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Abstract—This paper introduces an algorithm for tracking
targets whose locations are inferred from clusters of observations.
This method, which we call MHTC, expands the traditional
multiple hypothesis tracking (MHT) hypothesis tree to include
model hypotheses—possible ways the data can be clustered in
each time step—as well as ways the measurements can be
associated with existing targets across time steps. We present this
new hypothesis framework and its probability expressions and
demonstrate MHTC’s operation in a robotic solution to tracking
neural signal sources.

I. INTRODUCTION

Robots that must observe several dynamic objects in their

environment often employ methods for multitarget tracking

(MTT). These techniques maintain the identities of observed

objects of interest by associating new sensor measurements

with estimated or known targets and using these associations to

update target state estimates. Existing MTT methods typically

assume that each target can generate at most one observation

at each time step. In this paper, we address the problem

of tracking targets that are each represented by a multitude

of statistically distributed observations in each time step, a

matter that has not previously been addressed in an integrated,

comprehensive manner. We propose a new procedure, termed

MHTC for multiple hypothesis tracking of clusters, that com-

bines Bayesian techniques from clustering and data association

into a novel hypothesis framework to effectively and robustly

track such targets.

Specifically, we consider the following scenario. At each

time step k, a set of observations Y k = {yk
i }

N
i=1 is obtained

from an unknown number of current targets. Each target

has generated many observations, which may be modeled as

samples from a probability distribution representing that target.

These observations must be broken up into sets (i.e., clustered),

assigning each observation to a cluster Ck
g (g = 1, . . . , Gk) and

estimating the number of sources Ĝk. Additionally, the current

clusters must be matched (i.e., tracked) to the targets estimated

to exist at time k − 1 (indexed by j) and used to update the

estimate of the current target state xk
j . Several factors may

complicate this process, such as newly appearing or disap-

pearing targets, temporary occlusions or missed detections, and

false measurements (clutter).

*This work was completed at the California Institute of Technology with
support from the National Institutes of Health and the Rose Hills Foundation.

This tracking problem arises, for example, in the authors’

related work on a miniature robot for autonomously position-

ing electrodes in the brain to obtain high quality extracellular

recordings [1]–[3]. In the main loop of this robot’s control

algorithm, the electrode’s signal is periodically sampled for a

brief interval and analyzed to determine if positional adjust-

ments will improve signal quality of a given neuron. However,

an electrode may record the spiking activity of several nearby

neurons, each one generating many spikes over the short time

interval. Thus, the detected spikes must first be sorted ac-

cording to their generating neurons, and previously identified

neurons must be re-identified in the current recording interval

(“tracked”), despite possible changes in the amplitude, phase,

and numbers of neuronal signals.

Fig. 1. Photographs of the Robotic Electrode Microdrive.

The problem statement described above may also arise in

other robotics application areas. For example, in radar detec-

tion of pedestrians for robotically assisted driving, a single

person might be represented by a set of distance measurements

(due to variability in the range to different body parts and

to reflections); these observations from each person must be

grouped together, and the resulting pedestrians tracked over

time [4]. In computer vision, objects of interest in each frame

may be inferred from a grouping of features; each image must

be segmented and each target object tracked over multiple

frames [5].

In traditional MTT, the locations of several objects of

interest (targets) are measured in sequential “scans” of an

observation volume. Using these data, MTT solutions combine

a filter for estimating the target states and a data association

technique for assigning the current measurements to known
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targets (see [6]–[9] for MTT overviews). Current MTT solu-

tions differ primarily by their data association method, which

governs which measurements are assigned to putative targets

and so used to update the state estimates of those targets

(typically through a Kalman Filter). An exclusivity principle

is usually enforced, under which each target may generate at

most one measurement and each measurement can represent

only a single target. Under this assumption, a set of legal data

association hypotheses may be defined, where each hypothesis

assigns every measurement to an existing target (or possibly

designates it as a new target or false measurement).

Multiple hypothesis tracking (MHT), attributed to Reid

[10], is generally accepted as the preferred data association

mechanism for modern MTT systems [11]—though other

approaches, such as nearest neighbor and joint probabilistic

data association (JPDA) [12], remain popular, largely because

of MHT’s heavy computational demands. MHT maintains

many possible data association hypotheses and propagates

the corresponding target state estimates for each hypothesis,

implicitly deferring decisions in anticipation that subsequent

data measurements will resolve any ambiguity. A key recent

development in MHT implementations is the use of an algo-

rithm, originally due to Murty [13], to generate only the L-

best hypotheses at each time step, avoiding the combinatorial

explosion of hypotheses at a reasonable cost of sub-optimality

[14].

The key differentiator of our problem (MTT for cluster-

producing targets) versus traditional applications is the multi-

tude of observations per target in each scan. The measurements

of target location are therefore not received directly from

the sensor but rather must be estimated from subsets of

observations. Further, the uncertainty and difficulty inherent in

the clustering problem greatly complicates the tracking task:

Correctly assigning observations to their generating targets is

essential for accurately estimating the location, and even the

number of “measurements” (in this case, clusters) is unknown

a priori. Some MTT solutions such as those using Finite Set

Statistics [15] may allow for a many-to-one relationship of

observations to targets, but to our knowledge no others fully

combine advanced clustering and model selection techniques

into the tracking solution. Given the significant ambiguities

in neural data, such an integrated approach is critical for our

application.

Our MHTC algorithm presented in this paper is a multiple

hypothesis approach to combined clustering and tracking,

propagating not only multiple data association hypotheses

but also multiple hypotheses on how the data should be

clustered. We detail this novel hypothesis framework as well

as the explicit equations to calculate the probabilities of

the hypotheses. Our previously presented Bayesian clustering

algorithm [16], along with its inherent measures of cluster

associations across time intervals, provides a key component of

the MHTC algorithm. While this prior work included a simple

“single hypothesis” nearest neighbor tracker, MHTC offers

a significantly more robust solution, demanded in situations

when, for instance, a target is temporarily occluded, targets

are entering or leaving the observation volume, a time step’s

clustering result contains an error, or the signals of different

targets are difficult to distinguish for a time. Additionally,

MHTC utilizes a recursive filter for estimating the state of

each target, explicitly identifies false clusters, and includes a

more sophisticated model selection technique.

The remainder of the paper is structured as follows. Sec-

tion II reviews our Bayesian clustering method [16], for it

is integrated into the MHTC solution. Section III overviews

the MHTC solution, while Section IV provides further mathe-

matical detail. MHTC is demonstrated by experimental results

from our neuron-tracking robot in Section V, and Section VI

provides concluding remarks.

II. REVIEW OF MAP CLUSTERING METHOD

Our clustering method [16] is founded on the optimization

of a Gaussian mixture model via expectation–maximization

(EM) [17]. The underlying assumption is that the observations

yk
i in different clusters Ck

g can be modeled as samples from

different multivariate statistical distributions, where each dis-

tribution represents a specific target. Let Mm denote the mth

mixture model class under consideration (the need for multiple

model classes and the selection technique are discussed in

Section III)—the model class dictates the model order Gm

(i.e., the number of components/clusters), the form of the gth

probability density fg (typically Gaussian), and the form of the

model parameters Θk
m = {πk

g , θ
k
g}

Gm

g=1. πk
g and θk

g denote the

mixture weight and parameters of the gth component, respec-

tively (for a Gaussian distributions, the component parameters

are the mean and covariance matrix: θk
g = {µk

g ,Σ
k
g}).

The goal of the clustering method is to optimize the mixture

model parameters Θk
m for each model class and assign each

observation to its most probable mixture component. While

most traditional clustering procedures use a maximum like-

lihood (ML) approach, we find the maximum a posteriori

(MAP) parameters, incorporating Bayes’ Rule:

p
(

Θk
m|Y 1:k,Mm

)

∝ p
(

Y k|Θk
m,Mm

)

p
(

Θk
m|Y 1:k−1,Mm

)

,

(1)

where Y 1:k = {Y 1, ..., Y k} denotes all observations from the

1st through the kth time steps. The mixture likelihood of the

model parameters given the data is

p
(

Y k|Θk
m,Mm

)

=
N
∏

n=1

Gm
∑

g=1

πk
gfg

(

yk
i |θ

k
g

)

. (2)

The novelty of our clustering approach lies in the way we

incorporate a prior that aids in tracking targets. We have con-

structed an appropriate prior on the model parameters Θk
m—

focusing on the cluster “locations” µk
g—based on the predicted

target locations, {µ̂
k|k−1
j }J

j=1, of all J targets hypothesized to

exist from time k− 1. This mixture prior on a cluster mean is

p
(

µk
g |Y

1:k−1,Mm

)

=
ωk

0

V
+

J
∑

j=1

ωk
j fN

(

µk
g |µ̂

k|k−1
j , Sk−1

j

)

,

(3)
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where ωk
j denotes the mixture weight; fN the Gaussian PDF;

V the observation volume; and Sk
j the innovation covariance.

The zeroth component is uniform over the observation volume

V to capture new targets and the remaining components are

Gaussian distributions to match existing targets near their pre-

dicted locations. Using uniform priors for the mixture weights

and covariance matrix elements and letting ψ
k|k−1
j denote the

parameters needed for the jth mixture prior component,

p
(

Θk
m|Y 1:k−1,Mm

)

∝
Gm
∏

g=1

J
∑

j=0

ωk
j fj

(

µk
g |ψ

k|k−1
j

)

. (4)

Given the form of (2) and (4), an analytical solution for the

parameters that maximize (1) cannot be found. EM is thus used

to estimate these parameter values. To apply this technique, we

contrive cluster association indicators Z = {ζgj}, hidden data

that specify whether the cluster Ck
g is related to the jth target,

or, ideally,

ζgj =

{

1 if µk
g is the new position of the jth target

0 otherwise.

The EM algorithm iterates between an E-step to calculate the

conditional expectation of the hidden data using the current

parameter estimates,

ζ̂gj = E
[

ζgj |Y
1:k,Θm

]

=
ωk

j fj

(

µ̂k
g |ψ

k|k−1
j

)

∑Ĝk−1

l=0 ωk
l fl

(

µ̂k
g |ψ

k|k−1
l

)

, (5)

and an M-step to find the parameter estimates Θ̂ that maximize

a modified form of (1) given ζ̂gj , until some convergence

threshold is reached. (The algorithm requires an initial guess or

“seed clusters” for initialization.) See [16] or [18] for further

details.

III. MHTC FRAMEWORK

A. Definitions

1) Hypothesis Terminology: We define two types of hy-

potheses in MHTC: model hypotheses and data association

hypotheses. A model hypothesis represents a possible cluster-

ing of the observations and is denoted by its corresponding

mixture model class, Mm. Each data association hypotheses,

hl = {τl, νl, φl}, assigns each cluster in a given model

hypothesis to a target (or marks it as spurious): The set τl
contains the assignments of the model’s clusters to known

targets; νl contains the indices of the model’s clusters that are

identified as new neurons; and φl holds the the indices of false

clusters (spurious groupings of outliers or similar clustering

errors)in the current model. Note that Nτ , Nν , and Nφ are the

respective cardinalities of these sets and Gm = Nτ +Nν +Nφ.

We call the combination of a data association hypothesis

and its parent model hypothesis a particular joint hypothesisat

time k, Hk
l = {Mm(l), hl}. The joint hypothesis Hk

l thus pos-

tulates a complete set of data associations for time k, including

the observation–cluster associations in Mm(l) and the cluster–

target associations in hl. A particular joint hypothesis is

combined with its parent hypothesis H1:k−1
ρ(l) to define a global

hypothesis, H1:k
l = {Hk

l , H
1:k−1
ρ(l) }, which includes the full

history of all model and data association hypotheses from time

1 through k. 1 Finally, it is convenient to define Ωk as the set of

all surviving global hypotheses {H1:k
l }L

l=1 and all data Y 1:k,

which thus provides all relevant measured and hypothesized

information about time k: Ωk =
{

{H1:k
l }L

l=1, Y
1:k

}

.
2) Dynamical System Model: After measurements are as-

signed under the hypothesis hl, they are used to update the

target’s track, its sequence of estimated states. The implemen-

tation presented in Section V utilizes a simple linear, discrete-

time, Gauss–Markov system:

xk
j = F k−1 xk−1

j + vk−1
j vk

j ∼ N (0, Qk
j )

µ̂k
j = Hk xk

j + wk
j wk

j ∼ N (0, Rk
j )

and the Kalman Filter for state estimation. Note that other

system models and filters are possible.
3) Probability Models: Given a set of targets in the parent

hypothesis from H1:k−1
ρ(l) , the probabilities of the existence

and location of new measurements in interval k are modeled

as follows. The occurrence that the jth existing target is

detected (i.e., produces a cluster) is considered a Bernoulli trial

with probability Pd,j . If the target is detected, the associated

measurement is expected to appear near the target’s predicted

location with a Gaussian distribution, fN
(

µk
g |µ̂

k|k−1
j , Sk

j

)

,

where the predicted mean and its covariance are provided

by the Kalman filter. The numbers of new targets or false

clusters appearing in a given time interval are each modeled

by the Poisson distribution with respective rates λν and λφ. If

a measurement originates from a new target or false cluster,

it may arise anywhere in the observation volume V with a

uniform PDF. The parameters Pd,j , λν , and λφ are set by the

user and may vary across sampling intervals.

B. Hypothesis Tree Structure

As shown in Figure 2, the MHTC algorithm extends the

traditional MHT tree to include model hypotheses as well

as data association hypotheses. If L global hypotheses exist

at time (k − 1) and we consider M̄ model classes for each

parent hypothesis, then (LM̄) model hypotheses are formed

at time k, each of which is optimized according to the MAP

EM procedure of Section II. By use of Murty’s algorithm, only

the L best data association hypotheses are generated from each

parent model hypothesis To end the hypothesis management

at time k, the best L global hypotheses are selected from

the (L2M̄) that have been generated. Section III-C provides

further detail on the above process.

C. Overview of the MHTC Process

This section walks through the MHTC process of the com-

bined clustering and multiple hypothesis tracking, as illustrated

in Figure 3. Steps 2–6 are similar to the procedure detailed

in [16], but some of these steps require a reformulation in the

context of the MHT framework.

1Note that the subscripts m(l) and ρ(l) are used to indicate the index of
the model or global hypothesis, respectively, that is the parent of the lth data
association hypothesis; similarly, in a slightly abusive notation, ρ(m) may
also indicate the parent global hypothesis of the mth model hypothesis.
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TABLE I
FACTORS IN GLOBAL HYPOTHESIS PROBABILITY

Definition Expression for Model in Sect. III-A Interpretation

P1,l p
`

{µ̂k
g}

Gm(l)

g=1 |H1:k
l

, Y 1:k−1, µ̂k
g ∈Θ̂k

m(l)

´

h

Q

(g,j)∈τl
fN

`

µ̂k
g |µ̂

k|k−1
j , Sk

j

´

i h

Q

g∈νl

1
V

i h

Q

g∈φl

1
V

i

means’ likelihood under hl

P2,l p
`

Hk
l
|H1:k−1

ρ(l)
, Y 1:k−1

´

Am

h

QJ
j=1fB

`

δj,l|Pd,j

´

i

(λν)Nν
`

λφ

´Nφ joint hypothesis prior a

P3 P
`

Mm(l)|H
1:k−1
ρ(l)

, Y 1:k−1
´

PJ
Nτ =0

»

(λ0)Gm−Nτ e−λ0

(Gm−Nτ )!

P

δ∈Υ

QJ
j=1 fB

`

δj,l|Pd,j

´

–

model hypothesis prior b

P4 p
`

Y k|Mm(l), H
1:k−1
ρ(l)

, Y 1:k−1
´

see [17] for Laplace’s method (or other approximation) model evidence

P5 P
`

H1:k−1
ρ(l)

|Y 1:k−1
´

same as Eq. (7), from previous time step parent hypothesis probability

aAm is a constant depending on the model class and does not require calculation. fB is the Bernoulli distribution, and δj,l is an indicator variable of
whether the jth target is tracked under the lth hypothesis (j ∈ τl).

bλ0 = λν + λφ. δ is a vector of indicator variables δj , j = 1, . . . , J , and Υ is the set of all possible δ for a given J .

association problem for use of Murty’s L-best assignment

algorithm.

The key probability to be determined for MHTC is that of a

global hypothesis given all collected data, P
(

H1:k
l |Y 1:k

)

, the

basis of the final hypothesis selection for time k (in Step 9).

The expression for this probability includes all relevant mea-

sures about the parent hypothesis, model hypothesis, and data

association hypothesis. This global hypothesis probability may

be expressed as

P
(

H1:k
l |Y 1:k

)

≈
1

C

P1,l P2,l
∑

n∈Γ P1,n P2,n

P3 P4 P5 , (7)

where C is a normalization constant, Γ is the set of indices

of all legal data association hypotheses given the model

hypothesis Mm(l). The comprising factors (P1,l, P2,l, etc.)

have natural interpretations for why they influence the global

hypothesis probability and are described in Table I. A brief

sketch of the proof for Eq. (7) is provided in the next

paragraph. See [18] for further detail, along with a derivation

for the expressions in Table I.

First, Bayes’ Rule provides the decomposition

P
(

H1:k
l |Y 1:k

)

=
1

C
p
(

Y k|H1:k
l , Y 1:k−1

)

P
(

H1:k
l |Y 1:k−1

)

,

(8)

where C = p
(

Y k|Y 1:k−1
)

is independent of a particular

hypothesis. The last factor on the right-hand side is broken

down via the chain rule to:

P
(

H1:k
l |Y 1:k−1

)

= P
(

hl|Mm(l), H
1:k−1
ρ(l) , Y 1:k−1

)

P3 P5 .

(9)

The other factor of (8) is expanded using a combination of

Bayes’ Rule and Laplace’s method for approximating inte-

grals.

p
(

Y k|H1:k
l , Y 1:k−1

)

≈

P1,l P2,l
∑

n∈Γ P1,n P2,n

P4

P
(

hl|Mm(l), H
1:k−1
ρ(l) , Y 1:k−1

) . (10)

Substituting (9) and (10) into (8) gives the expression in (7).

Next, we consider the calculations required for generating

the L-best data association hypotheses {hl} from each model

hypothesis Mm in Step 7 of the MHTC algorithm. For this

step, only the product (P1,l P2,l) needs to be examined, as all

other factors in (7) are identical for a given model hypothesis.

Thus, we refer to this product as the data association hypothe-

sis plausibility—it is proportional to the (posterior) probability

but is technically neither a likelihood nor a normalized prob-

ability. To formulate the data association problem such that

Murty’s algorithm may be applied, we construct a cost matrix

for the corresponding linear assignment problem of mapping

current measurements to known targets (including the notions

of new targets and false clusters), where the total cost of an

assignment hypothesis is equivalent to using (P1,l P2,l).
Let A ∈ R

Gm×J+2Gm be the data association matrix,

where the rows are the Gm current measurements (cluster

means) and the columns represent the J existing targets,

Gm possible new targets, and Gm possible false clusters2.

The elements of this matrix, [agj], essentially define the

likelihood of assigning the gth measurement to the jth target.

For equivalence to (P1,l P2,l), the data association matrix can

be defined:

A ≡







a11 . . . a1J

...
. . .

... diag(αν) diag(αφ)
aGm1 . . . aGmJ






, (11)

where α
ν = [αν

1 , . . . , α
ν
Gm

]T , α
φ = [αφ

1 , . . . , α
φ
Gm

]T , and

agj =
1

1 − Pd,j

ζ̂gj g = 1, . . . , Gm ; j = 1, . . . , J

αν
g =

λν

λν + λφ

ζ̂g0 g = 1, . . . , Gm

αφ
g =

λφ

λν + λφ

ζ̂g0 g = 1, . . . , Gm ,

where ζ̂gj is calculated from Eq. (5). Then the probability of

a legal data association hypothesis hl is proportional to the

product of the elements of A assigned by hl; that is,

P1,l P2,l = D
∏

(g,j)∈h̃l

agj , (12)

2Since each measurement may be independently assigned as a new target
or false clusters, and only unique assignments are allowed, new targets and
false clusters each require a column for each measurement.
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