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Abstmct-This paper presents an approach to planning 
minimum-deflection fixtures for tasks whose characteris- 
tics are well understood. Based on an accurately deflned 
notion of deflection, we define a quality measure that 
characterizes the workpiece’s deflection with respect to 
a set of external wrenches determined by the tasks. A 
novel scheme is proposed to model task wrenches, which 
can be used for practical manufacturing operations. This 
task modelling scheme is then used to obtain a conve- 
nient formulation of the task-dependent quality measure, 
which allows the quality measure to be efficiently com- 
puted. An example is presented to show that our a p  
proach can be effectively employed for planning compli- 
ant fixtures that are best suited to specified tasks. 

1 Introduction 
Compliance can play a significant role in fixturing. 

Due to the presence of compliance, a fixtured object 
(workpiece) will deform when subjected to external 
loads. Intuitively speaking, the object’s “deflection” can 
be thought of as a scalar-valued function that charac- 
terizes the size of the displacements of the object’s par- 
ticles under the applied load. In applications such as 
part machining and assembly insertion, the magnitude 
of this deflection will limit the accuracy of the overall 
process for which the fixture was designed. This paper 
presents an approach to the minimum-deflection fixtur- 
ing of workpieces. Since fixtures are often designed for 
specified tasks, our approach is based on a novel task- 
modelling scheme and a quality measure designed for 
compliant fixtures. The task-modelling scheme is effi- 
cient and can be used to realistically represent a large 
class of manufacturing processes. The quality measure 
takes account of the characteristics of given tasks, is 
valid for general 2D and 3D fixtures employing any num- 
ber of fixture elements (fixels), and holds for any rea- 
sonable compliance model. Using this quality measure, 
the optimal h e 1  placements that minimize the object’s 
deformation can be determined. While we focus on fix- 
tures, our approach may also be applied to grasps which 
work in a known environment. 

The subject of this paper is related to two research ar- 
eas: modelling of compliant grasps/fixtures and quality 
measures that assess grasp/fixture effectiveness. Com- 
pliance effects on fixtures and grasps have been inves- 
tigated using linear and nonlinear contact models. The 
use of a linear spring compliance model was initiated by 
Hanafusa and Asada [5], and was subsequently extended 

by Nguyen [17], Howard and Kumar [SI, Donoghue 
et al. [3]. Recognizing that the linear contact model is 
not theoretically or experimentally justified, Lin, Bur- 
dick and Rimon [lo] used overlap functions to compute 
and analyze the grasp stiffness matrix for various non- 
linear contact models, including the well-justified Hertz 
model. While we use the overlapbased approach for 
our examples, the approach applies to other compliance 
models as well. 

A quality measure quantifies the effectiveness of fix- 
tures or grasps. Prior research on quality measures has 
mostly focused on rigid grasps. Li and Sastry [8], Kirk- 
patrick et al. [7], and Ferrari and Canny [4] defined qual- 
ity measures based on the worst-case rejection of dis- 
turbing wrenches comprising the entire wrench space. 
These quality measures assume different values depend- 
ing on different choices of reference frames. This diffi- 
culty was circumvented by Markenscoff and Papadim- 
itriou [13], and Mirtich and Canny [14], who focused on 
subsets of the wrench space. Teichmann [20] also ad- 
dressed the frame-dependence problem by considering 
the worst-case frame choices. The quality measure used 
in this work derives its frame-independence from the 
way in which object deflections are assessed. Based on 
the quasi-rigid body assumption, such deflections are 
computed from pseudo-norms of rigid body velocities. 
We use the frame-invariant pseudo-norms reported in 
Ref. 191; hence the resulting quality measure is frame- 
invariant. 

The quantification of compliant fixture effectiveness 
has been conducted by the current authors for the case 
of quasi-rigid compliant bodies. Lin, Burdick and Ri- 
mon [ll] identified characteristic parameters (the “prin- 
cipal stiffnesses”) that could be used to define a frame- 
invariant quality measure. Recognizing the importance 
of deflections on the accuracy of manufacturing pro- 
cesses, Lin, Burdick and Rimon [12] defined a quality 
measure as the fixtured object’s worst-case deflection 
with respect to wrenches lying in a well-defined ball. 
These methods generate optimal fixture plans in the 
case where the task is not well understood. However, 
fixtures are often designed for specified tasks in highly 
structured environments. It is therefore highly desirable 
for fixture planners to account for the characteristics of 
such tasks. Task-dependent planning of rigid grasps 

0-7803-51 80-0-5/99 $10.00 0 1999 IEEE 1562 



or fixtures has been considered by Brost and Peters [2], 
who evaluated fixture effectiveness using the fixels’ max- 
imal reaction force to given tasks, and by Li and Sastry 
[8]. The latter authors used “task ellipsoids” to model 
grasping tasks, and defined a quality measure as the ra- 
dius of the largest task ellipsoid that can be embedded 
in the set of wrenches resistible by finger forces up to 
a given magnitude. Rather than rigid fixtures, this pa- 
per is intended to address task-dependent planning of 
compliant fixtures. 

The paper is organized as follows. Section 2 reviews 
c-space based modelling of compliant fixtures. Section 
3 defines a task-dependent fixture quality measure, and 
Section 4 describes a novel task-modelling scheme. The 
computation of the quality measure based on this task 
model is considered in Section 5. 

2 C-Space Based Compliance Modelling 
When contacting bodies are quasi-rigid, compliant 

fixtures can be studied using rigid body kinematics. 
Before describing the quasi-rigid body assumption, we 
briefly review the configuration space of a rigid body. 

2.1 Configuration Space Representation 
Let 13 be a rigid body in a 3D (or 2D) space. Let 

3w be a stationary world reference frame, and FB a 
frame fixed to B. A Configuration of B is a pair q = 
(p, R), where p E W3 is the position, and R E SO(3) 
the orientation of FB relative to Fw. The set of all 
configurations, denoted C, is B’s configuration space (c- 
space). The tangent space to C at configuration q, is the 
set of all tangent vectors (velocities) of B at q. Tangent 
vectors can be viewed as an instantaneous displacements 
of B and can approximate small displacements. The 
wrench space at q is the set of all wrenches, or covectors, 
acting on B at configuration q. 

The body coordinates [15] of tangent vectors and cov- 
ectors are defined as follows. A tangent vector is speci- 
fied as a body velocity in the form q = ( v , w )  E W3 x IR3, 
where v is the velocity of FB’S origin and w is 3B’s an- 
gular velocity, as seen by an observer in FB. A covector 
is specified as a body wrench, w = ( f , ~ )  E W3 x W3, 
where f E W3 is a force acting at FB’S origin and T is 
a torque. A more commonly used parametrization is 
based on hybrid velocities, qh = (Vh,  W h )  E IR3 x [R3, and 
hybrid wrenches, Wh = ( f h ,  Th). The vectors Vyh and wh, 
and fh  and wh have the same meanings as their counter- 
parts in the body coordinates q and w, but are specified 
with respect to Fw. Thus, if R is the orientation of 3 B  
relative to Fw, then the two representations are related 
by qh = Rq and W h  = Rw, where R = diag(R, R). 
Since these rules can be used to transform any expres- 
sion in body coordinates into one in hybrid coordinates, 
we use body velocities and wrenches in this paper. 

Since body coordinates are specified with respect to 
the body frame, it is clear that they are not affected by 
change of world frame. The change-of-body-frame for- 
mulas for body velocities and wrenches are given by [15] 

where overbars denote objects with respect to a new 
body frame, denoted FB, which is displaced from FB 
by a rigid displacement g = (d, R).  The matrix Tg takes 
the form T, = (t y )  , where for a given z E W3, 2 is a 
skew-symmetric matrix such that Py = x x y for y E W3. 
2.2 Modelling of Compliant Fixtures 

A f i ture  consists of an object (or workpiece), denoted 
B, contacted by IC fixture elements (or fixels), denoted 
, A I , .  . . , Ak. We make the following assumptions for our 
study. First, the bodies B and A, are quasi-rigid, i.e., 
the compliant deformations are restricted to the vicinity 
of the contacts. Second, each fixel is stationary, and we 
can hence focus on B’s c-space, C. Finally, the fixture 
is a conservative elastic system whose elastic behavior 
can be characterized by a scalar-valued function, called 
the elastic potential and denoted II(q). 

A configuration qo is said to be an equilibrium config- 
uration if B is in equilibrium under nonzero fixel forces 
in the absence of external disturbances. We call the 
nonzero fixel forces preloading forces and the fixture a 
preloaded equilibrium jbture. An equilibrium configu- 
ration qo is a critical point of II, that is, Vn(q0) = 0. 
The 6 x 6 Hessian matrix, K = D211(qo), is the equilib- 
rium fixture stiflness matrix. As an elastic system, the 
fixture at qo is (quasi-statically) stable if qo is a local 
minimum of rI. The fixture is stable if K is positive 
definite. In this case, letting q be a body velocity used 
to approximate the small displacement of B due to a 
disturbing body wrench w, we have the linear relation- 
ship: w = Kq or q = Cw, where C = K-’ is called the 
fixture’s compliance matrix. 

The elastic potential n(q) can be obtained from a 
contact model, which correlates fixel forces to relative 
displacements between the object and fixels. The work 
reported in this paper is general in the sense that it is ap- 
plicable to all contact models that are consistent with 
the quasi-rigidity assumption. We may use the mod- 
elling scheme that is based on virtual overlaps of quasi- 
rigid bodies [19], which is briefly reviewed here. We wish 
to ignore the details of compliant surface deformations 
due to a relative displacement of the contacting bod- 
ies, and model the resultant contact force as a function 
of B’s relative displacement. Instead of solving for the 
complex surface deformations that arise during compli- 
ant interaction, imagine that the rigid shape of B freely 
penetrates the rigid shape of Ai during the relative a p  
proach that accompanies their true compression. I.e., 
the two quasi-rigid bodies virtually “overlap” as their 

h=T;’q and w=T,Tw. (1) 
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bodies are pressed together. The virtual overlap be- 
tween B and Ai can be characterized by a line segment, 
of length &(q), which lies in the overlapping region with 
endpoints on the boundaries of B and d,. Note that the 
length of the overlap segment depends on B’s configu- 
ration q (since A, is stationary). Using this segment as 
a lumped-parameter representation of elastic deforma- 
tions at the contact, the resultant force on B applied by 
the fixel Ai can be written as a function fi(Si(q)). This 
allows us to obtain an expression for rI(q),  and compute 
the stiffness matrix. As discussed in Ref. [lo], this ap- 
proach can be used to incorporate a variety of contact 
models, including the well-justified Hertz contact model. 

The stiffness of a preloaded fixture increases with 
the preloading forces. However, the preloading must be 
within the limit of contacting bodies’ allowable strength. 
The appropriate preloading level can be determined 
from the chosen compliance model. For concreteness the 
following discussion uses the Hertz contact model that is 
expressed using overlap functions. The maximum shear 
stress [21] in the contacting bodies can be expressed 
as a function of the overlap: TmaZi(&(q)). From the- 
ory of strength of materials [21], if T~~~~ ,< ay, where 
ay is the bodies’ yield stress, then the bodies remain 
elastic. Let QO be an equilibrium configuration of a Ic- 
fixel fixture. Then we determine the preloading level by 
maxlgiGk Tmazi(6i(qo)) = Cay, where0 < C < 1 isacon- 
stant. In other words, the fixture is preloaded to a cer- 
tain percentage of the materials’ allowable strength. Af- 
ter determining the maximum shear stress, we can find 
the individual preloading fixel forces and the preloading 
overlaps [9]. 

In fixture planning, it is also important to ensure that 
there is no contact breakage resulting from the fixtured 
object’s displacement, and that there is no excessive de- 
formation beyond the bodies’ material strength. These 
requirements, called the contact maintainability condi- 
tions 191, can be expressed as algebraic constraint in- 
equalities that must be satisfied by a proposed fixture 
plan. In the context of the overlapbased compliance 
modelling scheme, this condition can be expressed as 
0 ,< &(qo + 4) ,< Si,,,, where q is the displacement of 
B, qo is configuration of B prior to the displacement, 
and dim,, is the maximally allowed overlap dictated by 
material strength. 

3 A Task-Dependent Quality Measure 
This section defines a task-dependent quality mea- 

sure that characterizes the deflection of a fixtured object 
induced by task execution. We only consider stable fix- 
tures with positive definite st i fness matrices, since other 
types of fixtures are considered ineffective. 

We first formally introduce the notion of deflection. 

Let a quasi-rigid workpiece, denoted B, undergo a dis- 
placement approximated by a body velocity. To ensure 
the accuracy of task execution, it is often essential to 
monitor the corresponding displacements of 23’s parti- 
cles. The notion of deflection is defined for this purpose. 
Definition 1. A deflection of 23 corresponding to a dis- 
placement q is a scalar-valued function cp(q) with the 
following properties. First, cp (q )  2 0 for any q (i.e., cp is 
non-negative). Second, cp(a4) = IaIcp(q> for any scalar 
CY (i.e., cp scales linearly with the displacement). Third, 

satisfies the triangle inequality). Finally, cp transforms 
in a frame-invariant manner, i.e., cp (q )  = @(G), where 
overbars denote objects in a new body frame. 

In the above definition, only body-frame changes 
must be considered, since body velocities are not af- 
fected by the choice of world frame. Also, we did not 
require cp(q) to be positive definite for the following rea- 
son. We often need to monitor the displacements of only 
a finite collection of important workpiece points, such as 
the vertices of polyhedral objects or key features in the 
interior of an object. As B experiences a nonzero dis- 
placement, the important points may remain at their 
original positions. This may occur when there are very 
few important feature points (e.g less than 2 in the 2D 
case). In mathematical terms, we recognize the function 
cp as a pseudo-norm [16] of rigid body velocities. 

We now give a specific deflection function which will 
be used to define our task-dependent quality measure. 
Denote by R the set of critical points of B, which is as- 
sumed to be finite. There is little loss of generality in 
the assumption. Let B undergo a displacement approxi- 
mated by q = (U, w ) ,  a body velocity. Then the function 
defined below is a deflection function [9]: 

Since U, = v + w x r is the displacement of r E R corre- 
sponding to B’s movement by q,  the deflection function 
gives the maximal displacement of the points lying in 
R. This physical interpretation makes cp well-suited for 
workpiece fixturing, where the critical points’ maximal 
displacement often has a direct impact on the precision 
of task execution. 

While the deflection defined in (2) is used in this 
paper, we note that the definition of deflection is not 
unique. For example, we may define the deflection to be 
the root mean square of the displacements of the points 
in 52. This deflection function was used in Ref. [12]. 

We now define a fixture quality measure that charac- 
terizes the object’s deflection with respect to the tasks 
for which the fixture is designed. The task’s influence 
on the fixture is modeled by a task wrench set, W ,  which 
we assume to be a compact subset of the wrench space. 
Under the action of an external wrench w E W ,  the 

cp(q1 + 42) < ~ ( 4 1 )  + cp(q2) for any 41 and 42 (i.e., cp 

c p ( q )  = maxllzl+ w x rII. (2) rER 
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fixtured workpiece undergoes an approximate displace- 
ment q = Cw, where C is the fixture’s compliance ma- 
trix, and the grasp is assumed to be stable. Since the 
task wrench set is compact, cp(Cw) is bounded. Hence, 
we can define the following quality measure: 

Q = max ~ ( C W ) .  (3) WEW 
We observe that Q determines the worst-case deflection 
of the points in R with respect to all wrenches in the 
task wrench set. A key issue is to develop tractable 
computations for Eq. (3) for practical cases. 

When calculating the deflection according to (2), the 
displacement of r E R corresponding to a rigid dis- 
placement q of I3 can be written as U, = D,q where 
D, = [-F I ] .  It follows that the deflection is given by 
~ ( C W )  = maxrEoIIuT(w)II, where u,(w) = D,Cw is 
the displacement of the point r when t3 is under the 
action of the wrench w. Hence, we can rewrite (3) as 

Q = EE%yETl14w)ll = yE-fiE%llUr(w)II. 
Since R contains only a finite number of points, we can 
for each r E R focus on maxwEwllzlr(w)II, which is the 
maximal displacement of T with respect to all wrenches 
in the task wrench set W.  

4 
This section describes a novel scheme for character- 

izing task wrench sets appropriate to workpiece fixtur- 
ing. First observe that during task execution, the task 
wrench may be difficult to predict accurately. For ex- 
ample, in the milling operation illustrated in Fig. 1, the 
cutter exerts a force on the workpiece. While the mag- 
nitude of the cutting force can be estimated from ma- 
chining power, the direction of the force is difficult to 
determine and may additionally vary to due vibrations, 
etc. Thus, the force may be assumed to lie in a sector 
(shown in the figure), which moves along the cutting 
path with the cutter. Brost and Peters [2] suggested 
the use of a discrete set of positions and directions to 
approximate the continuous task data. However, this 
approach can be computationally expensive for 3D fix- 
tures and it does not accurately account for all wrenches 
generated during continuous cutter motion. Therefore, 
it is desirable to develop a procedure for conveniently 
modelling such continuously evolving task wrench sets. 
The modelling of tasks for robotic grasping was consid- 
ered by Li and Sastry [8] using ellipsoids in the wrench 
space. We propose a modelling scheme that is more 
appropriate for workpiece fixturing on the basis of the 
following observations. 

To build some intuition for our modelling scheme, 
consider some common operations that involve fixtures. 
First consider assembly fixtures, which are also known 
as assembly pallets. As a h tu red  part hits a motion 

Modelling of Task Wrench Sets 

Fig. 1. Cutting force in a milling operation 

stop during its transfer from station to station, it will 
be quickly decelerated. Due to this deceleration, the 
part is subjected to an inertial force acting at the part’s 
center of mass. Thus the task wrench set is simply a 
finite collection of known wrenches. 

Next consider fixtures for machining purposes. As 
shown in the milling example given above, machining 
operations exert a wrench (i.e., a force and a torque) on 
the workpiece. Due to uncertainties, the wrench may 
not be completely known, and in general varies as the 
cutter moves. However, the component of the wrench 
consisting of forces can often be localized to a given 
range of directions, with known magnitude along each 
direction. That is, the force component lies in a given 
compact set that is independent of the location of the 
task wrench’s application. Since the force components 
of the task wrenches all lie in a fixed set, the task wrench 
set is a subset of a cylinder (interior points included) in 
the wrench space based on the fixed force component 
set. For instance consider the milling operation shown 
in Fig. 1. As shown in Fig. 2(a), with respect to the 
frame FB, the force domain is a sector given by 

-7r -7r 
F = {(f cos4, f sin4) : -- < 4 < -, 0 < f < p f } .  

This expression defines a cylinder in the 3D wrench 
space whose base set is F and whose generators are 
parallel to the T-axis. The torque of such a force 
can be written as T = J(f,sina - fycosa), where 
J E [&,&I. Thus, the task wrench set is a sub- 
set of the cylinder bounded by two planes given by 
T - &(f,sina - f,cosa) = 0, as shown in Fig. 2(b). 
Note that even when the magnitude or direction range 
of the force component changes during the machining 
operation, one may conservatively assume such a cylin- 
drical set provided the actual wrench set is a subset of 
the assumed set. 

4 4 

, y 7 - -  
.I ‘ 

f x  DY .-- -1 

(4 (b) 
Fig. 2. Task primitive for milling operation 

These observations suggest that we model task 
wrench sets as subsets of generalized cylinders in the 
wrench space, whose base sets are compact sets in the 
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space of force components. We first introduce two 
types of primitive force domains. Let 3~ be a body 
frame. With respect to this frame, consider a sphere 
S = {f E R3 : f'f < p;} and a half-space H = {f E 
lR3 : n'f < p, , } ,  where n is a unit vector, and pf 2 0 
and p h  E IR are constants. Note that the boundary of H 
is normal to n. We define two types of force domains by 
considering the intersections of these sets with a circular 
cone given by r = {f E IR3 : n'f 2 l l f l l  cosa}, which is 
symmetric about n and has a vertical angle of 2a with 
CY E [O,T] .  The first type, called Type 1-30, is defined 
bY 

F = s n r ,  

F = H n r .  
and the second type, called Type 11-30, by 

When n = (O,O, l), i.e., F is symmetric about the fz- 
axis (Fig. 3), we say that F is in canonical form. In body 
coordinates, F is independent of the choice of world 
frame. Since any change of body frame may only re- 
sult in a rigid rotation of F ,  the shape of F remains the 
same for all frame choices. 

I fi L f Z  

(a) Type I-3D 
Fig. 3. Canonical forms of force domain 

(b) Type IE3D 

The I-3D and 11-3D types of force domains can be 
used to represent force components of practical task 
wrenches. For example, in a drilling operation, the drill 
bit exerts a thrust force on the object. The direction 
of this force, which generally deviates from the speci- 
fied drilling axis due to uncertainties, may be assumed 
to lie in a circular cone which is symmetric about the 
drilling axis. If one assumes that the thrust force has a 
magnitude estimated in a way independent of the force's 
direction, the thrust force can then be represented by a 
Type I-3D force domain. Type 11-3D can be applied 
similarly in practice. This type can also be used to ap- 
proximate Type I-3D force domains, since it involves 
no curved domain boundaries, and leads to consider- 
able simplifications. See Fig. 6 for an analogy of the 
difference between Type I-3D and Type 11-3D models. 

We now present a general form for primitive wrench 
sets using body wrenches in the body frame FB. 
Definition 2. A primitive wrench set is a subset of the 
wrench space of the form 

where Q and Q are appropriately dimensioned constant 

matrices, TO is a constant vector, < E P is a pafame- 
ter vector, and the parameter domain P is a compact 
polygonal subset of I R 2 .  

In this definition, we assume P to be compact since 
cutter paths have finite dimensions, and P c R2 since 
cutting forces can only be applied on the workpiece's 
boundary. However, we do not make any assumptions 
on the convexity of P. 

Intuitively, the proposed form of primitive wrench 
sets represent task wrenches that move along continuous 
paths. Moreover, we observe that the torque component 
of a primitive wrench in general consists of three terms. 
The first term accounts for the contribution of a moving 
pure force (a< gives the position of f), the second term 
gives a torque that is related to the force component in 
some specified manner (see Example 2 below), and the 
third term is a constant torque. Specific examples of 
these terms can be found in Examples 1-4. 

Geometrically, a primitive wrench set is a 
parametrized subset of a solid cylinder in the wrench 
space whose base set is F and whose generators are 
orthogonal to F and hence are pure torques. This 
is illustrated in Fig. 2(b), which shows the primitive 
wrench set for the milling operation of Fig. 1. The 
following two examples give some practically useful 
primitive wrench sets for 3D workpiece fixturing. Many 
other examples fit into our modelling framework. 
Example 1. In Fig. 4 are shown two force cones that 
move over a polygonal region in space. The cones are 
both in canonical form with respect to the body frame 
FB. The parameter domain is a planar region, specified 
with coordinate axes and ( 2 .  Then this primitive 
wrench set is given by I%' = {(f, ( @ E )  x f) E lR6 : f E 
F, < E P} ,  where Q, = [el e21 with el and e2 being unit 
vectors, specified in FB, along the and & axes. 

(a) (b) 
Fig. 4. Force cones moving over a polygon 

Example 2. Fig. 5 shows a model of drilling opera- 
tions. In this model a force of constant magnitude 
pf and a torque of constant magnitude pT are aligned 
along a line e, which lies in a cone as shown. We 
see that the base set F is of Type I-3D, and that 

Now let us consider the special case of planar fix- 
@ = {(f, ( P 7 l P f ) f )  E R6 : f E F } .  
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Fig. 5. A model for drilling operations 

tures. The wrench space is 3-dimensional with scalar 
torque components. The parameter domain P for prim- 
itive wrench sets is now a line segment. The Type I-3D 
force domain reduces to Type I-2D (the intersection of 
a disc with a planar cone), and Type 11-3D reduces to 
Type 11-20 (the intersection of a half-plane with a pla- 
nar cone). Such force domains can be used to model the 
effect of 3D machining operations on an object that is 
restrained to move only in a plane (see Example 4), or 
machining (e.g., milling) operations that mainly gener- 
ate 2D forces. For 2D force domains, we choose their 
canonical forms such that they are symmetric about the 
f,-axis, as shown in Fig. 6. 

(b) Type 11-2D (a) Type I-2D 
Fig. 6. Canonical forms of 2D force domain 

Example 3. As shown in Fig. 7, two task primitives 
are given where a force sector and a force cone, both in 
canonical forms, move along a line segment P, respec- 
tively. Then in the frame FB, the primitive wrench sets 
areof the form E P } ,  
where e is a unit vector along P. 

= {(f, Ee x f )  E R3 : f E F, 

(a) (b) 
Fig. 7. Planar force cones moving along a line segment 

Example 4. Fig. 8 shows a model of drilling operations 
for planar fixtures. This primitive wrench set takes the 
form IV = { ( f , ~ d )  E R3 : IlfII ,< P,}. 

5 Task-Model Based Computation 
This section employs the primitive wrench sets, which 

were developed in Section 4, to compute the task- 
dependent quality measure. The verification of the con- 

Fig. 8. A model for drilling operation in planar case 

tact maintainability conditions can be performed in a 
similar manner and is discussed in Ref. [9]. 
5.1 

We now consider the modelling of task wrench sets as 
composites of primitive sets. These composite sets can 
be used to represent quite general manufacturing oper- 
ations. This approach allows us to formulate the task- 
dependent quality measure (3) using primitive wrench 
sets. 

Consider a given task wrench set W .  Let W1, . . . ,Wm 
be primitive wrench sets expressed in the intermediate 
body frames F B ~ ,  . . . , F B ~  displaced from 3~ by 91, 
. . . ,gm, respectively. We say that W is modelled by W i  
if for each w E W ,  there exist .iiri E Wi such that 

Formulation Using Primitive Wrench Sets 

m 

(4) 
i=l 

where the wrench transformation rule in (1) has been 
used. Thus, the task wrench set is given by a primitive 
wrench set, or the Minkowski sum of several primitive 
wrench sets. 

To compute the task-dependent quality measure, we 
can focus on computing m%EWIlu,(W)ll, or equiva- 
lently, maXwEWllur(w)112 for a particular point r E SI 
(Section 3). Here 

is the displacement of the point r due to the wrench 
w, where C is the fixture’s compliance matrix, and 
D, = [-? I]. Let w be given in terms of prim- 
itive wrenches by (4), where each ?& is determined 
by its force component fi E Fi and parameter vec- 
tor ( i  E Pi (Section 4). The displacement u,(w) de- 
pends on f = (fi, ... ,fm) E F = Fi x . * -  x Fm and 
(ti, ... ,tm) E P = PI x ... x P,, and by using the 
structure of primitive wrench sets, can be rewritten in 
the form [9] 

U r ( w )  = D ~ C W  

m m 

i=l i=l 
where Ai(&), b(<),  Zi(fi), and y(f) are matrix- or 
vector-valued functions. It follows that llur112 is a con- 
vex function when either f or ( is fixed. Since the 
maximum of a convex function is achieved at  an ex- 
treme point of the convex hull of its domain, Ilur(f,()l12 
achieves its maximum at an extreme point of the convex 
hull of P when f is fixed. Now, m%EW(Iur(w)()2 = 
maxpp  mqEPIIur(f,  ()112. Thus, the global maximum 
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of can be obtained by finding its maxima with 
respect to f for each of the vertices of the convex 
hull of P. Let denote such a vertex, and consider 
G(f) A u,.(f, 50). Dropping for brevity the argument t o  
from Ai and bi, which are now constant, we can focus 
on maxf€F 4(f 1, where 4(f) = IlW)l12, i.e., 

m m 

i= 1 i=l 
Since +(f) is a convex quadratic function, the max- 

imizers of +(f) belong to ext(F) = ext(F1) x x 
ext(F,), where ext(F) and ext(Fi) are the set of ex- 
treme points of F and Fi, respectively. Each ext(F;) 
can be partitioned in the form ext(Fi) = Fi U F i ,  where 
F, is a discrete set and a continuous set. Suppose 
that f1, is an element of F1. Then for maximizing 
4(f) = l l ~ ( f ) 1 1 2  over {fl,) x &  x .  - . x F , ,  we may recast 
the function as i i ( f 2 , .  . . , fm) = Ai fi+(A1 fl,+b). 
By reasoning along this line, we can ignore the discrete 
sets F; without 1 % ~  of geneLality and focus on maxi- 
mizing 4(f) over F1 x . . . x F,. Now, we consider the 
typical form of the sets &. Let F, be 2 primitive force 
domain described in Section 4. Then Fi is either a cir- 
cular arc or a spherical patch with a circular boundary, 
and is determined by the following two constraints: 

where all the quantities except f; are constant. 
Therefore, while the quality measure (3) is a compli- 

cated function of wrenches that generally form a set of 
complex shape, the formulation described above allows 
us to focus on maximizing a positive definite quadratic 
function 4 over the simple domain given by (6). 

5.2 Maximal Particle Displacements 
To find the maximal displacement of a particle of 27 

with respect to a given task wrench set, we need to find 
the maximum of the function d(f1,. . . , fm), as defined 
in Eq. (5), over F1 x . . x F,. 

Since + @ a convex quadratic function, whose maxi- 
mum over Fi determined by the constraints (6)  remains 
maximal over the region determined by fTfi < p:i and 
nTfi 2 pjicoscri. Thus, we need to solve a convex 
quadratic maximization problem subjected to multiple 
convex quadratic constraints. Several algorithms have 
been developed for such optimization problems (e.g., 
[l]) ,  and can be used to find the global maximum of 

- 

f,? fi = P:~ and nT fi 2 pfi cosa;, (6)  

1 I f \  

The maximization problem affords a particularly sim- 
ple solution when the force domain is planar (f E R2) .  
The constraints in this case can be parameterized by 
f = (cos0,sinO)', where 0 E [-a,a]. For maximizing 
+(f), it is necessary that (Af + b)T&(Af + b)  = 0, i.e., 

(-UT sin0 + U; cosO)(al cos0 + a2 sin0 + b) = 0, 
where A = [a1 a2]. Substituting sin0 = (1  - t 2 ) / ( 1  +t2) 
and cos0 = 2 t / ( l  + t2)  yields a quartic equation in t ,  
which can be solved to find the maximizer of +. 

Now consider the case where f,E R3. If the maxi- 
mizer of + lies On the boundary of F ,  i.e., the inequality 
constraint for F holds as an equality, then the technique 
for the 2D case can be invoked since F's boundary is a 
circle. Thus, it remains to consider-the case where + is 
maximized at an interior point of F and the inequality 
constraint is inactive. Omitting the constant term, we 
can rewrite 4 as 

1 d(f) = f G f  + d'f, 
where G = 2AtA and d = 2A'b. The global maxi- 
mizer of 4 over F is a local (but not necessarily global) 
maximizer of 4 over the sphere f'f = p;. These local 
maximizers can be determined by the following station- 
arity conditions: 

where ,u > 0 is an undetermined Lagrange multiplier. 
By careful case studies considering the relationship be- 
tween ,u and the eigenvalues of the matrix G, these equa- 
tions can be efficiently solved from polynomial equations 
of up to order 6. The details of this solution process can 
be found in Ref. [9]. 

Thus, when the task wrench set can be modelled by a 
single wrench primitive, the quality measure ( 3 )  can be 
computed quite efficiently. This is of practical interest, 
since if a fixture is designed for a specified manufactur- 
ing operation (e.g., milling), a single primitive wrench 
set is often sufficient for modelling the forces generated 
during the process. 
Example 5. We illustrate our approach by a planar 
fixture. Fig. 9(a) shows a planar part of thickness 1/4  
inches fixtured by four fixels. The part is made of AIS1 
1040 steel, with E = 200 x lO9Pa, os = 413 x 106Pa 
and v = 0.3. The machining tasks involve removing 1/8 
of an inch using a side mill along the edges AB, CD 
and G H  so that AB is accurately parallel to CD and 
GH. The cutting force is estimated at 341 Newtons [MI, 

(G - p 1 ) f  + d = 0 and f'f = p:, 

VU) .  lying in a sector which moves along the edge being ma- 
we now discuss the important specia1 chined. The h e l s  have spherical tips of uniform radius 

2 inches, and are placed on the edges AC, B H ,  and EF where the task wrench set is a task 
(each of EF's endpoints contact a fixel). For demon- 
stration we focus on the milling force acting on the edge 
AB, and consider the variation of the quality measure 
Q as the k e l s  F1 and F2,  aligned vertically, move along 

primitive. In this case, we wish to maximize 

over F determined by the constraints 
4(f) = (Af + vwv + b)  

f'f = p :  and nTf  2pjcoscr. 
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the edges AC and BH. Preload the fixture, for all fixe1 
arrangements, such that the maximum shear stress near 
the contacts is 70% of the steel’s yield stress. Using the 
Hertz contact model and the procedure outlined in Sec- 
tion 2.2 and detailed in Ref. [9], we found that the fix- 
ture satisfies the contact maintainability conditions for 
all cutting force positions and directions if the F1 and 
F2 are placed such that x < 3.68 inches. As shown in 
Fig. 9(b), when x decreases from this value, the quality 
measure, defined using the vertices A and B as criti- 
cal points, assumes a monotonically decreasing value, 
indicating improvement of fixture quality. Thus, of the 
fixtures we consider, the best one is given by placing the 
fixels F1 and F2 at A and B, respectively, with Q = 2.4 
microns. This agrees with our intuition that this fixture 
arrangement best restrains the displacement of the edge 
AB. 

0 0.5 11.5 2 2.5 3 3.5 
x (inches) 

(a) A steel part fixture (b) Variation of the quality measure 
Fig. 9. Task primitive for milling operation 

6 Conclusion 
A task-dependent approach to minimum-deflection 

fixtures was presented. A notion of deflection for quasi- 
rigid bodies was formally defined, and was used to de- 
fine a quality measure that characterizes the fixtured 
object’s deflection with respect to given tasks. We also 
proposed a novel scheme for modelling task action by 
a class of primitive wrench sets. This scheme can be 
used to represent practical manufacturing operations, 
and provide an efficient structure for computing the 
quality measure. An example was finally used to il- 
lustrate that our approach can be effectively applied to 
compliant fixtures. 
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