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We consider a market run by an operator, who seeks to satisfy a given consumer demand for a commodity

by purchasing the needed amount from a group of competing suppliers with non-convex cost functions. �e

operator knows the suppliers’ cost functions and announces a price/payment function for each supplier, which

determines the payment to that supplier for producing di�erent quantities. Each supplier then makes an

individual decision about how much to produce, in order to maximize its own pro�t. �e key question is how

to design the price functions. To that end, we propose a new pricing scheme, which is applicable to general

non-convex costs, and allows using general parametric pricing functions. Optimizing for the quantities and

the price parameters simultaneously, and the ability to use general parametric pricing functions allows our

scheme to �nd prices that are typically economically more e�cient and less discriminatory than those of the

existing schemes. In addition, we supplement the proposed method with a polynomial-time approximation

algorithm, which can be used to approximate the optimal quantities and prices. Our framework extends to the

case of networked markets, which, to the best of our knowledge, has not been considered in previous work.

1 INTRODUCTION
While there has been a long history of studying markets under convexity assumptions in economic

theory, non-convexities are ubiquitous in most real-world markets. �ey arise due to start-up or

shut-down costs, indivisibilities, avoidable costs, or simply economies of scale.

It has been widely noted in the literature that in the presence of non-convexities, there may be

no linear prices (constant per quantity) that support a competitive market equilibrium, e.g., [Brown,

1991, Guesnerie, 1975], and it was suggested as early as 1980s that in these markets one needs to

consider using price functions, as opposed to the conventional prices [Wolsey, 1981]. Following the

work of [Scarf, 1990, 1994], there have been many pricing schemes proposed in the literature. In

particular, during the past decade, motivated by the deregulation of the electricity markets in the

US and around the world, the problem of pricing in non-convex markets has a�racted renewed

interest from researchers, and there has been considerable work on this problem [Liberopoulos and

Andrianesis, 2016]. �ese schemes are deployed in practice, and the operation and e�ciency of our

electricity markets relies on them [Azizan Ruhi et al., 2017].

Formally, the non-convex pricing problem is that, given an inelastic demand for a commodity

from a number of consumers, a market operator seeks to satisfy the demand by purchasing the

required amount from a group of competing suppliers with non-convex cost functions. �e operator

knows the suppliers’ cost functions, and it announces a price/payment function for each supplier,

which determines the payment to that supplier for producing di�erent quantities. Each supplier

then makes an individual decision about how much to produce in order to maximize its own pro�t.

�e question of interest is then how to design the price functions, which is quite di�erent from

mechanism design since the cost functions of the suppliers are known to the market operator.

However, even though the cost functions are known, the design of the price functions in these

markets is di�cult.

An important early approach to the pricing problem was the work of [O’Neill et al., 2005],

sometimes referred to as integer programming (IP) pricing, which considered the class of non-

convexities that arise from the start-up costs of the suppliers (with linear marginal costs). �e
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paper proposes a clever pricing rule, based on solving a mixed-integer linear program and forcing

the integral variables to their optimal values as a constraint. �e scheme is economically e�cient

and has a nice dual interpretation. Modi�ed versions of IP pricing have been proposed by [Bjørndal

and Jörnsten, 2008, 2010] and others. Another approach, proposed for the more general class of

non-convex cost functions that are in the form of a start-up plus a convex (rather than linear) cost,

is the minimum-upli� (MU) pricing of [Hogan and Ring, 2003], and its closely related re�nement

of [Gribik et al., 2007], known as convex hull (CH) pricing. �ese schemes provide discriminatory

upli�s to di�erent suppliers to incentivize production, and the upli�s are minimal in a speci�c

sense [Schiro et al., 2016]. �e possibility of having both positive and negative upli�s was also

considered by [Galiana et al., 2003, Mo�o and Galiana, 2002]. Other pricing schemes include the

semi-Lagrangian relaxation (SLR) approach of [Araoz and Jörnsten, 2011], and the primal-dual (PD)

approach of [Ruiz et al., 2012]. �ese schemes seek to �nd uniform linear prices that are revenue-

adequate (but not supporting of the equilibrium). A survey on all the above pricing schemes was

recently wri�en by Liberopoulos and Andrianesis [2016]. However, the overall desired properties,

as well as the properties that each of the schemes satisfy, were not examined there. We formalize

the desired properties considered in the literature in Section 2, and discuss the properties of the

existing schemes in Section 3. Table 1 summarizes the common schemes and their properties.

Despite the large body of work on the pricing problem, the existing schemes have several

shortcomings. For example, most of the existing schemes mentioned above are proposed for

speci�c classes of non-convex cost functions, and cannot handle more general non-convexities.

Furthermore, even the ones that are applicable for general cost function fail to satisfy some of

the key desired properties of the market, such as economic e�ciency or supporting a competitive

equilibrium. In addition, none of the existing schemes is accompanied by a computationally

tractable algorithm for general non-convexities, and they typically rely on o�-the-shelf heuristic

solvers for mixed-integer programs that are known to be NP-hard.

In this paper, we propose a pricing scheme for markets with general non-convex costs that designs

general parametric price functions and addresses all the issues mentioned above. Our approach

seeks to �nd the optimal schedule (allocation) and the optimal pricing rule simultaneously, which

generally allows for �nding economically more e�cient solutions. �e ability to use general price

functions (e.g. piece-wise linear, quadratic, etc.) enables our approach to design price functions that

are less discriminatory, while still supporting a competitive equilibrium. Furthermore, our pricing

scheme is accompanied by a computationally e�cient (polynomial-time) approximation algorithm

which allows one to �nd the approximately-optimal schedule and prices for general non-convex

cost functions. Lastly, our proposed pricing rule can be extended to networked markets, which, to

the best of our knowledge, are not considered in any of the existing work.

Speci�cally, this paper makes the following contributions.

(1) We survey the common pricing schemes proposed in the literature for markets with non-

convex costs and provide a compact summary of their properties (Section 3).

(2) We propose a framework for pricing in markets with general non-convex costs, using

general price functions (Section 4.1). Our scheme seeks to �nd the optimal price functions

and allocations simultaneously, while imposing the equilibrium conditions as constraints.

For this reason, our approach is generally economically more e�cient than the existing

methods, while satisfying the equilibrium conditions. Moreover, the ability to use general

price forms allows one to obtain more uniform prices (smaller “upli�s”).

(3) We supplement our pricing scheme with a computationally e�cient (polynomial-time)

approximation algorithm for �nding the allocations and prices (Section 4.2).

(4) We extend our framework to networked markets (Section 5), and also propose an approxi-

mation algorithm that can compute the solution e�ciently for acyclic networks, a common

scenario in electric distribution networks.
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2 MARKET DESCRIPTION AND PRICING OBJECTIVES
While our goal in this paper is to design an economically and computationally e�cient pricing

scheme for non-convex networked markets, we begin with the problem of designing one for a single
market, which is di�cult in its own right. We return to the case of networked markets in Section 5.

When the cost functions are non-convex, even this seemingly simple problem has proven to be

challenging, and a wide variety of pricing schemes have been proposed for it in the literature. In

the following, we describe the market model and survey the desired market properties.

2.1 Market Model
We consider a single market consisting of n competing suppliers (o�en referred to as �rms or

generators). �e market is run by a market operator that seeks to satisfy a deterministic and

inelastic demand d for a commodity in a single period. Each supplier i has a cost function ci (qi ) for

producing quantity qi , which may be non-convex.

�e suppliers’ cost functions are known by the operator, and the operator uses them to determine

the prices. In particular, the operator announces price/payment functions pi (qi ), which determine

the payment to supplier i when producing qi . Note that, in general, the price functions can be

di�erent for di�erent suppliers, but it is o�en desired to have close-to-uniform prices.

Upon the announcement of the price functions, each supplier i makes an individual decision,

based on the price function pi (·) and the cost function ci (·), about how much to produce (and

whether to participate in the market), in order to maximize its own pro�t, i.e., pi (qi ) − ci (qi ). �e

suppliers are then paid for their production according to the payment function, and the demand

(consumers) is charged for the total payment.

�is model is classical, and has been studied in a wide variety of contexts, initially under the

assumption of convex cost functions for production and linear pricing functions, but more recently

under non-convex cost functions. Non-convex cost functions are particularly important in the

context of electricity markets. As a result, there is a large literature focusing on non-convex pricing

in electricity markets, see [Liberopoulos and Andrianesis, 2016] for a recent survey. O�en this

literature assumes speci�c forms of non-convexities (e.g., startup/�xed costs), and speci�c forms of

payment functions (e.g., linear plus upli�). �e results from this literature have guided the design

and operation of electricity markets across the world today.

2.2 Pricing Objectives
�e key design question in the market described above is how to devise the payment functions. �e

goal of the operator is to (1) �nd the optimal quantities q∗i , and (2) design the payment functions

pi (·) that ensure that the suppliers produce the optimal quantities q∗i .
�ere is a huge design space for such payment functions, and there is a large literature evaluating

proposals in the context of non-convex cost functions, e.g., [Araoz and Jörnsten, 2011, Bjørndal

and Jörnsten, 2008, Gribik et al., 2007, Hogan and Ring, 2003, Hua and Baldick, 2017, Liberopoulos

and Andrianesis, 2016, O’Neill et al., 2005, Ruiz et al., 2012, Schiro et al., 2016].

From this literature has emerged a variety of desirable properties which pricing rules a�empt to

satisfy. �e following is a summary of the most sought-a�er properties in this literature. Note that

no existing rules satisfy all of these properties for general non-convex markets.

(1) Market Clearing (a.k.a. Load Balancing): �e total supply is equal to the demand, i.e.,∑n
i=1

q∗i = d .

(2) Economic E�ciency
(a) Minimal Production Cost (Suppliers’ Total Cost): �e total production cost of the

suppliers, i.e.

∑n
i=1

ci (q∗i ), is minimal.

(b) Minimal Payment (Total Paid Cost): �e total cost that is paid to the suppliers for

the commodity, i.e.

∑n
i=1

pi (q∗i ), is minimal.
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(3) Incentivizing
(a) Revenue Adequacy: For every supplier, the net pro�t at the optimum is nonnegative,

i.e., pi (q∗i ) − ci (q∗i ) ≥ 0, for i = 1, . . . ,n.

(b) Support a Competitive Equilibrium: �e optimum production quantity for each

supplier is a maximizer of its individual pro�t, i.e., q∗i ∈ arg maxqi pi (qi ) − ci (qi ), or

equivalently pi (q∗i ) − ci (q∗i ) ≥ maxqi,q∗i pi (qi ) − ci (qi ), for i = 1, . . . ,n.

(4) Simplicity and Uniformity: �e price functions are simple and interpretable (ideally

linear: pi (qi ) = λiqi ) and non-discriminatory (ideally uniform across suppliers: pi (qi ) =
p(qi )).

(5) Computational Tractability: �e optimal quantities and price functions can be com-

puted/approximated in time that is polynomial in n.

A few remarks about these properties are warranted. Property 1 ensures that the demand is

met. Property 2 is somewhat more elaborate and concerns the economic e�ciency of the scheme,

in terms of total expenditure. Even though in certain cases (e.g. in IP pricing of [O’Neill et al.,

2005] for startup-plus-linear costs), the suppliers’ total cost

∑n
i=1

ci (qi ) and the total paid cost∑n
i=1

pi (qi ) match and are both minimal, there is an inevitable gap between the two in general.

Ultimately, the quantity which determines the cost of satisfying the demand is the total payment

to the suppliers

∑n
i=1

pi (qi ), and therefore Property 2b is arguably more crucial than Property 2a.

However, ostensibly, because the price functions are not directly available while computing the

optimal quantities, many pricing schemes have resorted to minimizing the total suppliers’ cost∑n
i=1

ci (qi ) as a surrogate for the paid cost. In this paper, we advocate a direct approach for

minimizing the total payment.

Property 3 incentivizes the suppliers to follow the dispatch and produce the socially-optimal

quantities. More speci�cally, Property 3a ensures that the suppliers do not lose by producing q∗i ,
and further, Property 3b assures that it is in each supplier’s best interest to follow the dispatch.

Property 3b is generally a stronger condition than Property 3a, and if pi (0) = ci (0) = 0 ∀i , then (3b)

implies (3a).

Property 4 concerns having price forms that are “close to linear” (simple) and “close to uniform”

(non-discriminatory), in some sense. One common approach to this is to use uniform linear prices

plus a generator-dependent “upli�,” i.e. pi (qi ) = λqi + ui1qi=q∗i , and try to minimize the upli�s

ui . As Property 4 is subjective by its nature, we allow arbitrary parametrized price functions in

our scheme. However, we also examine our scheme when applied to the popular minimal-upli�

approach. Note that Property 4 also rules out the use of “dictatorial” prices, in which the operator

pays the cost (plus an ϵ) only at the desired amount, and pays nothing for any other amount

produced.

�e �nal property, Computational Tractability, is particularly challenging to address in the

context of non-convex markets. Nearly all standard approaches work by computing the optimal

production quantities and then deriving the prices from these quantities in some way. Under

general non-convex cost functions, this �rst step is already computationally intractable. �us, it

is important to consider relaxations (approximations) of other properties if the goal is to enforce

computational tractability. To that end, we consider approximate versions of the Incentivizing and

Economic E�ciency conditions, which we discuss in Section 4.2. We propose an algorithm that

satis�es these approximate versions, while being computationally tractable.

3 EXISTING PRICING SCHEMES
To this point, no pricing design for general non-convex markets satis�es all the properties discussed

above. However, it is possible to achieve all the properties in the case when the cost functions are

convex via a classical approach: shadow pricing. In this section, we brie�y illustrate how shadow
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pricing works for the convex case, and then survey some prominent approaches in the literature

that seek to extend the properties of shadow pricing to the non-convex case.

3.1 Pricing in Convex Markets
When the cost functions ci (.) are convex, a simple and uniform pricing rule, o�en referred to as

shadow pricing or marginal-cost pricing [Beato and Mas-Colell, 1985, Turvey, 1969], can achieve all

the above-mentioned properties. �e pricing scheme works as follows. �e operator �rst solves

the convex program

min

q1, ...,qn

n∑
i=1

ci (qi ) (1a)

s.t.

n∑
i=1

qi = d (λ) (1b)

where λ is the dual variable corresponding to the load-balance constraint. Let q∗
1
, . . . ,q∗n and λ∗

denote an optimal primal-dual pair of this problem (if there are multiple dual solutions, take λ∗ to

be the smallest). A payment function of the form

pi (qi ) = λ∗qi i = 1, . . . ,n (2)

satis�es all the properties outlined in Section 2.2, and it is relatively straightforward to see that.

For simplicity assume that ci (.) are di�erentiable. �e optimal solution of (1) satis�es the

following (KKT) conditions (which does not require convexity):{∑n
i=1

q∗i = d
dci
dqi
(q∗i ) = λ∗, i = 1, . . . ,n

Next, note that supplier i’s pro�t-maximization problem is

max

qi
λ∗qi − ci (qi ).

Since ci (.) is convex, the objective is concave and any point at which the derivative is zero, is a

global maximizer. In particular, the derivative at q∗i is zero, because of the KKT conditions, and

therefore that is a solution to the supplier i’s pro�t-maximization problem. As a result, the scheme

supports a competitive equilibrium that clears the market and minimizes the production cost, while

using a price form that is simple and uniform.

Note that the total payment of this scheme is

∑n
i=1

pi (q∗i ) = λ∗d , which can be generally higher

than

∑n
i=1

ci (q∗i ). One can always opt for a non-uniform a�ne price function as pi (qi ) = λ∗qi +
bi , with bi = ci (q∗i ) − λ∗q∗i , which has lower payments, and makes

∑n
i=1

pi (q∗i ) exactly equal to∑n
i=1

ci (q∗i ). However, if one requires a uniform and linear price function, it can be shown that

pi (qi ) = λ∗qi has the lowest total payment among all such functions.

3.2 Pricing in Non-Convex Markets
If the cost functions are non-convex, the approach of shadow pricing, described above, fails. �is is

because the net pro�t of each supplier is no longer a concave function, and its stationary points do

not necessarily correspond to the maximum. In other words, there may not be a subderivative at q∗i
supporting the cost function ci (.).

�ere have been several schemes proposed in the literature that a�empt to address this issue

and design pricing rules that satisfy the properties discussed above in the context of non-convex

cost functions. We review the most promising ones here. Some of the schemes maintain a uniform

pricing rule with additional discriminatory side-payments called “upli�s” for incentivizing the



Navid Azizan, Yu Su, Krishnamurthy Dvijotham, and Adam Wierman 6

Table 1. Summary of common pricing schemes and their properties. IP: Integer Programming, MU: Minimum
Upli�, CH: Convex Hull, SLR: Semi-Lagrangean Relaxation, PD: Primal-Dual, EC: Equilibrium-Constrained

Scheme\Property
Proposed for

ci (qi ) =
Price form

pi (qi ) =
Market

Clearing

Revenue

Adequate

Supports

Competitive

Equilibrium

Economic-

ally E�cient

Applicable

to general

costs

Computation-

ally E�cient

in general

Shadow

Pricing
Convex λqi 3 3 3 3 5 N/A

IP Startup+linear λqi + ui1qi>0 3 3 3 3 5 N/A

MU/CH Startup+convex λqi + ui1qi=q∗i 3 3 3 5 3 5

SLR Startup+linear λqi 3 3 5 5 5 N/A

PD Startup+linear λqi 3 3 5 5 5 N/A

EC

(proposed)
General General 3 3 3 3 3 3

suppliers to follow the dispatch, while others raise the uniform price so that it is revenue-adequate.

A summary of the pricing schemes, along with their properties, is provided in Table 1.

Integer Programming (IP). A pricing scheme for non-convex cost functions that are in the form

of a �xed (start-up) cost plus a linear marginal cost, sometimes referred to as “IP pricing” was

proposed in [O’Neill et al., 2005]. �is scheme uses uniform marginal pricing for the commodity

and discriminatory pricing for the integral activity of the suppliers. It is based on (i) formulating

an optimization similar to (1), as a mixed integer linear program (MILP) and solving it for optimal

allocations, (ii) reformulating the original MILP as an LP by replacing the integral constraints with

forcing commitment choices equal to their optimal values, and (iii) solving the LP problem and

using the dual variable λ of Market Clearing constraint as the uniform price and the dual variables

{u∗i } of the forced equality constraints as discriminatory upli�s: pi (qi ) = λ∗qi + u∗i 1 {qi > 0}.
IP pricing uses a uniform price plus a discriminatory upli� to clear the market e�ciently such

that every supplier’s net pro�t is zero. As a result, both total payments and total production costs

are minimized at the same time. It was shown in [O’Neill et al., 2005] that the optimal solutions

generated by IP pricing are optimal to the decentralized pro�t maximization problems for every

supplier and thus they support a competitive equilibrium. However, IP pricing assumes knowledge

of the optimal solutions to the unit commitment problem and thus is not intended as a practical

approach to �nd the optimal allocation. It is pointed out in [Hogan and Ring, 2003] that uniform

price generated under IP pricing can be volatile (i.e. a small change in demand could lead to a big

change in the uniform price) and upli�s could be generally very large.

Minimum Upli� (MU) / Convex Hull (CH). To avoid the unwanted properties of IP pricing (i.e.

volatility and instability), a pricing scheme, proposed in [Hogan and Ring, 2003] for the (non-convex)

class of startup-plus-convex cost functions, o�ers minimum upli�s that incentivize each supplier to

follow the dispatch rather than maximize their own pro�ts in the absence of upli�s. �e scheme is

based on solving the mixed-integer program minimizing the total production cost and minimizing

total upli�s. Given a �xed uniform price λ, each supplier chooses between following the dispatch

to receive the upli�s or not. �e upli�s can be viewed as the extra potential pro�t that the suppliers

can make by self-scheduling and maximizing their own pro�t. �e MU pricing was re�ned by

[Gribik et al., 2007] and they proposed the concept of Convex Hull pricing, which is based on (i)

replacing the non-convex cost of the original program with its convex hull to formulate a new LP,

(ii) solving the new LP and using the dual variable of Market Clearing constraint as the marginal

price and deriving the lost opportunity cost (LOC) as the minimum upli�s to incentivize suppliers’
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compliance. �e �nal payment pi (qi , zi ) as a function of quantity qi and commitment choice zi is

in the form of a uniform price λ∗ and a discriminatory upli� u∗i as pi (qi ) = λ∗qi + u∗i 1
{
qi = q

∗
i

}
.

Even though MU/CH pricing minimizes total upli�s, the generated marginal price might end

up being high, and the payments can be much higher than those of the other schemes. In general,

the total payments under this scheme might end up being much higher than the total production

costs, which defeats the purpose of minimizing the costs. Even for the class of startup-plus-linear

cost functions, where IP pricing is optimal (the total payment is equal to the total production cost,

and they are both minimal), MU pricing is not economically e�cient, as it fails to minimize the

payments.

On the computational side, although a polynomially-solvable primal formulation for the La-

grangian dual problem by explicitly describing the convex hull for piecewise linear or quadratic

cost functions was proposed in [Hua and Baldick, 2017], describing the convex hull of cost functions

could be very challenging in general and thus makes the problem computationally intractable.

Semi-Lagrangean Relaxation (SLR). A semi-Lagrangean relaxation approach to �nd a uniform

price that is revenue-adequate at the same solution for quantity and commitment choices as the

original optimization problem, for cost functions of startup-plus-linear form, was proposed in

[Araoz and Jörnsten, 2011]. �e scheme is based on formulating and solving the SLR of mixed-

integer program (MIP) by semi-relaxing the Market Clearing constraint with standard Lagrange

multiplier λ. �e solution under SLR satis�es the constraints in the original MIP and makes the

duality gap between MILP and SLR zero. �ough the payment function pi (qi ) = λ∗qi under SLR

pricing is high enough to avoid negative pro�ts for suppliers, it incentivizes the suppliers to deviate

and operate at full capacity and total payments usually end up being much higher than total costs

of production.

Primal-Dual (PD). Another revenue-adequate pricing scheme, proposed by [Ruiz et al., 2012],

exploits a primal-dual approach to derive a uniform price to guarantee that dispatched suppliers

are willing to remain in the market (revenue adequacy). �e scheme works for cost functions with

the form of start-up cost plus linear cost, and the prices have shown not to deviate much from

that of [O’Neill et al., 2005]. �e approach is based on (i) relaxing the integral constraint of the

original MILP to formulate a primal LP problem, (ii) deriving the dual LP problem of the primal

LP problem, (iii) formulating a new LP problem that seeks to minimize the duality gap between

the primal and dual problems subject to both primal and dual constraints and (iv) adding back

the integral constraints as well as nonlinear constraints to ensure that no supplier incurs loss and

solving the new problem for optimal solutions q∗i , z
∗
i and λ∗.

�ough this scheme may be implemented using standard branch-and-cut solvers, it is compu-

tationally intractable in general. �e prices pi (qi ) = λ∗qi and pro�ts produced under PD do not

signi�cantly deviate from dual prices if integral constraints are relaxed and thus are always bounded.

However, as a revenue-adequate pricing scheme, PD fails to form a competitive equilibrium as

suppliers are incentivized to operate at full capacity. In general, total payments are much higher

than total production costs.

4 EQUILIBRIUM-CONSTRAINED (EC) PRICING
As mentioned in the previous section, most existing schemes in the literature are proposed for

speci�c classes of non-convexities, and are not applicable for more general non-convex costs.

Furthermore, even the ones that are applicable for more general cost functions either already

lack some of the key properties (such as economic e�ciency) or they lose those properties for

more general costs. Additionally, the existing schemes are not accompanied by a computationally

tractable algorithm for general non-convexities, and they typically rely on o�-the-shelf heuristic
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solvers for mixed-integer programs that are NP-hard. �is serves to emphasize that no existing

pricing scheme satis�es the desired properties described in Section 2.2.

�e main contribution of this paper is the introduction of a new pricing scheme, Equilibrium-
Constrained (EC) pricing, which is applicable to general non-convex costs, allows using general

parametric price functions, and satis�es all the desired properties outlined before, as long as

the price class is general enough. �e name of this scheme stems from the fact that we directly

impose all the equilibrium conditions as constraints in the optimization problem for �nding the

best allocations, as opposed to adjusting the prices later to make the allocations an equilibrium.

�e optimization problem is, of course, non-convex, and non-convex problems are intractable in

general. However, we also present a tractable approximation algorithm for approximately solving

the proposed optimization.

We present the formulation of the optimization at the core of Equilibrium-Constrained pricing

in Section 4.1, and then develop an e�cient algorithm for solving the optimization problem

approximately in Section 4.2.

4.1 Pricing Formulation
In this section, we propose a systematic approach for determining a pricing rule under generic

non-convex costs that minimizes payments and satis�es the properties outlined in Section 2.2,

while allowing �exibility in the choice of the form of price functions.

Speci�cally, consider a class of desired price functions, denoted by P, which can be an arbitrary

class such as linear, linear plus upli�, piece-wise linear, etc. �is choice can be due to interpretabil-

ity/uniformity reasons or other practical considerations. �e core of Equilibrium-Constrained

pricing is an optimization problem for �nding the best price functions in P and the best allocations,

at the same time. �e operator is buying the commodity from the suppliers, on behalf of the

consumers, and therefore its objective is to minimize the total cost incurred (total payment), subject

to the equilibrium constraints. �e optimization problem can be expressed as follows.

Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
p1, ...,pn ∈P

n∑
i=1

pi (qi ) (3a)

s.t.

n∑
i=1

qi = d (3b)

pi (qi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (3c)

pi (qi ) − ci (qi ) ≥ max

q′i,qi
pi (q′i ) − ci (q′i ), i = 1, . . . ,n (3d)

Constraints (3b), (3c) and (3d) are the Market Clearing, Revenue Adequacy, and Competitive

Equilibrium conditions, respectively. Constraint (3d) can also be equivalently expressed as

pi (qi ) − ci (qi ) ≥ pi (q′i ) − ci (q′i ) ∀q′i , qi , i = 1, . . . ,n. (4)

�e key di�erence between EC pricing and the existing methods for pricing in non-convex

markets is that it directly minimizes the total paid cost and seeks to �nd both the optimal allocations

q∗i and the optimal price functions p∗i (.) simultaneously. �e scheme enforces the desired economic

properties as constraints, while allowing the use of any class of price functions, rather than imposing

a �xed form for the price.

Remark 4.1. It is easy to see, by relaxing the last constraint and using constraint (3c), that the
optimal value of the above optimization problem p∗ is bounded below by the minimum total production
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cost c∗ =
∑n

i=1
ci (q0

i ), where

(q0

i , . . . ,q
n
i ) = arg min

q1, ...,qn

n∑
i=1

ci (qi ) (5a)

s.t.
n∑
i=1

qi = d (5b)

is the “minimal production cost” solution. Mathematically, we have

p∗ ≥ min

q1, ...,qn
p1, ...,pn

n∑
i=1

pi (qi ) ≥ min

q1, ...,qn

n∑
i=1

ci (qi ) = c∗

s.t.
n∑
i=1

qi = d s.t.
n∑
i=1

qi = d

pi (qi ) ≥ ci (qi ), i = 1, . . . ,n

�is emphasizes that in any scheme that satis�es Revenue Adequacy, the total production cost is
upper-bounded by the total payment. �erefore, minimizing the total payment minimizes the total
production cost as well, while the opposite is not true in general (minimizing the total production cost
can result in very high payments).

Remark 4.2. We have imposed nearly all the desired properties as constraints in the optimization
problem (3), and it might not be clear whether this optimization problem has a solution at all. Indeed,
there always exists a class of price functions for which problem (3) has a solution, and further the
bound mentioned in Remark 4.1 is achieved.
A naive choice of price function is enough to prove this claim. In fact, one can check that for any

price function of the form

pi (qi )
{
= ci (qi ) for qi = q0

i
≤ ci (qi ) for qi , q0

i

problem (3) has an optimal solution q∗ = q0, and achieves the bound p∗ = c∗.

While Remark 4.2 asserts the existence of an optimal price function, of course for speci�c classes

of price functions, problem (3) may not have a solution. �e key point is that problem (3) always

allows using more sophisticated price forms (e.g. piece-wise linear) for which it will have a solution;

and for any given choice of price form, it �nds the best one, along with the optimal quantities.

Remark 4.3. While in most scenarios the operator is buying the commodity from the suppliers on
behalf of the consumers, and it makes sense to minimize the total payments

∑n
i=1

pi (qi ), in general
one may seek to balance between the consumers’ and the suppliers’ costs. In other words, one can take
the objective to be a linear combination of the consumers’ cost

∑n
i=1

pi (qi ) and the suppliers’ net cost
(negative pro�t)

∑n
i=1
(ci (qi ) −pi (qi )). Without loss of generality, the weighted some can be normalized

to an a�ne (i.e. convex) combination (1 − θ )∑n
i=1

pi (qi ) + θ
∑n

i=1
(ci (qi ) − pi (qi )) with parameter θ .

�e optimization can be expressed as follows.
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p∗ = min

q1, ...,qn
p1, ...,pn ∈P

(1 − 2θ )
n∑
i=1

pi (qi ) + θ
n∑
i=1

ci (qi ) (6a)

s.t.
n∑
i=1

qi = d (6b)

pi (qi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (6c)

pi (qi ) − ci (qi ) ≥ max

q′i,qi
pi (q′i ) − ci (q′i ), i = 1, . . . ,n (6d)

For the cases when the total payment
∑n

i=1
pi (q∗i ) from the optimization problem (3) is equal to∑n

i=1
ci (q∗i ), the solution from (6) is the same as that of (3). It is worth mentioning that our algorithm

proposed in Section 4.2 for solving (3) is also capable of handling the weighted objective (6a). However,
for the sake of simplicity, we focus on the case of θ = 0.

To be more explicit about the class of price functions, we consider a general parametric form

for P, speci�ed by pi (qi ) := p(qi ;α , βi ) with two types of parameters α ∈ Rl1 , and βi ∈ Rl2 for

i = 1, . . . ,n, where parameter α is shared among all the suppliers, and it constitutes the uniform

component of the price, while parameter βi is speci�c to supplier i . �e parameters are in general

constrained to be in some bounded sets A ⊆ Rl1 and B ⊆ Rl2 , i.e., α ∈ A, and βi ∈ B for all

i = 1, . . . ,n. �is parametric form is general enough that it encompasses all the assumed price

forms in the literature. In particular, the linear-plus-upli� form (pi (qi ) = λqi +ui1qi=q̂i ) is a special

case of this form, where the shared parameter is the uniform price λ, and the individual parameters

are the amount and location of the upli�sui , q̂i . Using the general parametric form, the optimization

problem (3) can be re-expressed as follows.

Parameterized Equilibrium-Constrained (EC) Pricing :

p∗ = min

q1, ...,qn
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (7a)

s.t.

n∑
i=1

qi = d (7b)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (7c)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q′i ), i = 1, . . . ,n (7d)

To show a concrete application of this general pricing scheme, we apply our framework to the

popular class of linear-plus-upli� price functions, which has been a standard form considered in

the electricity markets literature (e.g. in [Gribik et al., 2007, Hogan and Ring, 2003]), and minimize

the upli�s. We derive closed-form solutions for the optimal quantities and prices.

4.1.1 Linear+Upli� Pricing. As mentioned earlier, using a linear uniform price plus an up-

li� term is a common choice of class of price functions, in practice. For this class, we have

p(qi ; λ,ui , q̂i ) = λqi + ui1qi=q̂i , where λ,u1, . . . ,un ≥ 0. Without loss of generality, we can assume

q̂∗i = q∗i , i.e., the optimal location of upli� coincides with the desired production level, which is
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Fig. 1. An illustration of the set Λ for an example with 3 non-convex cost functions. The three blue curves are
the cost functions. The (dashed and solid) red lines lie below all the cost functions and their slopes are in Λ.
The (slope of the) solid red line corresponds to the largest element of Λ.

intuitive (See the appendix for proof). �e optimization problem (7) can then be reduced to

p∗
upli�
= min

q1, ...,qn
λ≥0

u1, ...,un ≥0

n∑
i=1

(λqi + ui ) (8a)

s.t.

n∑
i=1

qi = d (8b)

λqi + ui − ci (qi ) ≥ 0, i = 1, . . . ,n (8c)

λqi + ui − ci (qi ) ≥ max

q′i,qi
λq′i − ci (q′i ), i = 1, . . . ,n (8d)

Remark 4.4. From Remark 4.1, we know that p∗upli� ≥ c∗. On the other hand, plugging the feasible
point

(
qi = q

0

i ∀i, λ = 0, ui = ci (q0

i ) ∀i
)
into (8) results in p∗upli� ≤ c∗. �erefore p∗upli� = c

∗.

Problem (8) has potentially many solutions, and the solution qi = q0

i ∀i, λ = 0, ui = ci (q0

i ) ∀i
corresponds to the naive pay-as-bid scheme, which is equivalent to having no uniform price and

paying each supplier for its own cost. To obtain price functions that are close to uniform, it is

desirable to pick a solution for which the upli�s are minimum (in `1 sense, for example). �at

is equivalent to adding a layer on top of the optimization problem (8) to pick the minimal-upli�

solution among all the solutions, i.e.

min

q,λ,u

n∑
i=1

ui (9a)

s.t. (q, λ,u) ∈ arg min

q,λ,u
(8a) (9b)

s.t. (8b), (8c), (8d) (9c)

where q and u denote (q1, . . . ,qn) and (u1, . . . ,un), respectively.

Let us de�ne Λ as the set of all λ’s for which the linear price λq lies below all the cost functions,

i.e.

Λ = {λ ≥ 0 | λq ≤ ci (q), ∀q,∀i} . (10)

Figure 1 illustrates this set for an example with three non-convex costs.

�e solutions to problems (8) and (9) can be found in closed-form, and the following summarizes

the results.
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Proposition 4.5. �e set of optimal solutions of problem (8) is given by
q∗i = q

0

i , ∀i
λ∗ = Λ

u∗i = ci (q∗i ) − λ∗q∗i , ∀i
.

Proposition 4.6. Problem (9) has a unique optimal solution as
q∗i = q

0

i , ∀i
λ∗ = max Λ

u∗i = ci (q∗i ) − λ∗q∗i , ∀i
.

See the appendix for proofs.

4.2 An E�icient Approximation Algorithm
�e optimization problem (7) de�nes a pricing rule that satis�es the desired properties in any

non-convex market. For speci�c classes of cost functions, similar to the existing approaches, one

may be able to solve this optimization problem using o�-the-shelf solvers. For generic non-convex

cost functions, however, there is no existing algorithm that can solve the optimization problem

(7) to optimality. Furthermore, even �nding an approximate solution, e.g., by discretizating the

variables, requires a brute-force search, which quickly becomes intractable. In this section, we

design a computationally e�cient algorithm for solving the problem (7) approximately, based

on decomposing it into smaller pieces, which works for general non-convex cost functions. �is

approximation algorithm can also be used to provide tractable calculations of some of the other

non-convex pricing rules such as IP pricing.

Before going through the details of the algorithm, let us de�ne the notion of an approximate

solution to (7), which we consider. One could de�ne an approximate solution as a value that is close

enough, in a certain sense, to the optimal solution (q∗
1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n). However, no ma�er

how close is that approximation to the optimal solution, that per se does not guarantee anything

about the properties that the scheme will satisfy. Instead, we de�ne an approximate solution to (7)

as a set of quantities q1, . . . ,qn and price parameters α , β1, . . . , βn for which the Market Clearing

condition holds exactly, the Revenue Adequacy and Competitive Equilibrium conditions are relaxed

by an ϵ , and the total payment is at most nϵ away from the optimal. More formally, it is de�ned as

follows.

De�nition 4.7. (q1, . . . ,qn ,α , β1, . . . , βn) is called an ϵ-approximate solution to (7) if it satis�es

n∑
i=1

qi = d, (Market Clearing)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ 0, i = 1, . . . ,n, (ϵ-Revenue Adequacy)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ p(q′i ;α , βi ) − ci (q′i ), ∀q′i , qi , i = 1, . . . ,n,

(ϵ-Competitive Equilibrium)

and

n∑
i=1

p(qi ;α , βi ) ≤ p∗ + nϵ . (ϵ-Economic E�ciency)

Given this notion of an approximate solution, we can move towards designing the algorithm. �e

optimization problem (7) looks highly coupled, at �rst, since the constraints share a lot of common

variables. However, one can see that, for a �xed value of α , the objective becomes additively
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Fig. 2. An example of the binary tree defined by Algorithm 1 for n = 8. The faded circles correspond to the
added dummy nodes.

separable in (qi , βi ). Furthermore (again for �xed α ), constraints (7c),(7d) involve only the i-th
variables (qi , βi ) for each i . Although the Market Clearing condition still couples the variables

together, this observation allows us to reformulate (7) as

p∗ = min

q1, ...,qn
α ∈A

n∑
i=1

дi (qi ;α) (11a)

s.t.

n∑
i=1

qi = d, (11b)

where

дi (q;α) = min

βi ∈B
p(q;α , βi ) (12a)

s.t. p(q;α , βi ) − ci (q) ≥ 0, (12b)

p(q;α , βi ) − ci (q) ≥ p(q′;α , βi ) − ci (q′), ∀q′ , q, (12c)

for all i = 1, . . . ,n.

�erefore, for any �xed value of α and qi , the optimization over βi can be done individually, as

in (12). What remains to address, however, is the coupling of the variables as a result of the Market

Clearing constraint. One naive approach would be to simply try all possible choices of (q1, . . . ,qn),
and pick the one that has the minimum objective value. �is is very ine�cient. Instead, we take a

dynamic programming approach, and group pairs of variables together, de�ning a new variable as

their parent. We then group the parents together, and continue this process until we reach the root,
i.e., where there is only one node. During this procedure, at each new node i , we need to solve the

following (small) problem

дi (q;α) = min

qj ,qk
дj (qj ;α) + дk (qk ;α)

s.t. qj + qk = q,
(13)

for every q, where j and k are the children of i . At the root of the tree we will be able to compute

дroot(d ;α). Figure 2 shows an example of the created binary tree for this procedure for n = 8. �is

procedure can be repeated for di�erent values of α , and the optimal value p∗ can be computed as

minα дroot(d ;α).
�e problem with recursion (13) is that it requires an in�nite-dimensional computation at every

step, since the values of дi (q;α) need to be computed for every q. To get around this issue, we note

that the variables qi live in the bounded set [0,d], and hence can be discretized to lie in a �nite set

Q , such that every possible qi is at most δ (ϵ) away from some point in Q . Similarly, if the α and

βi ’s are continuous variables, we can discretize the bounded sets A and B into some �nite sets A ′
and B ′, such that every point in A (or B) is at most δ (ϵ) away, in in�nity-norm sense, from some

point in A ′ (or B ′). See the appendix for details.
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For �nding an ϵ-approximate solution, (12) is relaxed to

дi (q;α) = min

βi ∈B′
p(q;α , βi ) (14a)

s.t. p(q;α , βi ) − ci (q) + ϵ ≥ 0, (14b)

p(q;α , βi ) − ci (q) + ϵ ≥ p(q′;α , βi ) − ci (q′), ∀q′ , q, (14c)

for all i = 1, . . . ,n, and (13) remains the same, except the variables (qj ,qk ) take values in Q , i.e.

дi (q;α) = min

qj ,qk ∈Q
дj (qj ;α) + дk (qk ;α)

s.t. qj + qk = q,
(15)

for all i > n. We denote the optimizer of (14) by bi (q;α), and the optimizer of (15), which is a pair

of quantities (qj ,qk ), by xi (q;α). �e full procedure is summarized in psuedocode in Algorithm 1

in the appendix.

While not immediately clear, the proposed approximation algorithm can be shown to run in

time that is polynomial in both n and 1/ϵ (in fact, linear in n). Further, the solution it provides

is ϵ-accurate under a mild smoothness assumption on the cost and price functions, which holds

true for almost any function considered in the literature. �ese two results are summarized in the

following theorem, which is proven in the appendix.

Theorem 4.8. Consider ci (.) and p(.; .) that have at most a �nite number of discontinuities and are
Lipschitz on each continuous piece of their domain. Algorithm 1 �nds an ϵ-approximate solution to the
optimal pricing problem (7) with running time O

(
n(1/ϵ)l1+l2+2

)
, where n is the number of suppliers,

and l1 and l2 are the number of shared and individual parameters in the price, respectively.

It is worth emphasizing that l1 and l2 do not scale with n, and are typically very small constants.

For example, for the so-called linear-plus-upli� price functions l1 = l2 = 1. �erefore, the algorithm

is very e�cient.

We should also remark that if one requires the total payment in De�nition 4.7 to be at most ϵ
(rather than nϵ) away from the optimal p∗, the running time of our algorithm will still be polynomial

in both n and 1/ϵ , i.e., O
(
n3( 1

ϵ )l1+l2+2
)
. See the appendix for details.

5 EQUILIBRIUM-CONSTRAINED PRICING FOR NETWORKED MARKETS
We now consider the more general problem of �nding an e�cient pricing scheme in a networked

market. �e networked market we consider has n suppliers, located at the nodes (vertices) V =
{1, . . . ,n} of a network, and connected through lines (edges) E, where, without loss of generality,

the edges are de�ned to be from the smaller node to the larger node (i.e. ∀(i, j) ∈ E, i < j). �e i-th
supplier has a cost function ci (qi ) for producing quantity qi , which may be non-convex, as before,

and there is an inelastic demand di at each node i . �e lines connecting the nodes can possibly

have certain capacities for the �ows they can carry. We denote the �ow of any line e = (i, j), from i

to j, by fe , and its limits (capacity) by fe and fe (the �ow from j to i is −fe ).

Note that if there are multiple suppliers co-located in a market, we can simply assign them each

their own vertex, and connect them through paths with in�nite capacities. In other words, a node

with multiple suppliers can be simply replaced with a “line graph” composed of those suppliers

and in�nite-capacity edges.

5.1 Pricing Formulation
A key bene�t of EC pricing is the ease of generalization to the networked se�ing. �ere are no

current pricing rules that can be readily applied to the networked case. Assuming a parametric

form pi (qi ) B p(qi ;α , βi ) for P, with shared parameters α and individual parameters βi as before,

the Equilibrium-Constrained pricing can be formulated as the following optimization problem.
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Parameterized Networked Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
{fe }e∈E
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (16a)

s.t. qi − di =
∑
j

(i, j)∈E

f(i, j) −
∑
j

(j,i)∈E

f(j,i), i = 1, . . . ,n (16b)

fe ≤ fe ≤ fe , e ∈ E (16c)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (16d)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q′i ), i = 1, . . . ,n (16e)

�e objective is the total payment, as discussed before, and the optimization is over quantities qi ,
line �ows fe , and price functions pi ∈ P. Constraint (16b) is the Market Clearing condition (or Flow

Conservation) for each individual node, i.e., the net production at each node should be equal to its

outgoing �ow. Constraint (16c) enforces the line limits (Capacity Constraints). Constraints (16d)

and (16e) are Revenue Adequacy and Competitive Equilibrium, respectively, as before. �e key

di�erence between the networked se�ing and the single-market one is that here the Market Clearing

condition is spread across the network, and we have to solve the problem for the �ows as well.

Remark 5.1. When the capacity constraints (16c) are relaxed (fe = −∞, fe = ∞, ∀e ∈ E), the
networked problem reduces to the single-market one. In this case, the solution to the optimization
problem (16) reduces to that of (7). �at is because the only constraint involving the �ows would be
(16b), and we can always �nds �ows that satisfy it, as long as

∑n
i=1

qi −
∑n

i=1
di = 0, which is the

conventional Market Clearing condition.

5.2 An E�icient Approximation Algorithm
For certain classes of non-convexities, the optimization problem (16) can still be solved using

o�-the-shelf solvers, similar to those used in the other methods for the no-network case. However,

those algorithms cannot handle more general classes of non-convexities. In this section, we develop

a computationally e�cient approximation algorithm for general non-convex costs, for a special

class of networks.

A special yet important class of networks are acyclic networks, which are a typical topology in

many markets, including electricity distribution networks. Acyclic networks have a tree topology

(they do not have cycles), which allows us to devise an e�cient algorithm for them. In the remainder

of this section, we limit our a�ention to these networks. �e main ideas extend directly to more

general networks, as long as there are not “too many cycles” in the network in some sense (i.e.

bounded tree-width networks). We have focused on the acyclic case due to space constraints.

Without loss of generality, let us denote the �rst node as the root of the tree, and nodes with

only one neighbor as the leaves. Every node (except the root) has a unique parent, de�ned as the

�rst node on the unique path connecting it to the root node. �e set of nodes that have a given

node i as their parent is said to be node i’s children. It can be shown that any tree with arbitrary

degree can be transformed into a binary tree, i.e., a tree where each node has a unique parent and

at most 2 children, with O(n) nodes (See the appendix). �us, we can focus on binary trees.

For a node i , let ch1(i), ch2(i) denote its children (ch1(i) = ∅ and/or ch2(i) = ∅ when i has less

than two children). �e problem can then be wri�en as
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p∗ = min

q1, ...,qn
f1, ...,fn
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (17a)

s.t. qi − di = f
ch1(i) + f

ch2(i) − fi , i = 1, . . . ,n (17b)

fi ≤ fi ≤ fi , i = 1, . . . ,n (17c)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (17d)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q′i ), i = 1, . . . ,n (17e)

where fi represents the incoming �ow to each node i from its parent, and froot = froot = 0.

Similarly as in the single-market case, we de�ne an ϵ-approximate solution to this problem.

De�nition 5.2. (q1, . . . ,qn , f1, . . . , fn ,α , β1, . . . , βn) is called an ϵ-approximate solution to (17) if

it satis�es

|qi − di − f
ch1(i) − f

ch2(i) + fi | ≤ ϵ, i = 1, . . . ,n, (ϵ-Load Balancing)

fi ≤ fi ≤ fi , i = 1, . . . ,n, (Flow Limit)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ 0, i = 1, . . . ,n, (ϵ-Revenue Adequacy)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ p(q′i ;α , βi ) − ci (q′i ), ∀q′i , qi , i = 1, . . . ,n,

(ϵ-Competitive Equilibrium)

n∑
i=1

p(qi ;α , βi ) ≤ p∗ + nϵ . (ϵ-Economic E�ciency)

�e main di�erence from the de�nition in the single-market case is that the Market Clearing

condition has been replaced with ϵ-Load Balancing and exact Flow Limit conditions here.

Note that the minimization over the variables βi in problem (17) can be done “internally,” and

the problem can be re-expressed as

p∗ = min

q1, ...,qn
f1, ...,fn
α ∈A

n∑
i=1

дi (qi ;α) (18a)

s.t. qi − di = f
ch1(i) + f

ch2(i) − fi , i = 1, . . . ,n (18b)

fi ≤ fi ≤ fi , i = 1, . . . ,n (18c)

where

дi (q;α) = min

βi ∈B
p(q;α , βi ) (19a)

s.t. p(q;α , βi ) − ci (q) ≥ 0, (19b)

p(q;α , βi ) − ci (q) ≥ p(q′;α , βi ) − ci (q′), ∀q′ , q, (19c)

for all i = 1, . . . ,n.

�e key insight is that the tree structure of the constraints (18b), allows us to write the optimiza-

tion problem in a recursive form as follows.

p∗ = min

α
hroot(0;α) (20)
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where

hi (fi ;α) = min

qi ,fch
1
(i ),fch

2
(i )

дi (qi ;α) + hch1(i)(fch1(i);α) + hch2(i)(fch2(i);α) (21a)

s.t. qi − di = f
ch1(i) + f

ch2(i) − fi (21b)

f
ch1(i) ≤ f

ch1(i) ≤ f
ch1(i) (21c)

f
ch2(i) ≤ f

ch2(i) ≤ f
ch2(i) (21d)

for all i = 1, . . . ,n.

Now, this recursive form is amenable to dynamic programming. However, since the variables

are continuous, each step still requires an in�nite-dimensional search. In order to tackle this issue,

we can discretize the variables and solve the following approximate versions.

hi (fi ;α) = min

qi ∈Qi

f
ch

1
(i )∈Fch

1
(i )

f
ch

2
(i )∈Fch

2
(i )

дi (qi ;α) + hch1(i)(fch1(i);α) + hch2(i)(fch2(i);α) (22a)

s.t. |qi − di − f
ch1(i) − f

ch2(i) + fi | ≤ ϵ (22b)

for all i = 1, . . . ,n, where Q1, . . . ,Qn and F1, . . . , Fn are properly-de�ned discrete sets (See the

appendix for details). We denote the optimizer (triple) of (22) by yi (fi ;α).
дi (q;α) = min

βi ∈B′
p(q;α , βi ) (23a)

s.t. p(q;α , βi ) − ci (q) + ϵ ≥ 0, (23b)

p(q;α , βi ) − ci (q) + ϵ ≥ p(q′;α , βi ) − ci (q′), ∀q′ , q, (23c)

for all i = 1, . . . ,n. �e optimizer of (23) is denoted by bi (q;α).
�e steps of the procedure are summarized in psuedocode in Algorithm 2 in the appendix, and

the following result summarizes the theoretical guarantee of the algorithm.

Theorem 5.3. Consider ci (.) and p(.; .) that have at most a �nite number of discontinuities and are
Lipschitz on each continuous piece of their domain. Algorithm 2 �nds an ϵ-approximate solution to
the optimal networked pricing problem (17), with running time O

(
n(1/ϵ)l1+max{l2,1}+2

)
, where n is

the number of suppliers, and l1 and l2 are the number of shared and individual parameters in the price,
respectively.

It is worth mentioning that the network algorithm developed in this section suggests another

way of solving the no-network case as well, by replacing the single market with a line graph with

in�nite capacities. �is algorithm will in turn have time complexity O
(
n( 1

ϵ )l1+l2+2
)
, which is the

same as that of the one developed in Section 4.2.

6 CONCLUDING REMARKS
We study the problem of pricing in single and networked markets with non-convex costs. Our

key contribution is the proposal of a novel scheme, Equilibrium-Constrained (EC) pricing, which

optimizes for the allocations and the price parameters at the same time, while imposing the

equilibrium conditions as constraints. Our pricing framework is general in the sense that: (i) it can

be used for pricing general non-convex cost functions, (ii) it allows for using general price classes,

(iii) can be computed in polynomial-time regardless of the source of the non-convexities, and (iv) it

extends easily to networked markets.

�is paper opens up a variety of important directions for future work. First, as this framework

enables one to use general price classes, it would be interesting to apply it to speci�c classes of price
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functions (e.g. quadratic plus upli�, piece-wise, etc.) and characterize the solution theoretically

and/or numerically. One can then investigate the potential trade-o�s between the complexity of the

class and the economic e�ciency or the uniformity of the price. Second, since electricity markets

are an important application of the pricing problem studied here, it would be interesting to evaluate

the proposed scheme in practical se�ings for electricity markets. Our preliminary exploration

(Section B of the appendix) shows that we can achieve more e�cient (lower total payments) and

less discriminatory (lower upli�s) prices with, for instance, piece-wise linear functions. More

evaluations in large-scale, practical se�ings should be carried out in order to evaluate the potential

of deployment. Another important direction to pursue is the extension of our results to networked

markets with more general network structures. Our algorithm currently applies to networks with

bounded tree-width; however beyond such networks new ideas are needed. Finally, our proposed

pricing scheme has broader implications for non-convex optimization problems as well. In the

convex se�ing, dual prices are crucial for the development of distributed optimization algorithms,

but such approaches have not been possible in non-convex se�ings due to the lack of pricing rules

with the desirable properties laid out in Section 2.2. It is now possible to explore whether EC prices

can be used as the basis for distributed optimization algorithms in the non-convex se�ing.

REFERENCES
Veronica Araoz and Kurt Jörnsten. 2011. Semi-Lagrangean approach for price discovery in markets with non-convexities.

European Journal of Operational Research 214, 2 (2011), 411–417.

Navid Azizan Ruhi, Krishnamurthy Dvijotham, Niangjun Chen, and Adam Wierman. 2017. Opportunities for price

manipulation by aggregators in electricity markets. IEEE Transactions on Smart Grid (2017).

Paulina Beato and Andreu Mas-Colell. 1985. On marginal cost pricing with given tax-subsidy rules. Journal of Economic
�eory 37, 2 (1985), 356–365.

Me�e Bjørndal and Kurt Jörnsten. 2008. Equilibrium prices supported by dual price functions in markets with non-convexities.

European Journal of Operational Research 190, 3 (2008), 768–789.

Me�e Bjørndal and Kurt Jörnsten. 2010. A Partitioning Method that Generates Interpretable Prices for Integer Programming

Problems. Handbook of Power Systems II (2010), 337–350.

Donald J Brown. 1991. Equilibrium analysis with non-convex technologies. Handbook of mathematical economics 4 (1991),

1963–1995.

Francisco D Galiana, Alexis L Mo�o, and François Bou�ard. 2003. Reconciling social welfare, agent pro�ts, and consumer

payments in electricity pools. IEEE Transactions on Power Systems 18, 2 (2003), 452–459.

Paul R Gribik, William W Hogan, and Susan L Pope. 2007. Market-clearing electricity prices and energy upli�. (2007).

Roger Guesnerie. 1975. Pareto optimality in non-convex economies. Econometrica: Journal of the Econometric Society (1975),

1–29.

William W Hogan and Brendan J Ring. 2003. On minimum-upli� pricing for electricity markets. Electricity Policy Group
(2003).

Bowen Hua and Ross Baldick. 2017. A convex primal formulation for convex hull pricing. IEEE Transactions on Power
Systems 32, 5 (2017), 3814–3823.

George Liberopoulos and Panagiotis Andrianesis. 2016. Critical review of pricing schemes in markets with non-convex

costs. Operations Research 64, 1 (2016), 17–31.

Alexis L Mo�o and Francisco D Galiana. 2002. Equilibrium of auction markets with unit commitment: �e need for

augmented pricing. IEEE Transactions on Power Systems 17, 3 (2002), 798–805.

Richard P O’Neill, Paul M Sotkiewicz, Benjamin F Hobbs, Michael H Rothkopf, and William R Stewart. 2005. E�cient

market-clearing prices in markets with nonconvexities. European journal of operational research 164, 1 (2005), 269–285.

Carlos Ruiz, Antonio J Conejo, and Steven A Gabriel. 2012. Pricing non-convexities in an electricity pool. IEEE Transactions
on Power Systems 27, 3 (2012), 1334–1342.

Herbert E Scarf. 1990. Mathematical programming and economic theory. Operations Research 38, 3 (1990), 377–385.

Herbert E Scarf. 1994. �e allocation of resources in the presence of indivisibilities. �e Journal of Economic Perspectives 8, 4

(1994), 111–128.

Dane A Schiro, Tongxin Zheng, Feng Zhao, and Eugene Litvinov. 2016. Convex Hull Pricing in Electricity Markets:

Formulation, Analysis, and Implementation Challenges. IEEE Transactions on Power Systems 31, 5 (2016), 4068–4075.

Ralph Turvey. 1969. Marginal cost. �e Economic Journal 79, 314 (1969), 282–299.

Laurence A Wolsey. 1981. Integer programming duality: Price functions and sensitivity analysis. Mathematical Programming
20, 1 (1981), 173–195.



Navid Azizan, Yu Su, Krishnamurthy Dvijotham, and Adam Wierman 19

A PSEUDOCODE

Algorithm 1 Find an ϵ-approximate solution to the optimal pricing problem (7)

1: Input: n, c1(.), . . . , cn(.),p(.; .), ϵ
2: for α in A ′ do
3: S = 1 : n
4: for i in S do . for the leaves

5: compute дi (q;α) for all q in Q , using (14)

6: end for
7: while |S | > 2 do . while not reached the root

8: Snew = S(end) + 1 : S(end) + d |S |
2
e

9: for i in Snew do . for the intermediate nodes

10: [j,k] = indices of children of i
11: if k = ∅ then дi (.;α) = дj (.;α)
12: else, compute дi (q;α) for all q in Q , using (15) . it has two children

13: end if
14: end for
15: S = Snew

16: end while
17: [j,k] = S
18: compute дroot(d ;α), using (15) . at the root

19: end for
20: α∗ = arg min

α ∈A′
дroot(d ;α)

21: q∗
root
= d

22: for i = root : −1 : n + 1 do
23: [q∗j ,q∗k ] = xi (q∗i ;α∗), where [j,k] = indices of children of i
24: end for
25: for i = n : −1 : 1 do
26: β∗i = bi (q∗i ;α∗)
27: end for
28: return (q∗

1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n)
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Algorithm 2 Find an ϵ-approximate solution to the optimal networked pricing problem (17)

1: Input: G=(V,E), c1(.), . . . , cn(.),p(.; .), ϵ
2: for α in A ′ do
3: for all nodes i do
4: compute дi (qi ;α) for all qi in Qi , using (23)

5: end for
6: for all nodes i ,root (in bo�om-up order) do
7: compute hi (f ;α) for all f in Fi , using (22)

8: end for
9: compute hroot(0;α), using (22)

10: end for
11: α∗ = arg min

α ∈A′
hroot(0;α)

12: f ∗
root
= 0

13: for all nodes i (in top-down order) do
14: [q∗i , f ∗ch1(i), f

∗
ch2(i)] = yi (f

∗
i ;α∗)

15: β∗i = bi (q∗i ;α∗)
16: end for
17: return (q∗

1
, . . . ,q∗n , f

∗
1
, . . . , f ∗n ,α

∗, β∗
1
, . . . , β∗n)

B EXPERIMENTAL RESULTS
To illustrate the contrasts between EC Pricing and the more traditional approaches, we look at the

prices derived in some simple numerical examples in this section. Speci�cally, we compare the

payments and upli�s generated from di�erent pricing schemes, including IP, CH, SLR, PD and EC.

Among all these schemes, only EC allows �exibility of payment forms. As a result, we further divide

EC into one with a payment function in the form of linear marginal price plus upli�s and another

Pricing with a payment form of piecewise linear marginal prices plus upli�s. In practice, speci�c

limits on number of sections and maximum slope among all sections can be used to further restrict

EC. For convenience, we name these variations of EC in terms of number of piecewise sections of

its payment form, i.e. EC2 refers to EC with a payment function in the form of 2 piecewise sections

plus upli�s.

First, we apply all these pricing schemes to a single market example from [Hogan and Ring,

2003], which is a modi�cation of Scarf’s example developed in [Scarf, 1994]. Second, we adapt

cost functions in the modi�ed Scarf’s example to be quadratic plus startup cost in order to further

explore how these schemes generalize to di�erent cost functions. Finally, we consider a further

generalization to a simple 2-node networked market.

B.1 Case 1: Linear plus startup cost
We consider a modi�ed Scarf’s example, as proposed in [Hogan and Ring, 2003]. �e parameters

are listed in Table 2. We assume that demand is inelastic with a maximum capacity of 161 units.

We restrict the payment function of EC4 to have four sections and impose that marginal price of

any section cannot exceed the maximum marginal price for any supplier operating at full capacity.

Figure 3a shows total payments for di�erent demand levels while Figure 3c shows the corresponding

upli�s of the pricing schemes that apply, i.e. CH, EC1 and EC4. Payments of two revenue-adequate

pricing schemes, including SLR and PD, are higher than total costs in general. IP, EC1 and EC4

achieve the minimum payments equal to total costs. CH achieves the minimum payments at low

demand levels and its total payments surpass total costs as demand gets high. As for upli�s, EC4

achieves the smallest among the three pricing schemes. Total upli�s of CH and EC1 are close to
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Table 2. Summary of the production characteristics in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Capacity 16 7 6

Minimum output 0 0 2

Startup cost 53 30 0

Marginal cost 3 2 7

�antity 6 5 5

(a) Total payments as a func-
tion of demand

(b) Payment di�erence in per-
centage w.r.t cost as a func-
tion of demand

(c) Total upli�s as a function
of demand

Fig. 3. An example with cost functions of the form of linear plus startup cost

(a) Total payments as a func-
tion of demand

(b) Payment di�erence in per-
centage w.r.t cost as a func-
tion of demand

(c) Total upli�s as a function
of demand

Fig. 4. An example with cost functions of the form of quadratic plus startup cost

each other at a low demand level and that of EC1 increases signi�cantly when demand approaches

capacity. �is is not surprising as total payments of CH go above total costs at a high demand,

making it possible for relatively smaller total upli�s. It is worth noting that startup prices and

marginal prices for IP are volatile and unstable. Overall, EC4 outperforms other pricing schemes in

terms of total payments and total upli�s.

B.2 Case 2: �adratic plus startup cost
To further explore how these pricing schemes generalize to di�erent cost functions, we modify the

cost functions of the example above. Table 3 describes the new cost functions for each supplier.

Since it is not clear how to generalize SLR and PD, we focus on a comparison among IP, CH, EC1
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Table 3. Summary of the new cost functions in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Cost function
3

16
q2 + 53 ∗ 1 {q > 0} 2

7
q2 + 30 ∗ 1 {q > 0} 7

6
q2

Fig. 5. A schematic drawing for two connected markets with a constraint on flow
capacity

and EC2. We restrict the payment function of EC2 to have two sections with the marginal price of

any section bounded by the maximum of marginal price for any supplier operating at full capacity.

As can be seen in Figure 4a, EC1 and EC2 achieve the possible minimum total payments equal

to total costs. Total payments of IP and CH are both above total costs and the gap between total

payments and costs grows as demand increases. Observe that the demand here ranges from 1 to

160 because marginal price of CH increases dramatically at the capacity level and the plot over the

interval (1, 160) would be a �at line if the whole range were covered. Figure 4c shows that total

upli�s of EC1 are much larger than that of CH and EC2. At a low demand level, upli�s of EC1 and

EC2 are close to each other. As demand increases, upli�s of EC2 are a li�le larger than those of

CH, in order to maintain a smaller overall payment. �ere is a trade-o� between minimizing total

payments and minimizing total costs. Allowing the �exibility of payment function form enables

EC2 to perform be�er than either CH or EC1 in terms of total payments and upli�s.

B.3 A Networked Market with Capacity Constraints
One advantage EC has over all the other pricing schemes is its generality. Speci�cally, EC can be

applied to networked markets. In this section, we divide a single market with a �xed total demand

60 as described earlier into one market with only med tech suppliers and the other one with the

smokestack and high tech suppliers. �e cost functions of the suppliers are the same as de�ned

earlier, i.e. linear plus startup cost. As pictured in Figure 5, these two markets are connected via a

�ow capacity constraint. We consider two di�erent cases of non-uniform marginal pricing and

uniform marginal pricing for these two markets. Figure 6 shows how total payments, total upli�s

and �ow between these two connected markets vary as �ow capacity increases for nonuniform

and uniform marginal pricing se�ings. �e results show that the total payments and total upli�s

decrease as more �ow is allowed between these two markets until it reaches the demand of one

market, which means one market alone meets the total demand. Allowing non-uniform pricing

does not further reduce total payments as total payments are minimal and equal the total costs.

However, it helps reduce total upli�s, as we can see in Figure 6b.
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(a) Total payments as a func-
tion of flow capacity

(b) Total upli�s as a function
of flow capacity

(c) Flow between two mar-
kets as a function of flow ca-
pacity

Fig. 6. An example of two connected markets with a constraint on the flow capacity

C SUPPLEMENT TO SECTION 4.1
In this section, we formally prove the reduction of the optimization problem for the class of

linear-plus-upli� functions to (8), and then show Propositions 4.5 and 4.6.

C.1 Reduction
Here we show that for the class of linear-plus-upli� price functions p(qi ; λ,ui , q̂i ) = λqi + ui1qi=q̂i ,
one can assume q̂∗i = q∗i without loss of generality, and therefore the optimization problem (7)

reduces to (8) for this class. �e optimization problem (7) for price function p(qi ; λ,ui , q̂i ) =
λqi + ui1qi=q̂i , λ,u1, . . . ,un ≥ 0, is as follows

p∗
upli�
= min

q1, ...,qn
λ≥0

u1, ...,un ≥0

q̂1, ...,q̂n

n∑
i=1

(λqi + ui1qi=q̂i ) (24a)

s.t.

n∑
i=1

qi = d (24b)

λqi + ui1qi=q̂i − ci (qi ) ≥ 0, i = 1, . . . ,n (24c)

λqi + ui1qi=q̂i − ci (qi ) ≥ max

q′i,qi
λq′i + ui1q′i=q̂i − ci (q

′
i ), i = 1, . . . ,n (24d)

�e following lemma shows that this optimization problem can be reduced to (8), and the optimal

upli�s of (8) are no larger than those of (24).

Lemma C.1. Given any solution (q∗, λ∗,u∗, q̂∗) to the optimization problem (24), (q∗, λ∗,u,q∗) is
also a solution, where

ui =

{
u∗i , if q̂∗i = q

∗
i

0, o.w.
.

Proof of Lemma C.1. Let us �rst show the feasibility of (q∗, λ∗,u,q∗). For any i such that

q̂∗i , q
∗
i , we have that

λ∗q∗i − ci (q∗i ) ≥ 0

λ∗q∗i − ci (q∗i ) ≥ max

q′i,q
∗
i

λ∗q′i + u
∗
i 1q′i=q̂

∗
i
− ci (q′i ) ≥ max

q′i,q
∗
i

λ∗q′i − ci (q′i ),
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which implies

λ∗q∗i + u
∗
i1q∗i=q

∗
i
− ci (q∗i ) ≥ 0

λ∗q∗i + u
∗
i1q∗i=q

∗
i
− ci (q∗i ) ≥ max

q′i,q
∗
i

λ∗q′i + u
∗
i1q′i=q̂

∗
i
− ci (q′i ),

because u∗i = 0. �erefore (q∗, λ∗,u,q∗) is feasible.

�e objective value of (q∗, λ∗,u,q∗) is

n∑
i=1

(λ∗q∗i + ui ) =
∑

i :q̂∗i=q
∗
i

(λ∗q∗i + u∗i ) +
∑

i :q̂∗i,q
∗
i

λ∗q∗i

=

n∑
i=1

(λ∗q∗i + u∗i 1q∗i=q̂∗i ),

which is the same as that of (q∗, λ∗,u∗, q̂∗), and is therefore optimal. �

Based on this lemma, the optimization problem (24) can be reduced to (8).

C.2 Closed-Form Solutions
Proof of Proposition 4.5. In the optimization problem (8), the order of variables in the mini-

mizations does not ma�er, and further, for every �xed q1, . . . ,qn and λ, the minimization over each

ui can be done separately. �erefore this program can be massaged into the following form

p∗
upli�
= min

q1, ...,qn

(
min

λ≥0

n∑
i=1

дi (qi ; λ)
)

(25a)

s.t.

n∑
i=1

qi = d, (25b)

where

дi (qi ; λ) = min

ui ≥0

λqi + ui (26a)

s.t. λqi + ui − ci (qi ) ≥ 0, (26b)

λqi + ui − ci (qi ) ≥ max

q′i,qi
λq′i − ci (q′i ). (26c)

for all i = 1, . . . ,n. Constraints (26b) and (26c) can be expressed as

λqi + ui ≥ ci (qi ),
λqi + ui ≥ ci (qi ) + max

q′i,qi
λq′i − ci (q′i ).

It follows that

дi (qi ; λ) = λqi + u∗i = ci (qi ) +max

[
0, max

q′i,qi
λq′i − ci (q′i )

]
.

which is, of course, a function of λ and qi . �erefore we have

min

λ≥0

n∑
i=1

дi (qi ; λ) =
n∑
i=1

ci (qi )

and the minimizers λ∗ are all values λ for which max

q′i,qi
λq′i − ci (q′i ) ≤ 0, which are exactly the

elements of Λ = {λ ≥ 0 | λq ≤ ci (q), ∀q,∀i} (Figure 1 provides a pictorial description of these
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values). Finally we have the last minimization, which is

min

q1, ...,qn

n∑
i=1

ci (qi ) (27a)

s.t.

n∑
i=1

qi = d (27b)

and therefore has q∗i = q
0

i ∀i as its optimizer. We also have u∗i = ci (q∗i ) − λ∗q∗i , ∀i . �

Proof of Proposition 4.6. �e steps of the proof are exactly the same as in the previous one,

except that the additional minimizer picks the λ with the smallest total upli�

∑n
i=1

ui (λ), which

corresponds to the largest element of Λ. �

D SUPPLEMENT TO SECTION 4.2
In this section, we prove �eorem 4.8, in two parts. First, we show that there exist �nite sets

Q,A ′,B ′ for which Algorithm 1 �nds an ϵ-approximate solution, and we quantify the sizes of

these sets as a function of ϵ . In the second part, we analyze the running time of Algorithm 1.

D.1 ϵ-Accuracy
Let us �rst state a simple but useful lemma.

Lemma D.1 (δ -discretization). Given a set C ⊆ [L1,L1] × · · · × [Lk ,Lk ], for any δ > 0, there
exists a �nite set C′ such that

∀z ∈ C, ∃z ′ ∈ C′ s.t. ‖z − z ′‖∞ ≤ δ ,
and further C′ contains at most V /δk points, where V =

∏k
i=1
(Li − Li ) is a constant (the volume of

the box). C′ is said to be a δ -discretization of C.

Let Q , A ′ and B ′ denote some δ -discretizations of sets [0,d], A and B, respectively. In other

words, for every q ∈ [0,d], α ∈ A, and β ∈ B, there exist q′ ∈ Q , α ′ ∈ A ′, and β ′ ∈ B ′, such that

|q − q′ | ≤ δ , ‖α − α ′‖∞ ≤ δ , and ‖β − β ′‖∞ ≤ δ . We can combine all these inequalities as

‖(q,α , β) − (q′,α ′, β ′)‖∞ ≤ δ .
On the other hand, given that the cost function ci (.) for each i is Lipschitz on each continuous

piece of its domain, there exists a positive constant Ki such that |ci (q) − ci (q′)| ≤ Ki |q − q′ |, which

implies

|ci (q) − ci (q′)| ≤ Kiδ . (28)

Similarly, Lipschitz continuity of p(.; .) implies existence of a positive constant K such that

|p(q,α , β) − p(q′,α ′, β ′)| ≤ K ‖(q,α , β) − (q′,α ′, β ′)‖∞, which yields

|p(q,α , β) − p(q′,α ′, β ′)| ≤ Kδ . (29)

Using Eqs. (28),(29), we can see that for any solution q∗
1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n to optimization (7),

there exists a point q1, . . . ,qn ,α , β1, . . . , βn with q1, . . . ,qn ∈ Q , α ∈ A ′ and β ∈ B ′, for which

constraints (7c) and (7d) are violated at most by (K + Ki )δ and (2K + 2Ki )δ , respectively, and the

objective is larger than p∗ at most by nKδ . As a result, this point will be an ϵ-approximate solution

if

(K + Ki )δ ≤ ϵ ∀i, (30)

2(K + Ki )δ ≤ ϵ ∀i, (31)

nKδ ≤ nϵ . (32)
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�ese constraints altogether enforce an upper bound on the value of δ as

δ ≤ Cϵ,

for some constant C . �erefore if we pick

δ =
d⌈ d
Cϵ

⌉ , (33)

our algorithm is guaranteed to encounter an ϵ-approximate solution while enumerating the points,

and Q = {0,δ , 2δ , . . . ,d} is a valid δ -discretization for [0,d], which has Nq =

⌈
d

Cϵ

⌉
+ 1 = O

(
1

ϵ

)
points. �e nice thing about this particular choice of δ is that now d can be wri�en as a sum

of n elements in Q (because all the elements, including d , are multiples of δ ), which allows us

to satisfy the Market Clearing condition exactly. Based on Lemma (D.1), A ′ and B ′ contain

Nα = O

(
1

δ l1

)
= O

(
1

ϵ l1

)
and Nβ = O

(
1

δ l2

)
= O

(
1

ϵ l2

)
points.

Finally, if there are any discontinuities in the cost or price functions, we can simply add them

to our discrete sets Q , A ′ and B ′, and since there are at most a �nite number of them, the sizes

of the sets remain in the same order, i.e., Nq = O

(
1

ϵ

)
, Nα = O

(
1

ϵ l1

)
and Nβ = O

(
1

ϵ l2

)
. Next, we

calculate the time complexity of Algorithm 1 running on these discrete sets.

D.2 Run-Time Analysis
In this section, we show that Algorithm 1 has a time complexity of O

(
n( 1

ϵ )l1+l2+2
)
. For every �xed

α , we have the following computations

(1) �e leaves: We need to compute дi (q;α) for every i and every q ∈ Q . Computing each

дi (q;α) (i.e. for �xed i,q,α ) takes O(NβNq). �e reason for that is we have to search over

all βi ∈ B′, and for each one there are Nq + 1 constraints to check. More explicitly, we need

to (a) check O(NβNq) constraints, (b) compute Nβ objectives, and (c) �nd the minimum

among those Nβ values. All these steps together take O(NβNq), and repeating for every i
and q makes it O(nNβN

2

q ).
(2) �e intermediate nodes: In each new level, there are at most half as many (+1) nodes as

in the previous level. For each node i in this level, we need to compute дi (q;α) for every

q ∈ Q . For every �xed q, there are O(Nq) possible pairs of (qj ,qk ) that add up to q, and

therefore we need to (a) sum O(Nq) pairs of objective values, and (b) �nd the minimum

among them, which take O(Nq). Hence, the computation for each node takes O(N 2

q ). �ere

areO(n
2
+ n

4
+ · · ·+2) = O(n) intermediate nodes in total, and therefore the total complexity

of this part is O(nN 2

q ).
(3) �e root: Finally at the root, we need to compute дroot(d ;α). �ere are Nq possible pairs of

(qj ,qk ) that add up to d . �erefore, we need to compute Nq sums, and �nd the minimum

among the resulting Nq values, which takes O(Nq).

Pu�ing the pieces together, the computation for all values ofα takesNα×
(
O(nNβN

2

q ) +O(nN 2

q ) +O(Nq)
)
,

which in turn is O(nNαNβN
2

q ). Finally, �nding the minimum among the Nα values simply takes

O(Nα ).
�e backward procedure, which �nds the quantities qi and the parameters βi , takes just O(n),

since it is just a substitution for every node. As a result, the total running time is O(nNαNβN
2

q ),
which based on the �rst part (Section D.1) is O

(
n( 1

ϵ )l1+l2+2
)
. �
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Fig. 7. The transformation of an arbitrary-degree tree to a binary tree

D.3 Remark on the ϵ-Approximation
As mentioned at the end of Section 4.2, if one requires the total payment in De�nition 4.7 to be

at most ϵ (rather than nϵ) away from the optimal p∗, the running time of our algorithm will still

be polynomial in both n and 1/ϵ , i.e., O
(
n3( 1

ϵ )l1+l2+2
)
. To see that, notice in this case (30) and

(31) remain the same, and (32) changes to nKδ ≤ ϵ . �erefore, the upper bound enforced by the

constraints will be δ ≤ Cϵ
n , for some constant C . In this case, our choice of δ would be δ = d

d dnCϵ e
,

and hence Nq = O
(n
ϵ

)
. Nα and Nβ remain the same as before. �e running time is O(nNαNβN

2

q ),
as computed previously, which in this case would be O

(
n3( 1

ϵ )l1+l2+2
)
.

E SUPPLEMENT TO SECTION 5
In this section, we �rst show the transformation of the problem on a tree to one on a binary tree,

and then prove �eorem 5.3.

E.1 Transformation into Binary Tree
Lemma E.1. Given any tree with n nodes (suppliers), there exists a binary tree with additional nodes

which has the same solution (q∗i , . . . ,q∗n ,α∗, β1, . . . , βn) for those nodes as the original network. �e
binary tree has O(n) nodes.

Proof. Take any node i that has ki > 2 children. For any two children introduce a dummy

parent node. For any two dummy parent nodes introduce a new level of dummy parent nodes.

Continue this process until there are 2 or less nodes in the uppermost layer, and then connect them

to node i (See Fig. 7). �e capacities of the lines immediately connected to the children are the

same as those in the original graph. �e capacities of the new lines are in�nite.

�e total number of introduced dummy nodes by this procedure is

O(ki
2

+
ki
4

+ · · · + 2) = O(ki ).

Since there are 1+k1+k2+ · · ·+kn = n nodes in total in the original tree, the number of introduced

additional nodes isO(k1 + · · ·+kn) = O(n). �erefore the total number of nodes in the new (binary)

tree is O(n). �

E.2 Proof of Theorem 5.3
Most of the proof is similar to the one presented in Section D. For this reason, we only highlight

the main points. �e proof consists of ϵ-accuracy and run-time, as before.
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E.2.1 ϵ-Accuracy.
Let Q1, . . . ,Qn , F1, . . . , Fn ,A ′,B ′ denote some δ -discretizations of sets [0,d1 + f

ch1(1) + f
ch2(1) −

f1], . . . , [0,dn + f
ch1(n) + f

ch2(n) − fn], [f1, f1], . . . , [fn , fn], A, B, respectively. Note that if any line

capacities are in�nite, the intervals can be replaced by [0,∑n
i=1

di ] instead. Similar as in Section D,

the constraints enforce an upper bound on the value of δ as δ ≤ Cϵ, for some constant C . Based

on Lemma (D.1), the sizes of the sets will be Nqi = O

(
1

ϵ

)
∀i , Nfi = O

(
1

ϵ

)
∀i , Nα = O

(
1

ϵ l1

)
and

Nβ = O

(
1

ϵ l2

)
E.2.2 Run-Time Analysis.

For every �xed α , the run-time of the required computations is as follows.

(1) �e time complexity of computing дi (qi ;α) for each node i and each �xed value of qi is

O(NβNqi ). �erefore, computing it for all nodes and all values takes O(nNβN
2

q ).
(2) Computing hi (fi ;α) for each node i and each �xed value of fi takes O(N 2

f ), because there

are O(Nf ) ×O(Nf ) pairs of values for (f
ch1(i), fch2(i)) (qi is automatically determined as the

closest point in Qi to di + f
ch1(i) + f

ch2(i) − fi ). �erefore, its overall computation for all

nodes and all values takes O(nN 3

f ).

As a result, the overall computation takes Nα ×
(
O

(
nNβN

2

q

)
+O

(
nN 3

f

))
, which isO

(
n( 1

ϵ )l1+l2+2
)
+

O
(
n( 1

ϵ )l1+3
)
, or equivalently O

(
n( 1

ϵ )l1+max{l2,1}+2

)
. �
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