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Abstract—This paper introduces an algorithm for tracking
targets whose locations are inferred from clusters of observations.
This method, which we call MHTC, expands the traditional
multiple hypothesis tracking (MHT) hypothesis tree to include
model hypotheses—possible ways the data can be clustered in
each time step—as well as ways the measurements can be
associated with existing targets across time steps. We present this
new hypothesis framework and its probability expressions and
demonstrate MHTC’s operation in a robotic solution to tracking
neural signal sources.

I. INTRODUCTION

Robots that must observe several dynamic objects in their
environment often employ methods for multitarget tracking
(MTT). These techniques maintain the identities of observed
objects of interest by associating new sensor measurements
with estimated or known targets and using these associations to
update target state estimates. Existing MTT methods typically
assume that each target can generate at most one observation
at each time step. In this paper, we address the problem
of tracking targets that are each represented by a multitude
of statistically distributed observations in each time step, a
matter that has not previously been addressed in an integrated,
comprehensive manner. We propose a new procedure, termed
MHTC for multiple hypothesis tracking of clusters, that com-
bines Bayesian techniques from clustering and data association
into a novel hypothesis framework to effectively and robustly
track such targets.

Specifically, we consider the following scenario. At each
time step k, a set of observations Y* = {y¥}&¥ | is obtained
from an unknown number of current targets. Each target
has generated many observations, which may be modeled as
samples from a probability distribution representing that target.
These observations must be broken up into sets (i.e., clustered),
assigning each observation to a cluster C§ (g=1,...,G*) and
estimating the number of sources G*. Additionally, the current
clusters must be matched (i.e., tracked) to the targets estimated
to exist at time k£ — 1 (indexed by j) and used to update the
estimate of the current target state mf Several factors may
complicate this process, such as newly appearing or disap-
pearing targets, temporary occlusions or missed detections, and
false measurements (clutter).

*This work was completed at the California Institute of Technology with
support from the National Institutes of Health and the Rose Hills Foundation.

978-1-4244-2789-5/09/$25.00 ©2009 IEEE

Joel W. Burdick
Mechanical Engineering
California Institute of Technology
jwb@robotics.caltech.edu

This tracking problem arises, for example, in the authors’
related work on a miniature robot for autonomously position-
ing electrodes in the brain to obtain high quality extracellular
recordings [1]-[3]. In the main loop of this robot’s control
algorithm, the electrode’s signal is periodically sampled for a
brief interval and analyzed to determine if positional adjust-
ments will improve signal quality of a given neuron. However,
an electrode may record the spiking activity of several nearby
neurons, each one generating many spikes over the short time
interval. Thus, the detected spikes must first be sorted ac-
cording to their generating neurons, and previously identified
neurons must be re-identified in the current recording interval
(“tracked”), despite possible changes in the amplitude, phase,
and numbers of neuronal signals.

Fig. 1. Photographs of the Robotic Electrode Microdrive.

The problem statement described above may also arise in
other robotics application areas. For example, in radar detec-
tion of pedestrians for robotically assisted driving, a single
person might be represented by a set of distance measurements
(due to variability in the range to different body parts and
to reflections); these observations from each person must be
grouped together, and the resulting pedestrians tracked over
time [4]. In computer vision, objects of interest in each frame
may be inferred from a grouping of features; each image must
be segmented and each target object tracked over multiple
frames [5].

In traditional MTT, the locations of several objects of
interest (targets) are measured in sequential “scans” of an
observation volume. Using these data, MTT solutions combine
a filter for estimating the target states and a data association
technique for assigning the current measurements to known
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targets (see [6]-[9] for MTT overviews). Current MTT solu-
tions differ primarily by their data association method, which
governs which measurements are assigned to putative targets
and so used to update the state estimates of those targets
(typically through a Kalman Filter). An exclusivity principle
is usually enforced, under which each target may generate at
most one measurement and each measurement can represent
only a single target. Under this assumption, a set of legal data
association hypotheses may be defined, where each hypothesis
assigns every measurement to an existing target (or possibly
designates it as a new target or false measurement).

Multiple hypothesis tracking (MHT), attributed to Reid
[10], is generally accepted as the preferred data association
mechanism for modern MTT systems [11]—though other
approaches, such as nearest neighbor and joint probabilistic
data association (JPDA) [12], remain popular, largely because
of MHT’s heavy computational demands. MHT maintains
many possible data association hypotheses and propagates
the corresponding target state estimates for each hypothesis,
implicitly deferring decisions in anticipation that subsequent
data measurements will resolve any ambiguity. A key recent
development in MHT implementations is the use of an algo-
rithm, originally due to Murty [13], to generate only the L-
best hypotheses at each time step, avoiding the combinatorial
explosion of hypotheses at a reasonable cost of sub-optimality
[14].

The key differentiator of our problem (MTT for cluster-
producing targets) versus traditional applications is the multi-
tude of observations per target in each scan. The measurements
of target location are therefore not received directly from
the sensor but rather must be estimated from subsets of
observations. Further, the uncertainty and difficulty inherent in
the clustering problem greatly complicates the tracking task:
Correctly assigning observations to their generating targets is
essential for accurately estimating the location, and even the
number of “measurements” (in this case, clusters) is unknown
a priori. Some MTT solutions such as those using Finite Set
Statistics [15] may allow for a many-to-one relationship of
observations to targets, but to our knowledge no others fully
combine advanced clustering and model selection techniques
into the tracking solution. Given the significant ambiguities
in neural data, such an integrated approach is critical for our
application.

Our MHTC algorithm presented in this paper is a multiple
hypothesis approach to combined clustering and tracking,
propagating not only multiple data association hypotheses
but also multiple hypotheses on how the data should be
clustered. We detail this novel hypothesis framework as well
as the explicit equations to calculate the probabilities of
the hypotheses. Our previously presented Bayesian clustering
algorithm [16], along with its inherent measures of cluster
associations across time intervals, provides a key component of
the MHTC algorithm. While this prior work included a simple
“single hypothesis” nearest neighbor tracker, MHTC offers
a significantly more robust solution, demanded in situations
when, for instance, a target is temporarily occluded, targets

are entering or leaving the observation volume, a time step’s
clustering result contains an error, or the signals of different
targets are difficult to distinguish for a time. Additionally,
MHTC utilizes a recursive filter for estimating the state of
each target, explicitly identifies false clusters, and includes a
more sophisticated model selection technique.

The remainder of the paper is structured as follows. Sec-
tion II reviews our Bayesian clustering method [16], for it
is integrated into the MHTC solution. Section III overviews
the MHTC solution, while Section IV provides further mathe-
matical detail. MHTC is demonstrated by experimental results
from our neuron-tracking robot in Section V, and Section VI
provides concluding remarks.

II. REVIEW OF MAP CLUSTERING METHOD

Our clustering method [16] is founded on the optimization
of a Gaussian mixture model via expectation—maximization
(EM) [17]. The underlying assumption is that the observations
y¥ in different clusters Cg can be modeled as samples from
different multivariate statistical distributions, where each dis-
tribution represents a specific target. Let M,,, denote the mth
mixture model class under consideration (the need for multiple
model classes and the selection technique are discussed in
Section IIT)—the model class dictates the model order G,,
(i.e., the number of components/clusters), the form of the gth
probability density f, (typically Gaussian), and the form of the
model parameters ©%, = {7% 05}%m 7k and 6% denote the
mixture weight and parameters of the gth component, respec-
tively (for a Gaussian distributions, the component parameters
are the mean and covariance matrix: 6% = {uF, X5},

The goal of the clustering method is to optimize the mixture
model parameters ©F for each model class and assign each
observation to its most probable mixture component. While
most traditional clustering procedures use a maximum like-
lihood (ML) approach, we find the maximum a posteriori
(MAP) parameters, incorporating Bayes’ Rule:

Mm) p(@lfn|Y1:k71, Mm) )

ey
where Y% = {Y! ... Y*} denotes all observations from the
1st through the kth time steps. The mixture likelihood of the
model parameters given the data is

p(OF Y% M,,) < p(Y*|OF

N Gm

= | DAL (2)

n=1g=1

p(Y*|OF,, M

The novelty of our clustering approach lies in the way we
incorporate a prior that aids in tracking targets. We have con-
structed an appropriate prior on the model parameters ©F —
focusing on the cluster “locations” u’g“—based on the predicted
target locations, {ujlk ! jJ 1, of all J targets hypothesized to
exist from time k — 1. This mixture prior on a cluster mean is

p(pg Y571 Moy, +Zw N (T

3)
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where wf denotes the mixture weight; fxr the Gaussian PDF;
V' the observation volume; and Sj’-C the innovation covariance.
The zeroth component is uniform over the observation volume
V' to capture new targets and the remaining components are
Gaussian distributions to match existing targets near their pre-
dicted locations. Using uniform priors for the mixture weights
and covariance matrix elements and letting wf‘k_l denote the
parameters needed for the jth mixture prior component,

Gm J
p(OFIVIF M) o TT Db £ (k™). @)
g=135=0
Given the form of (2) and (4), an analytical solution for the
parameters that maximize (1) cannot be found. EM is thus used
to estimate these parameter values. To apply this technique, we
contrive cluster association indicators Z = {(4;}, hidden data
that specify whether the cluster C;“ is related to the jth target,
or, ideally,

1 if M’; is the new position of the jth target
ng = .
0 otherwise.

The EM algorithm iterates between an E-step to calculate the
conditional expectation of the hidden data using the current
parameter estimates,

k ko klk—1
wji fj (”g Wj )
GE=1  pop (apr klk—1
=0 wi'fi (Mg ¥, )
and an M-step to find the parameter estimates O that maximize
a modified form of (1) given (45, until some convergence
threshold is reached. (The algorithm requires an initial guess or

“seed clusters” for initialization.) See [16] or [18] for further
details.

Coi = B [GoIY*,0,,] = )

III. MHTC FRAMEWORK
A. Definitions

1) Hypothesis Terminology: We define two types of hy-
potheses in MHTC: model hypotheses and data association
hypotheses. A model hypothesis represents a possible cluster-
ing of the observations and is denoted by its corresponding
mixture model class, M,,,. Each data association hypotheses,
hi = {m,v, ¢}, assigns each cluster in a given model
hypothesis to a target (or marks it as spurious): The set 7;
contains the assignments of the model’s clusters to known
targets; v, contains the indices of the model’s clusters that are
identified as new neurons; and ¢; holds the the indices of false
clusters (spurious groupings of outliers or similar clustering
errors)in the current model. Note that N, IV,,, and N, are the
respective cardinalities of these sets and G, = N+ N, +N.

We call the combination of a data association hypothesis
and its parent model hypothesis a particular joint hypothesisat
time k, Hf" = {M 1), lu}. The joint hypothesis H}* thus pos-
tulates a complete set of data associations for time k, including
the observation—cluster associations in M, ;) and the cluster—
target associations in h;. A particular joint hypothesis is
combined with its parent hypothesis H pléffl to define a global

hypothesis, H}** = {HF H ;éf)_l}, which includes the full
history of all model and data association hypotheses from time
1 through k. ! Finally, it is convenient to define QF as the set of
all surviving global hypotheses { H**}L | and all data Y%,
which thus provides all relevant measured and hypothesized
information about time k: QF = {{H}**}[ | Y1+}.

2) Dynamical System Model: After measurements are as-
signed under the hypothesis h;, they are used to update the
target’s track, its sequence of estimated states. The implemen-
tation presented in Section V utilizes a simple linear, discrete-
time, Gauss—Markov system:

x? = k-1 ac?*l + vffl
ﬂ? = H* a:? + wf

vy ~ N (0,Q7)
wf NN(O,R;‘.')

and the Kalman Filter for state estimation. Note that other
system models and filters are possible.

3) Probability Models: Given a set of targets in the parent
hypothesis from H;Ef)_l, the probabilities of the existence
and location of new measurements in interval k£ are modeled
as follows. The occurrence that the jth existing target is
detected (i.e., produces a cluster) is considered a Bernoulli trial
with probability Py ;. If the target is detected, the associated
measurement is expected to appear near the target’s predicted
location with a Gaussian distribution, fr (| ﬂ?lk*l, 55,
where the predicted mean and its covariance are provided
by the Kalman filter. The numbers of new targets or false
clusters appearing in a given time interval are each modeled
by the Poisson distribution with respective rates A\, and \y. If
a measurement originates from a new target or false cluster,
it may arise anywhere in the observation volume V with a
uniform PDF. The parameters Pq ;, A,, and Ay are set by the
user and may vary across sampling intervals.

B. Hypothesis Tree Structure

As shown in Figure 2, the MHTC algorithm extends the
traditional MHT tree to include model hypotheses as well
as data association hypotheses. If L global hypotheses exist
at time (k — 1) and we consider M model classes for each
parent hypothesis, then (LM ) model hypotheses are formed
at time k, each of which is optimized according to the MAP
EM procedure of Section II. By use of Murty’s algorithm, only
the L best data association hypotheses are generated from each
parent model hypothesis To end the hypothesis management
at time k, the best L global hypotheses are selected from
the (L2M) that have been generated. Section III-C provides
further detail on the above process.

C. Overview of the MHTC Process

This section walks through the MHTC process of the com-
bined clustering and multiple hypothesis tracking, as illustrated
in Figure 3. Steps 2—-6 are similar to the procedure detailed
in [16], but some of these steps require a reformulation in the
context of the MHT framework.

Note that the subscripts m(I) and p(l) are used to indicate the index of
the model or global hypothesis, respectively, that is the parent of the /th data
association hypothesis; similarly, in a slightly abusive notation, p(m) may
also indicate the parent global hypothesis of the mth model hypothesis.

3957



..\‘t..f.t\!l.x\.x\x.f.t.
Aﬁ\‘\\\ /J..J.\.\\../Jhl.\\.&\x. AN

Fig. 2.  MHTC hypothesis tree structure, illustrating the integration of model
hypotheses into the traditional MHT framework, using . = 4 and M = 3.
Squares represent model hypotheses (i.e., clustering output) and black circles
represent surviving data association hypotheses at each time step.
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Fig. 3. MHTC process diagram. See text for description of each step. Steps

1-9 indicate core clustering and hypothesis tracking procedures, whereas steps
i—iii are for data acquisition only.

Predict new states
for each target in
each hypothesis

Optimize each
model by EM

Step 1. Given Q*~! and the measurement update from time

k —1 (see Step 9), the first step is to predict the measured
locations (means) of the targets. We use the Kalman Filter
equations to calculate if‘kfl (state prediction) ,Af‘kfl (state
k| k—

.. . 1 ..
prediction covariance), and /i, (measurement prediction).

Step 2. For every parent hypothesis in Q%! a set of
mixture model classes {M,,} is generated, which will be
used to cluster the current data Y'*. A range of model classes
are required primarily because the number of clusters G,
is unknown, and so various model orders are attempted and
each resulting model hypothesis analyzed. However, to save
the computation inherent in optimizing and evaluating “dead
end” model classes, the probability of a model class arising
from its parent hypothesis is calculated and then tested against

a threshold 3:

P(Mp|H 2 L Y1) > 6. (©6)
An expression for this probability, which depends on the
probabilities of target detection, new targets, and false clus-
ters, is provided in Table I. Model classes that do not pass
this thresholding test are discarded; surviving model classes
become the model hypotheses.

Step 3-5. These steps follow the clustering procedure of
[16]. In each model hypothesis, the prior on the model param-
eters is constructed as in Eq. (3). (The innovation covariance
Sf may be calculated using the Kalman Filter equations.) Seed
clusters (the initial conditions for EM) are based on the targets’
predicted locations, and EM is implemented according to the
MAP procedure as previously discussed.

Steps i-iii. These steps collectively acquire and prepare
incoming data for the clustering and tracking procedures. In
many applications (e.g. machine vision and neural data), it is
necessary or helpful to extract features from the recorded data
and use the feature vector in tracking operations.

Step 6. The evidence of each model hypothesis,
p(YE| M, H;Eﬁ;l, Y1+-1) may now be calculated, prefer-
ably via Laplace’s method [19]. If desired for computational
saving, one could now prune extremely unlikely models before
continuing, by setting a threshold on model evidence. How-
ever, this is only worthwhile for large numbers of targets or
large numbers of hypotheses (L).

Step 7. The core step in MHT generates the data association
hypotheses, i, = {7, v, ¢;}. As noted earlier, it is desirable
to utilize Murty’s L-best ranked linear assignment algorithm
to produce only the best data association hypotheses from
each parent cluster hypothesis, obviating the need for full
enumeration of all possible data associations. This technique
requires careful formulation of the probability calculations so
that Murty’s algorithm can operate on a matrix of assignment
likelihoods A. Section IV derives an appropriate expression
of A and describes the hypothesis generation in more detail.

Step 8. Suppose that a total of M model hypotheses
exist at this time, each of which has now spawned I data
association hypotheses. From the (M L) hypotheses that have
been generated, the most probable L global hypotheses must
be selected. Evaluating each model and data association
hypothesis together with its parent hypothesis H;:f)*l, the
probability of each new global hypothesis P(H**|Y1¥) can
be calculated, as detailed in Section IV. This step provides the
set of best global hypotheses in Q.

Step 9. Finally, for each H'* € QF, the hypothesized
data associations h;, along with the optimized parameters ©F,
of the corresponding model hypothesis, are used to update
the Kalman Filter, calculating K Jk (Kalman filter gain), :Ef‘k

(updated state estimate), and Af‘k (updated state covariance).
IV. MHTC PROBABILITIES

This section provides expressions for the key probabilities
necessary for the MHTC algorithm and formulates the data
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TABLE I
FACTORS IN GLOBAL HYPOTHESIS PROBABILITY

Expression for Model in Sect. III-A

Interpretation

Definition
k1 Cm(l . k—1 ~ A
Pl,l p({u’;}g:l( )|Hl1'k,Y1'k 17 N}; eefn(l))
1:k—1 tk—
P2 p(sz‘Hp(l) YLk 1)

1:k—1 k—
Ps P(Mm(l)al(l)  Ylik—1)

1:k—1 k—
Py p(Ykle(l)7Hp(l) 7Y'l.k 1)

Ps  P(H Iyt

Shimo|

k| ~k|k—1
[H(gvj)@'zf/v(“lgcwj‘ ’SJI'C)] [ngl’z%] [ngdn %}
Am [T £ (014lPas) | Q)™ (Ag) ™
(Ag)Gm N7 e—20
G )

see [17] for Laplace’s method (or other approximation)

same as Eq. (7), from previous time step

means’ likelihood under h;
joint hypothesis prior ¢
model hypothesis prior ?

Sser 1)1 f8(5j,z|Pd,j)}

model evidence

parent hypothesis probability

“Apn is a constant depending on the model class and does not require calculation. f5 is the Bernoulli distribution, and d;; is an indicator variable of

whether the jth target is tracked under the /th hypothesis (j € 7).

o = A\ + Ag- O is a vector of indicator variables d;, j = 1,...,J, and Y is the set of all possible § for a given J.

association problem for use of Murty’s L-best assignment
algorithm.

The key probability to be determined for MHTC is that of a
global hypothesis given all collected data, P(H}**|Y''**), the
basis of the final hypothesis selection for time & (in Step 9).
The expression for this probability includes all relevant mea-
sures about the parent hypothesis, model hypothesis, and data
association hypothesis. This global hypothesis probability may
be expressed as

Lk iy 1k b P11 Pay
P(Hl |Y ) - C ZnEF Pl,n 7)2,71,
where C is a normalization constant, I" is the set of indices
of all legal data association hypotheses given the model
hypothesis M,,,(;y. The comprising factors (P11, P2, etc.)
have natural interpretations for why they influence the global
hypothesis probability and are described in Table I. A brief
sketch of the proof for Eq. (7) is provided in the next
paragraph. See [18] for further detail, along with a derivation
for the expressions in Table I.

First, Bayes’ Rule provides the decomposition

P3sPsPs, (1)

P(Hll.klylk) — Ep(yk,‘|Hl14k’Y1.k—1) P(Hll.k:|yl.k:—1> ,
®)
where C = p(Y*|Y**~1) is independent of a particular
hypothesis. The last factor on the right-hand side is broken
down via the chain rule to:

1:k 1:k—1 1:k—1 1:k—1
P(Hl Y ) = P(hl|/\/lm(l), Hp(l) Y )773 Ps .
©))
The other factor of (8) is expanded using a combination of

Bayes’ Rule and Laplace’s method for approximating inte-
grals.

p(Yk|Hl1:k, Yl:kfl) ~
P1,1Pay Py

Znel" Pl,n P?,n P(hlle(l))H;&?)_17Y1:k—1) :

Substituting (9) and (10) into (8) gives the expression in (7).
Next, we consider the calculations required for generating

the L-best data association hypotheses {h;} from each model
hypothesis M,,, in Step 7 of the MHTC algorithm. For this

(10)

step, only the product (P ; Ps;) needs to be examined, as all
other factors in (7) are identical for a given model hypothesis.
Thus, we refer to this product as the data association hypothe-
sis plausibility—it is proportional to the (posterior) probability
but is technically neither a likelihood nor a normalized prob-
ability. To formulate the data association problem such that
Murty’s algorithm may be applied, we construct a cost matrix
for the corresponding linear assignment problem of mapping
current measurements to known targets (including the notions
of new targets and false clusters), where the total cost of an
assignment hypothesis is equivalent to using (P1; Pa,).

Let A € REm*J+2Cm pe the data association matrix,
where the rows are the (,, current measurements (cluster
means) and the columns represent the .J existing targets,
G, possible new targets, and G, possible false clusters?.
The elements of this matrix, [a4;], essentially define the
likelihood of assigning the gth measurement to the jth target.
For equivalence to (P ; P2;), the data association matrix can
be defined:

ail aij
A= diag(e®) diag(a®)| » (D
ag,,1 ag,,J
where a¥ = [O‘T’ . aém]T’ ad’ = [a(lb’ ey 04?;7”]T’ and
1 A .
G9i = Tpy 00 9= b Gmig=TJ
A R
v v =1,...,Gn
Qg N, +)\¢Cg() g
R
¢ _ ¢ =1 G
Qg )\VJr)\qugO g="5-bm,

where 5gj is calculated from Eq. (5). Then the probability of
a legal data association hypothesis h; is proportional to the
product of the elements of A assigned by h;; that is,

P1,1P2y =D H agj

(9,5)€M

12)

2Since each measurement may be independently assigned as a new target
or false clusters, and only unique assignments are allowed, new targets and
false clusters each require a column for each measurement.
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where D is a constant for each model hypothesis and hy is
simply another way of labeling the assignments in £;:

h=nU{(g, g+ ) geun}U{(g,9+J+GCm): g€}

(See [18] for a proof of this equivalence.)

To employ Murty’s algorithm, we define the linear as-
signment cost matrix A* = —[logagy;], where the elements
of A that are zero are instead replaced by a suitably large
upper bound. Murty’s algorithm may then be applied to A*
to generate the L-best data association hypotheses for every
model hypothesis M,,,.>

V. EXPERIMENTAL RESULTS

In this section we present results from applying the proposed
MHTC algorithm to extracellular neural recordings obtained
by inserting an electrode into cortical tissue. Our robotic
device [2] adjusts the electrode position in small increments to
optimize the signal; as the relative electrode—neuron position
changes, each neuron’s spike waveforms evolves. Results are
analyzed in a two-dimensional principal component (PCA)
feature space, a common practice in the neuroscience com-
munity. Although the ground truths for these data sets are
unknowable, several details are called out that imply the
results’ veracity.

Figure 4 displays the “tracks” of the best global hypothesis
estimated by MHTC for a recording session lasting over 100
minutes. Under this hypothesis, two neurons, labeled A and
B, are tracked over nearly the entire session, even through
frequent changes of electrode position and difficult cluster-
ing challenges. (Track C, with few actual detections, may
result from spurious groupings of outliers, or a temporarily
detectable low-SNR neuron.) Note that neuron B is not initially
recorded but MHTC here demonstrates its ability to recognize
the appearance of new targets at £ = 5.

These targets cannot be consistently tracked using ML
clusters and nearest neighbor data association, as the bottom
row in Figure 4 demonstrates. The ML technique is unable to
maintain neuron identities over intervals of large movement,
missed detections, or clustering mistakes—instead, it results in
a multitude of false neuron identities and tracks that last only a
short time. One reason MHTC can overcome these challenges
is its ability to propagate several hypotheses; the instantaneous
rank of the global hypothesis (whose tracks are displayed) is
plotted in the fourth row of Figure 4. Note that during some
steps, this global hypothesis that ended up being the most
probable was only the second or fourth most probable at a
given time, indicating that later data supported this hypothesis
to “come back™ and be deemed the best.

3Eq. (12) also implies that the global hypothesis probability (7) may be
rewritten:

1 Qg pen, 99

P(Hll:k|Y1:k) ~ - PsPaPs,
C Xner H(g,j)eﬁn Agj
so that the assignment costs calculated during the data association hy-

pothesis generation step are used directly to evaluate the global hypothesis

probability. Note that the constant D never requires calculation, as it cancels
from the numerator and denominator.
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Fig. 4. MHTC results from a 106 min. session of neural data. The top

two rows show the MHTC tracks from the best global hypothesis, in the
first and second principal components, respectively. (For representation, these
coordinates were obtained by PCA on the set of spike waveforms over the
entire recording session (basis B2*), whereas the MHTC algorithm operates
in the PCA coordinates derived from the spike waveforms in each interval,
Bk ) Each track is represented by its mean waveform (thick line), with a filled
area showing two standard deviations of its assigned spikes, and is labeled by
an ID (capital letter). Circles along the track line indicate a time step with a
missed detection. Scale is shown on these y-axes for reference but has no clear
physical interpretation due to the PCA projection. The third row plots the
position of the electrode over the recording session. The fourth row plots the
rank histories of this best global hypotheses for the session. The labeled time
steps are further examined in Figure 5. In the fifth row, the tracks resulting
from a maximum likelihood (ML) clustering technique with nearest neighbor
data association are shown in the first principal component, for comparison
to the top row. Only tracks lasting at least two time steps are colored and
labeled (singleton tracks are designated by gray dots).

A detailed look at the data of certain time steps from this
session is shown in Figure 5, displaying the spike waveforms
recorded during that interval and their projections to the PCA
space, grouped and colored according to MHTC’s identified
clusters. Note the lack of separation of the clusters at some
time steps, demonstrating the difficulty of the clustering. Note
that at £ = 131, MHTC returns only one identified cluster
since neuron B’s spikes had insufficient evidence to make their
own cluster; however, the MHTC algorithm recovers from this
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Fig. 5. MHTC clusters, showing detail of certain time steps of the session
from Figure 4. Plot pairs include the full spike waveforms and their projection
to the PCA feature space. Data are colored according to MHTC clustering
results in both representations. PCA clusters include filled 2-sigma ellipses;
black points indicate classification as “outliers.”

issue at the next interval (k = 132) and correctly identifies
neurons A and B.

VI. CONCLUSION

The results above demonstrate the usefulness of the
MHTC algorithm in a combined clustering/tracking applica-
tion. MHTC is able to maintain the identities of individual
neuron targets despite the signal variability over the recording
session, including the introduction of a new neuron target and
temporarily “silent” neurons (resulting in missed detections).
The hypothesis rank plot in Figure 4 indicates how a hypoth-
esis that may seem less likely in the current interval may be
supported by future data and thus eventually prove to be the
best hypothesis overall.

In conclusion, we have detailed a class of problems that
entails both clustering and multitarget tracking and proposed
a solution that considers these tasks in an integrated fashion.
Like traditional MHT, MHTC propagates several possible so-
lutions so that future data can help resolve current ambiguities,
but, most importantly, we have expanded the classic hypothesis
tree to include model hypotheses as well as data association
hypotheses and have derived the expressions for the resulting
probabilities. Thus, MHTC blends Bayesian methods into a
robust solution for this mutlitarget tracking problem.
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