appears in a 
given set of brackets, X. Similar to Sussman, define 
the degree, S, of a bracket X to be b = C z o S 6 " ( X ) .  
Then we have the following theorem due to Sussman: 

Theorem 3 [ll] Given the system of Eq. 6, with 
ho(z0) = f(z0) = 0 at an equilibrium point zo E N ,  
assume that (ho, . . . , hm) satisfy the LARC at zo. Fur- 
ther, assume that whenever X is a bracket for which 
S o ( X )  is odd and S1(X), . . . , P ( X )  are all even, then 
there exist brackets &, . . . , Y k  such that X = ex, for 
some tl,. . . , tk E R, and 

S ( X )  < S ( X ) ,  for i = 1 ,..., m. 

Then the system defined by Eq. 6 is STLC from 20. 

In other words, we will define a "bad" bracket to be 
those for which the drift term appears an odd num- 
ber of times and for which the control vector fields 
each appear an even number of times (including zero 
times). The requirement for small-time local control- 
lability, then, will be that all "bad" brackets can be 
written in terms of brackets of lower degree. 

Proposition 4 [9] Assume that the system defined by 
Eqs. 3-5 is locally accessible, that n++ is surjective, 
and that (n++)ii = 0 for i = 1,.  . . , m (no summation 
over i). Then this system is small-time locally con- 
trollable (STLC) from all equilibrium points, zo E N .  

Example 1: (cont'd) We return to the snakeboard 
example to investigate controllability. Obviously, the 
bracket of the control inputs, [h$,h+], is identically 
zero. Similarly, the brackets a$ = [f,h$] and a+ = 
[f., h+] yield the respective velocity directions. Along 
with the control inputs, this will imply control of the 
base (controlled dynamics). In order to show accessi- 
bility and controllability (STLC), one of the first cri- 
teria to be satisfied is the conditions on U++, given by 
the following third order brackets. First, we need the 
diagonal elements of n++ to be zero. This is given by 
,B@+ = ,B++ = 0. Then, we look at off diagonal terms 
to show that n++ is surjective. To see this, we simply 
give the necessary bracket: 

P+$ = (0, 0, 0, 2JTC0S24, 0, 0 ,  0, o)T , 
The bracket ,B++ = [a+, h ~ , ]  is nonzero for all 4 # $ 
and so U++ is surjective. 

Finally, to demonstrate that the snakeboard is con- 
trollable, we need show that g = (12 + (I3 + . . . . We 
begin by computing [a@, a+], which gives us the cur- 
vature of the connection, DA. This yields terms of 
the form: 

Then, [a@, [a+, a@] ] yields 
T 

(-%sin24, 0, - 3 ~ 0 ~ 2 4 )  E b3, 

and [a+ , [a+ > [a+ , [a4 , 9 1  I I I gives 

(0, &cos24, o)T E b 5 .  

Thus, g = fj2 + f13 + b5,  and the conditions for Propo- 
sition 4 are satisfied. 

5.  Conclusion 
This paper establishes easily computable accessibil- 

ity and controllability results for systems on principal 
fiber bundles with external nonholonomic constraints. 
These types of systems are characterized by the exis- 
tence of a connection, which relates the control in- 
puts to the motion of the system. The connection has 
been discussed in its direct implications for accessi- 
bility and controllability. Furthermore, these types of 
systems will very often include drift vector fields, in 
the form of momentum terms. Research has shown 
that many problems of locomotion can be formulated 
in terms of this dynamical structure. Future work 
will be concerned with further exploiting the geomet- 
ric structure of the problem, and in developing results 
governing trajectory generation and optimal control 
of locomotive gait patterns. 
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