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Communicating Over Adversarial Quantum Channels
Using Quantum List Codes

Debbie Leung and Graeme Smith, Member, IEEE

Abstract—In this correspondence, we study quantum communication
in the presence of adversarial noise. In this setting, communicating with
perfect fidelity requires a quantum code of bounded minimum distance, for
which the best known rates are given by the quantum Gilbert–Varshamov
(QGV) bound. Asking only for arbitrarily high fidelity and letting the
sender and reciever use a secret key of length logarithmic in the number
of qubits sent, we find a dramatic improvement over the QGV rates. In
fact, our protocols allow high fidelity transmission at noise levels for which
perfect fidelity is impossible. To achieve such rates, we introduce fully
quantum list codes, which may be of independent interest.

Index Terms—Adversarial channels, approximate quantum codes,
quantum error correction, quantum list codes.

I. INTRODUCTION

Effectively dealing with noise is a major challenge faced by all
proposals for the coherent manipulation of quantum information.
Besides communication, sending a quantum state over a noisy channel
models noisy storage, and as such, characterizing communication
rates for quantum channels is a central question in the study of both
quantum information and computation.

Various asymptotic capacities of quantum channels have been
studied [1]–[11]. However, this work has been almost exclusively
concerned with discrete memoryless channels (DMCs), wherein a
sender and receiver use many independent and identical copies of a
channel. In this scenario, one studies the asymptotic communication
rate possible using an operation of the form N


n, where N is the
channel under consideration and the rate is R = k=n where k is
the number of high fidelity logical qubits sent. Relatively little is
known outside of the DMC scenario, with notable exceptions found
in [12]–[16].

In this paper, we study an adversarial quantum channel (AQC),
which is perhaps as different from a DMC as one can imagine. When
sending n qubits over an AQC, instead of errors on different qubits
occuring independently, an adversary who knows what protocol is
being used tries to foil the communication by maliciously choosing
a superposition of errors, subject only to a restriction on the number
of qubits each error affects. We call this channel N adv

p;n , where p is
the fraction of qubits the adversary is allowed to corrupt. N adv

p;n is the
natural quantum generalization of the classical adversarial channel
that was considered in [17], [18] and whose roots go back to [19].
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If the receiver must reconstruct the logical state exactly, com-
municating over N adv

p;n requires a quantum error-correcting code
(QECC) of distance 2dnpe + 1. The quantum Gilbert–Varshamov
bound guarantees the existence of such a code with a rate of at least
1�H(2p)�2p log 3 [20], where logarithms are taken base 2 here
and throughout. Communication beyond this rate is possible only
if QECCs beating the Gilbert–Varshamov bound exist, which is a
question that has been quite difficult to resolve. Furthermore, Rains
has shown [21], [22] that no quantum code can have distance greater
than n(3 � p

3)=4 � 0:317n, so that it is impossible to send even a
single qubit for p � (3� p

3)=8 � 0:158.
However, if we ask only for a high fidelity reconstruction, and allow

the sender and receiver to share a secret key of size O(logn) it is pos-
sible to communicate at rates much higher than the Gilbert–Varshamov
and Rains bounds suggest. Below, we present a coding strategy for this
scenario with a rate of 1�H(p)�p log 3, which is significantly larger
than the Gilbert–Varshamov rate for all values of p and remains nonzero
up to p � 0:189. Our rate equals the best communication rate via
the depolarizing channel (in the DMCs scenario) of error probability
p using only nondegenerate codes.

There are three ingredients in achieving such rates with negligible
length secret keys. The first is a predetermined quantum list code that
is known to the adversary. This alone allows high-rate but low-fidelity
transmission. To improve the fidelity, a random subcode is further
chosen according to a secret key unknown to the adversary. Finally,
the subcode is derandomized using small-biased sets.

Before explaining the construction of our code, we first discuss some
intuition on why the code works and how resources are being reduced.
Informally, a quantum list code is an error correcting code with the re-
laxed reconstruction requirement that the decoded state be equal to the
original state acted on by a superposition of a small number of errors.
We call the number of errors the “list length.” This relaxation allows
a considerable increase in rate over QECCs, and by a random coding
argument we show there are list codes with constant-length lists and
rates approaching 1�H(p)�p log 3 that tolerate pn errors. To distin-
guish between the errors in the list and communicate with high fidelity,
the sender and receiver select a large subcode of the list code using a
secret key. In particular, this can be chosen pseudorandomly by using
O(logn) bits of secret key.

We can interpret our code as a set of (parity) check conditions that
yield syndrome information. Most of these conditions are used in list-
decoding and can be known to the adversary, and the rest of the condi-
tions are pseudorandom and with high probability are capable of com-
pletely distinguishing the errors on the list. Note that there are simpler
constructions using randomness unknown to the adversary, and we now
make a comparison. The first construction is simply a random (nonde-
generate) quantum error correcting code achieving the same rate but
requiring O(n2) bits of secret key 1. Second, one could use a secret
permutation of the n qubits in the AQC turning the adversarial channel
to something very similar to n depolarizing DMC’s of error p in the
DMC’s setting [24], [15]. The best known rate is similar to ours (but
slightly better for large p) but the cost will be O(n logn) bits of key,
which, unfortunately, still gives a divergent key rate. Third, the stan-
dard derandomizing technique of key recycling cannot be used in a
straightforward way in the current, adversarial, context. Thus, our hy-
brid construction involving a known list-code and a pseudorandom sub-
code demonstrates what type of randomness is unnecessary, and can
be seen as a method to derandomize other key-inefficient protocols,
achieving the same task with a much shorter key.

1It is folklore, somewhat implicit in the hashing protocol of [23]. It is also
implied by our current construction.

For the rest of the paper, we summarize related works, review back-
ground material, present the details of our construction, after which we
discuss various applications and open problems.
Related work
Approximate error correction was studied in [25] to reduce the block
length (and thus improving the rate) for a more specific error model.
Success criterion and algebraic sufficient conditions were given. Refer-
ence [26] provided an information theoretic approximate error correc-
tion criterion. The approximation in these works stems from a relaxed
decoding procedure. Much closer to our work is [27] (in the context of
quantum secret sharing) that used a randomized code to maximize the
distance with high probability but the rate is low (of lesser concern in
that context). Our construction was inspired by that in [17] in the clas-
sical setting. Further comparisons between our work and these earlier
results and insights obtained will be discussed in Section V.

After the initial presentation of this result [28], we learned of two
independent studies of list codes, both in settings quite different from
our own. Reference [29] studied decoding of classical list codes with
quantum algorithms, and [30] studied list codes for sending classical
messages via iid quantum channels.

II. BACKGROUND AND DEFINITIONS

Our sender, receiver, and adversary will be named Alice, Bob,
and Eve, respectively. The encoding of a k-qubit state j i into a
QECC will be written as j � i. We call the Pauli group acting on n
qubits Gn and write its elements in the form P = itXuZv , where
t 2 f0; 1; 2; 3g;u;v are binary vectors of length n;Xu (Zv)

denotes Xu 
 � � � 
 Xu (Zv 
 � � � 
 Zv ); X =
0 1

1 0

and Z =
1 0

0 �1
. The (anti)commutation relation between

P1; P2 2 Gn is determined by P1P2 = (�1)!(P ;P )P2P1 with
!(P1; P2) = u1 � v2 + u2 � v1, where the dot products and sum are
computed in arithmetic modulo two. We let hPli denote the subgroup
of Gn generated by a set of Pauli elements fPlg.

A state j i is said to be stabilized by a Pauli matrix P when P j i =
j i. An [n; k] stabilizer code is a 2k-dimensional space of n-qubit
states simultaneously stabilized by all elements of a size 2n�k Abelian
subgroup of Gn. The abelian subgroup is typically called S and is re-
ferred to as the code’s stabilizer, and has n�k generators denoted by
fSign�k

i=1 . For any E 2 Gn we refer to the (n�k)-bit string !(E;Si)
as the syndrome ofE [20], [31]. The weight of a Pauli matrix P , which
we denote by wt(P ), is the number of qubits on which P acts nontriv-
ially, and we call a stabilizer code an [n; k; d] code if it can detect all
errors outside of S of weight less than the distance d, which is equiva-
lent to being able to correct all errors of weight less than b(d�1)=2c.
For any positive real number r, let Er be the set of Pauli matrices of
weight no more than brc. LetN(S) be the set of all unitaries leaving S
invariant under conjugation. (N(S) is the center and also the normal-
izer of S in Gn, thus the symbol N .) Note that two errors Ei and Ej

have the same syndrome if and only if EyiEj 2 N(S). Thus S defines
an [n; k; d] code exactly when every pair of errors Ei; Ej 2 E(d�1)=2
satisfies Ey

iEj 62 N(S) � S. Intuitively, it means that the syndrome
can be used to identify all errors of concern up to a multiplicative factor
that is in S and has no effect on the codespace.

We state a property of the Pauli group that will be useful later. For
any subgroupG of Gn, for any set s of i independent elements inG, and
a specific (ordered) list of i (anti)commutation relations with elements
of s, exactly jGj=2�i elements of G will satisfy those relations.

Definition 1: The n-qubit adversarial quantum channel with error
rate p, which we call N adv

p;n , acts on a state of n qubits, �, and is of the
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form
N

adv
p;n (�) =

i

Ai�A
y
i with Ai

=
E2E

�iEE (1)

subject to the requirement that
i
Ay
iAi = I and where Enp = fE 2

Gnjwt(E) � png is as defined before. The particular choice of the
fAig’s is made by Eve only after Alice and Bob have decided on a
communication strategy.

Notice that to communicate effectively over N adv
p;n one must find a

strategy that works with high fidelity for all channels described by (1).
To do this, we will use quantum list codes, which are defined below.

Definition 2: We say that an [n; k] stabilizer code, C, is an
[n; k; t; L]-list code if there is a decoding operation, D, such
that for every Ei 2 Et and j � 2 C, the decoded k-qubit state,
along with the syndrome s, is given by D(Eij � ih � jE

y
i ) =

s j
As
j j ih jA

sy
j 
 jsihsj where

sj
Asy
j A

s
j = I , and each As

j

is a linear combination of the 2L elements of hP s
l i

L
l=1, where fP s

l g
L
l=1

is a list of logical errors on the codespace and hP s
l i

L
l=1 is the group

they generate.
Note that in the above definition, the set fP s

l g
L
l=1 generating the

error list depends on the syndrome s.

III. QUANTUM LIST CODES

We now show that, asymptotically, there exist [n; k; t; L]-list codes
with favorable parameters. We proceed by considering random stabi-
lizer codes, arguing along the lines of [23] and [20]. In particular, we
will show that if we choose a random stabilizer code with rate as below,
in the limit of large n the probability of it failing to be L-list decodable
is less than 1.

Theorem 3: [n; bRnc; bpnc; L]-list codes exist for sufficiently large
n and for

R < 1� 1 +
1

L
(H(p) + p log 3): (2)

Proof: Let NE = jEpnj and Epn = fEig
N

i=1. Since two errors
Ei and Ej have the same syndrome iff Ey

iEj 2 N(S), a code will
fail to be L-list decodable only if there are L + 1 independent errors
E0; . . . ; EL outside of S having the same syndrome. Mathematically,
this means Ey

iEj 2 N(S) for 0 � i; j � L (or equivalently, Ey
0Ej 2

N(S) for 1 � j � L). The proof consists of two steps: (1) bounding
the probability (over the code) for a fixed list of L independent Pauli
matrices to be in N(S), and (2) taking the union bound over all such
possible lists to show that list-decoding will fail with probability (over
the code) strictly less than 1. Thus, the desired list code must exist.

Step (1) is essentially a counting argument. How many ways can
we choose n�k stabilizer generators S1; S2; . . .Sn�k? Here we omit
overall factors of �1; i, but we count different generating sets (for the
same code) and different orderings.2 There are two constraints for the
generating set, commutivity and independence. S1 can be chosen from
any of the 22n�1 nontrivial Pauli matrices. Recall the property of Gn
stated in the previous section. S2 can be chosen from the 22n�1 Pauli
matrices commuting with S1 but must be chosen from outside of the
multiplicative group generated by S1, thus there are 22n�1�2 choices.

2Our analysis revolves around random stabilizer generators rather than
random codes. As an aside, the resulting code is also randomly distributed.
Also, any stabilizer of size 2 has (2 �1) different gener-
ating sets, so we have also found the total number of stabilizers codes of this
size.

Similarly, each Si is chosen from the 22n�(i�1) Pauli matrices com-
muting with S1; . . . ; Si�1 but not from the multiplicative group gen-
erated by them, so there are 22n�(i�1)� 2i�1 choices. Thus, there are
�n�k�1
a=0 (22n�a�2a) distinct generating sets.
Now, for an arbitrary and fixed list E0; . . . ; EL of independent er-

rors, how many choices of stabilizer generators will give a code with
fEy

0Ejg 2 N(S)8j=1; . . . ; L? This counting is similar to the above,
but now S1; S2 . . .Sn�k are constrained to commute with fEy

0Ejg,
in addition to the two original constraints. In other words, S1 can be
chosen from the 22n�L�1 nontrivial Pauli operators commuting with
the Ey

0Ej , and S2 has 22n�L+1 � 2 choices, and so on. Thus, there
are �n�k�1

a=0 (22n�L�a�2a) sets of stabilizer generators that commute
with all of Ey

0Ej .
Putting together with the two stabilizer counts, one unconstrained

and the other with the same syndrome for fEjgj=0;...;L, the latter has
probability

�n�k�1
a=0 (22n�L�a�2a)

�n�k�1
a=0 (22n�a�2a)

� 2�L(n�k): (3)

For step (2), we apply the union bound for the choice of the L+1
Ej ’s. The probability that a random [n; k] code is not L-list de-

codable is less than (
NE

L+ 1
)2�L(n�k), which is no more than

NL+1
E 2�L(n�k). The latter is less than 1 if k < n�(1+ 1

L
) logNE .

But NE = jEpnj = bnpc
r=0 3r(n

r
). For any � > 0;9n� s.t.

whenever n � n�; logNE � n(H(p)+p log 3+�=3) so choosing
k = n[1�(1+ 1

L
)(H(p)+p log 3)�2�=3] finishes the proof.

IV. CODING STRATEGY

Theorem 3 tells us that for any R < 1�H(p)�p log 3, there exist
[n; Rn; pn; L]-list codes for large enough n and L. For example, we
can choose the various parameters as � = 1�H(p)�p log 3�R; L �
3
�
(H(p)+ log 3), and n � n� in Theorem 3). Note that L does not

grow with n.
We now fix such a list-code, Cn;L. This always returns a syndrome

s, a corresponding list of errorsQs
f 2 hP s

l i, and a list-decoded state of
the form

i
Bs
i j ih jB

s
i
y = N s(j ih j), where j i is the sender’s

intended logical state,
i
Bs
i
yBs

i = I , and each Bs
i is in the span of

Qs
f . Note that list-decoding removes all superposition between errors

with different syndromes. Also, no approximation has been made so
far.

Now we add a few more stabilizer generators to Cn;L so that with
high probability (over the choice of the extra generators) the receiver
can decode j i unambiguously. These generators are determined by a
secret key shared by the sender and receiver, making them unknown to
the adversary.

It will follow from the proof of Theorem 4 below that adding
(1= log(4=3))(2L + log(1=�)) random generators to the code
Cn;L would allow us to distinguish among the fQs

fg
2
j=1 pos-

sible errors, with probability at least 1��. This would require
2n(2L+log(1=�))= log(4=3) bits of shared key.

A much smaller key can be used if small-biased sets are used to
choose these extra stabilizers pseudorandomly [32], [33]. A subset of
f0; 1gm, denotedA, is said to be an �-biased set of length m if for each
e 2 f0; 1gm, roughly half of the elements of A have odd/even parity
with e, or mathematically, jPra2A(e�a = 0)�Pra2A(e�a = 1)j � �.
There are efficient constructions of �-biased sets of lengthmwith only
O(m

�
) elements [32], [33].

Let G0 be the set of stabilizer generators of Cn;L. We add K extra
stabilizer generators T1; . . . ; TK . When j of these have been added,
denote the code by Cn;Lj , with k�j encoded qubits and generator set
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Gj . (Each Cn;Lj is a subcode of Cn;Lj�1.) The next generator Tj+1 has
to commute with all of Gj but not be generated by it, thus, it is an
encoded operation on the code Cn;Lj . Without loss of generality, it is
an encoded Pauli operation on the encoded k�j qubits, and can be
chosen according to a random element of an �-biased set Aj+1 of
length 2(k�j). The following theorem shows that using this procedure
to addK = O(L log 1=�) stabilizers allows the receiver to reconstruct
the encoded state with high probability. Using the efficient construc-
tions of �-biased sets of length m � 2n with only O(n

�
) elements,

our construction requires O((2L+ log(1=�)) log(n2=�)) bits of key.

Theorem 4: Let Cn;L be an [n;Rn; pn; L]-list code of rate R and
let Cn;LK be the code obtained from Cn;L by progressively addingK =
(1= log(4=3))(2L+log(1=�)) stabilizers determined by �-biased sets
A1; . . . ; AK (of decreasing length) as described above. By using a se-
cret key of fewer than O(K(log(n

�
))) bits to select Cn;LK ; nR�K =

n(R� o(n)) qubits can be sent over N adv
p;n with fidelity at least 1� �

for all � < 1=2.
Proof: The [n; Rn; pn; L]-list code reduces the adversary’s

power to choosing some N s (with operation elements in the span
of fQs

fg
2
f=1 = hP s

l i) and a distribution of s. So, if for each s,
the probability (over the choice of T1; . . . ; TK ) is less than � to fail
to distinguish between the fQs

fg
2
f=1, the fidelity of the decoded

state with the original will be at least 1 � �. More specifically, fix
an arbitrary s. It is shown in [34] that N s has a �-representation
N s(�) =

f;f
�f;f Q

s
f�(Q

s
f )y and let

Fs = kj9f;f ! T k
l ; Q

s
f = ! T k

l ; Q
s
f (4)

be the set of key values for which the additional stabilizer generators
fail to determine the list element. Then, letting j ki be the encoded
logical state and Ds

k be the decoding operation given list s and key k,
our decoded state is

1

K

K

k=1

Ds
k(N

s(j kih kj))

=
1

K
k 62F

Ds
k(N

s(j kih kj))

+
1

K
k2F

Ds
k(N

s(j kih kj))

= (1� Pr(Fs))j ih j+Pr(Fs)�s (5)

where �s = 1
K Pr(F ) k2F

Ds
k(N

s(j kih kj)) is the state condi-
tional on the key failing to distinguish the list elements properly. We
will now show that Pr(Fs) can be made less than � for all lists of length
2L by choosingK as in the theorem. This results in a decoding fidelity
of at least 1 � �.

Now fix f; f 0 and define the events Mj as f!(Qs
f ; Tj) =

!(Qs
f ; Tj)g. Then, the probability, over the choices of T1;...;K , that

they assign the same syndrome to Qs
f and Qs

f is Pr(\Kj=1Mj ) =
K

j=1 Pr(Mj jMj�1 . . .M1). Since each Tj is chosen using an
�-biased string of encoded operations of the code Cn;Lj�1, we have
Pr(Mj jMj�1 . . .M1) � 1+�

2
, which immediately implies that

Pr(\Kj=1Mj ) � ( 1+�
2

)K . By a union bound over the choice of f; f 0,
the probability of any pair having the same commutation relations for
all j is less than 22L( 1+�

2
)K .

By choosing � � 1=2;K = (1= log(4=3))(2L + log(1=�)) we
make this failure probability less than � so that with probability at
least 1 � �; Qs

f can be unambiguously identified and the state recon-
structed.

Note that � can be made to vanish exponentially with n without in-
curring extra n-dependence on the key size.

In Theorem 4, the extra generators can distinguish the worst case
N s and no union bound over s is needed. Furthermore, the additional
stabilizers do not depend on s. It means that the final construction is a
single quantum error correcting code depending only on a small key.
It also means that it is not necessary to first perform list-decoding be-
fore selecting the extra stabilizers. The combined decoding operation
is independent of s but concludes the error based on the joint inputs
of s and the extra syndrome bits (one possible way of which is to first
output a list based on s).

V. DISCUSSION

We have introduced the adversarial quantum channel and shown that
using a logarithmic length secret key one can communicate over this
channel with a rate of 1�H(p)�p log 3. This is far higher than would
be naively expected from existing QECC’s, and quite close to the best
known rates for independent depolarizing channels of error probability
p. Our construction involves quantum list codes, which we defined and
showed to exist with favorable parameters. Classical list decoding has
recently played an important role in several complexity theoretic re-
sults (for a review, see [35]), and we expect quantum list codes will be
similarly useful in the context of quantum complexity theory.

The scenario considered in this paper and the spirit of our protocols
are closely related to those of [27]. Comparing their result with ours
points to interesting open questions. Reference [27] constructed ap-
proximate quantum error correcting codes of length n capable of cor-
recting up to (n � 1)=2 errors with high probability (compared to at
most n=4 correctable errors for an exact code). Thus, the fraction of er-
rors that can be tolerated in [27] approaches 1=2 as n gets large, which
is much higher than in our scheme. Furthermore, unlike our scheme,
no secret key is required. Instead, randomizing parameters are sent as
part of the message via carefully constructed secret sharing schemes.
However, the alphabet size of the codes in [27] grows as a function of
both the blocklength and the code’s accuracy which severely limits the
transmission rate. Also, when their large dimensional channel is viewed
as a block of qubit channels, the adversary considered in [27] is much
more restricted than ours, being limited to the corruption of contiguous
blocks of qubits.

Altogether, there is a general open question on the tradeoff between
distance, rate, and key required for a code. More specifically, it is an in-
teresting question whether there are qubit approximate QECCs which
achieve the rates of our codes without using a secret key, or, less am-
bitiously, one with constant size. We have also left unanswered the ca-
pacity ofN adv

p;n assisted by a negligible length secret key. It seems plau-
sible that the capacity is equal to that of the depolarizing channel with
error rate p, which would be in analogy with the classical result of [17].
While the capacity of for the depolarizing channel is an open question,
one may find codes forN adv

p;n with rates matching the best known for the
depolarizing channel. It will also be interesting to consider other side
resources such as a negligible amount of entanglement. Finally, unlike
DMC’s, it is unclear for adversarial channels whether the capacity can
be improved with a small number of uses of noiseless quantum chan-
nels.

As a side remark, our scheme uses the secret key as a randomizing
parameter that is inaccessible to the adversary. Since the adversary
must corrupt the transmitted state before it is received by Bob, if Bob
is allowed to send a “receipt” of the quantum states to Alice, she can
simply disclose the random code afterwards and no key is required. In
other words, one bit of back communication along with logarithmic for-
ward classical communication (all authenticated) can replace the key
requirement.
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As another side remark, as the channel can be used to create en-
tanglement, the key used in the communication can be replenished by
sending a negligible number of EPR pairs (without affecting the com-
munication rate). Thus the key requirement is only catalytic.

Our result also finds application to a related problem—entanglement
distillation with bounded weight errors. In this problem, a state is al-
ready distributed between Alice and Bob, so the adversary has already
acted and randomizing parameters can be sent in public without a re-
ceipt. In [36], it was shown that n noisy EPR pairs with errors of weight
up to pn could be purified ton(1�H(p)�p log 3) perfect EPR pairs by
a two-way distillation procedure. Our construction lets us distill high
fidelity EPR pairs at the same rate with only forward classical commu-
nication. In fact, it was suggested in [36] that quantum list codes could
be used to reduce the computational complexity of their protocols—al-
most exactly the approach taken here, though in our case with an eye
toward reducing the communication required. The question of efficent
encoding and decoding via list codes has not yet been resolved.

It may also be interesting to consider how restricting the computa-
tional power of our adversary affects the channel’s capacity, which is
another topic we leave to future work. The investigation of other re-
strictions (such as causality of the adversarial channel) is also natural
in certain situations and may lead to additional insights.
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