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Abstract

May’s Theorem (1952), a celebrated result in social choice, provides the foundation

for majority rule. May’s crucial assumption of symmetry, often thought of as a procedural

equity requirement, is violated by many choice procedures that grant voters identical

roles. We show that a modification of May’s symmetry assumption allows for a far

richer set of rules that still treat voters equally, but have minimal winning coalitions

comprising a vanishing fraction of the population. We conclude that procedural fairness

can coexist with the empowerment of a small minority of individuals. Methodologically,

we introduce techniques from group theory and illustrate their usefulness for the analysis

of social choice questions.
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1 Introduction

Literally translated to “power of the people”, democracy is commonly associated with two

fundamental tenets: equity among individuals and responsiveness to their choices. May’s

celebrated theorem provides foundation for voting systems satisfying these two restrictions

(May, 1952). Focusing on two-candidate elections, May illustrated that majority rule is unique

among voting rules that treat candidates identically and guarantee equity and responsiveness.

Extensions of May’s original results are bountiful.1 However, what we view as a procedural

equity restriction in his original treatment—often termed anonymity or symmetry—has

remained largely unquestioned.2 This restriction requires that no two individuals can affect

the collective outcome by swapping their votes. Motivated by various real-world voting

systems, this paper focuses on a particular weakening of this restriction. While still capturing

the idea that no voter carries a special role, our equity notion allows for a large spectrum of

voting rules, some of which are used in practice, and some of which we introduce. We analyze

winning coalitions of equitable voting rules and show that they can comprise a vanishing

fraction of the population. Methodologically, we demonstrate how techniques from group

theory can be useful for the analysis of fundamental questions in social choice.

To illustrate our motivation, consider what we term an electoral college rule, a stylized

version of the classical model of representative democracy: m states each have k residents.

Each state selects, using majority rule, one of two representatives. Then, again using majority

rule, the m representatives select one of two policies (see Figure 1 for the case m = k = 3).

Because all states have the same population, all residents are treated equally ex-ante. For

example, if voters cast their votes independently from the same distribution, each voter has

the same probability of being pivotal.

However, this seemingly equitable rule does not satisfy May’s original symmetry restriction.
1See, e.g., Cantillon and Rangel (2002), Fey (2004), Goodin and List (2006), and references therein.
2An exception is Packel (1980), who relaxes the symmetry restriction and adds two additional restrictions

to generate a different characterization of majority rule than May’s.
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Figure 1: An electoral college voting rule. Voters are grouped into three states: {1, 2, 3},

{4, 5, 6} and {7, 8, 9}. Each state elects a representative by majority rule, and the election is

decided by majority rule of the representatives.

Individuals could swap their votes and change the outcome. In Figure 1, for example, suppose

voters {1, 2, 3, 4, 5} vote for representatives supporting policy A, while voters {6, 7, 8, 9} vote

for representatives supporting policy B. With the original votes, policy A would win; but

swapping voters 5 and 9 would cause policy B to win.

Even though electoral college rules do not satisfy May’s symmetry assumption, their

fundamental characteristics “appear” equitable. What makes a voting rule equitable? We

suggest the following definition. In an equitable voting rule, every voter has the same role;

that is, for any two voters v and w, there is some permutation of the full set of voters that

sends v to w, such that applying this permutation to any voting profile leaves the election

result unchanged. An implication of our equity notion is that, as in the electoral college rule,

if voters cast their votes independently from the same distribution, each voter has the same

probability of being pivotal.

Under this definition, electoral college rules are indeed equitable. For instance, in the case

depicted in Figure 1, voters 1 and 2 clearly play the same role, since the permutation that

swaps them leaves any election result unchanged. But 1 and 4 also play the same role: the

3



Figure 2: Cross-committee consensus voting rule. The union of a row and a column is a

winning coalition.

permutation that swaps the first state with the second state also leaves outcomes unchanged.

There is a large variety of equitable rules that are not electoral college rules. An example

is what we call Cross Committee Consensus (CCC) rules. In these, each voter is assigned to

two committees: a “row committee” and a “column committee” (see Figure 2). If any row

committee and any column committee both exhibit consensus, then their choice is adopted.

Otherwise, majority rule is followed. For instance, suppose a university is divided into

equally-sized departments, and each faculty member sits on one university-wide committee.

CCC corresponds to a policy being accepted if there is a strong unanimous lobby from a

department and from a university-wide committee, with majority rule governing decisions

otherwise. This rule is equitable since each voter is a member of precisely one committee of

each type, and all row (column) committees are interchangeable.

We provide a number of further examples of equitable voting rules, showing the richness

of this class and its versatility in allowing different segments of society—states, university
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departments, etc.—to express their preferences.

In order to characterize more generally the class of equitable voting rules, we focus on

their winning coalitions, the sets of voters that decide the election when in agreement (Reiker,

1962). In majority rule, all winning coalitions include at least half of the population. We

analyze how small winning coalitions can be in equitable voting rules.

When the number of voters n is a perfect square, and when committee sizes are taken to

be
√
n, the CCC rule has a winning coalition of size 2

√
n− 1.

Our main result is that, for any n, there always exist simple equitable voting rules that

have winning coalitions of size ≈ 2
√
n. Conversely, we show that no equitable voting rule can

have winning coalitions of size less than
√
n. Methodologically, the proof utilizes techniques

from group theory and suggests the potential usefulness of such tools for the analysis of

collective choice.

May’s Theorem ties equity considerations with a requirement that a majority of the

population support any collectively chosen alternative. Our results suggest that procedural

fairness can, in fact, coexist with the empowerment of a small minority of the population.

Interestingly, rules that give decisive power to minorities of size
√
n appear in other

contexts of collective choice and have been proposed for apportioning representation in the

United Nations Parliamentary Assembly, and for voting in the Council of the European

Union, see Życzkowski and Słomczyński (2014).3 Our results provide a general axiomatic

foundation for voting rules that achieve equity among voters.

Another of our results pertains to a generalization of electoral college rules. In generalized

electoral college (GEC) voting rules, voters are hierarchically divided into sets (for example,

states) that are, in turn, divided into subsets (for example, counties), and so on. For each

set, the outcome is given by majority rule over the decisions of the subsets.4

3These proposed rules relied on the Penrose Method (Penrose, 1946), which suggests the vote weight of

any representative should be the square root of the size of the population she represents, when majority rule

governs decisions. Penrose argued that this rule assures equal voting powers among individuals.
4These rules have been studied under the name recursive majority in the probability literature (see, e.g.,

Mossel and O’Donnell, 1998).
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While non-equitable GEC rules can have very small winning coalitions, we show that

equitable GEC rules for n voters cannot have winning coalitions of size nlog3 2 or smaller.5

Certainly, beyond equity, another important aspect of voting rules is their susceptibility to

manipulation. For instance, with information on voters’ preferences, electoral college rules are

sensitive to gerrymandering (McGann et al., 2016). We view the question of manipulability

as distinct from that of equity. Our analysis sheds light on the class of equitable voting rules

that can then be compared in terms of vulnerability to various manipulations.

Last, we explore a stronger notion of equity. We consider k-equitable voting rules in

which every coalition of k voters plays the same role. For k > 1, this notion implies equity,

but is not equivalent to it. The analysis of k-equitable rules is delicate, due to group- and

number-theoretical phenomena. We show that there do exist, for arbitrarily large population

sizes n, voting rules that are 2- and 3-equitable, and have winning coalitions as small as
√
n.

However, for “most” sufficiently large values of n, and for any k ≥ 2, the only k-equitable,

neutral, and responsive voting rule is majority. Thus, while equity across individuals allows

for a broad spectrum of voting rules, equity among arbitrary fixed-size coalitions places the

restrictions May had suggested, as long as the electorate is sufficiently large. While k-equity is

arguably a strong restriction, it is still far weaker than May’s original symmetry requirement.

In that respect, our results here provide a strengthening of May’s conclusions.

2 The Model

2.1 Voting rules

Let V be a finite set of voters. We denote V = {1, . . . , n} so that n is the number of voters.

Each voter has preferences over alternatives in the set Y = {−1, 1}. We identify the possible
5For an example of a non-equitable GEC with a small winning coalitions, consider voters {1, . . . , 1000}

and assume three states divide the population into three sets of voters: {{1}, {2}, {3, . . . , 1000}. Then {1, 2}

is a winning coalition. The value log3 2 ≈ 0.63 is the Hausdorff dimension of the Cantor set. As it turns out,

there is a connection between equitable GEC’s that achieve minimal winning coalitions and the Cantor set.
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preferences over Y with elements of X = {−1, 0, 1}, where −1 represents a strict preference

for −1 over 1, 1 represents a strict preference for 1 over −1, and 0 represents indifference

between −1 and 1. We denote by Φ = XV the set of voting profiles; that is, Φ is the set of

all functions from the set of voters V to the set of possible preferences X. A voting rule is a

function f : Φ→ X.

An important example is the majority voting rule m: Φ→ X, which is given by

m(φ) =



1 if |φ−1(1)| > |φ−1(−1)|

−1 if |φ−1(1)| < |φ−1(−1)|

0 otherwise.

A vote of 0 can be interpreted as abstention or indifference.

2.2 May’s Theorem

We now define several properties of voting rules. Following May (1952), we say that a voting

rule f is neutral if f(−φ) = −f(φ). Neutrality implies that both alternatives −1 and 1 are

treated symmetrically: if each individual flips her vote, the final outcome is also flipped.

Again following May (1952), we say that a voting rule f is positively responsive if increased

support for one alternative makes it more likely to be selected. Formally, f is positively

responsive if f(φ) = 1 whenever there exists a voting profile φ′ satisfying the following:

1. f(φ′) = 0 or 1.

2. φ(v) ≥ φ′(v) for all v ∈ V .

3. φ(v0) > φ′(v0) for some v0 ∈ V .

Thus, f(φ) ≥ f(φ′) if φ ≥ φ′ coordinate-wise, and if f(φ) = 0 then any change of φ breaks

the tie.

We now turn to our notion of equity. Denote by Sn the set of permutations of the n

voters. To any permutation of the voters we can associate a permutation of the set of voting
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profiles Φ: given a permutation σ ∈ Sn, the associated permutation on the voting profiles

maps φ to φσ, which is given by φσ(v) = φ(σv). The automorphism group of the voting rule

f is given by

Autf = {σ ∈ Sn | ∀φ ∈ Φ, f(φσ) = f(φ)}.

That is, Autf is the set of permutations of the voters that leave election results unchanged,

for every voting profile.

We can interpret a permutation σ as a scheme in which each voter v, instead of casting

her own vote, gets to decide how some other voter w = σ(v) will vote. A permutation σ is

in Autf if applying this scheme never changes the outcome: when each w = σ(v) votes as v

would have, the result is the same as when each player v votes for herself.

Another interpretation of Autf is through pivotality, or through the Shapley-Shubik and

Banzhaf indices of players in simple games, see Dubey and Shapley (1979). Consider a setting

in which all voters choose their votes identically and independently at random. Given such a

distribution, we can consider the probability ηv that a voter v is pivotal.6 It is easy to see

that if there is some σ ∈ Autf that maps v to w, then ηv = ηw, implying that v and w have

the same Banzhaf index. In fact, when there exists σ ∈ Autf that maps v to w, any statistic

associated with a voter that treats other voters identically—the probability the outcome

coincides with voter v’s vote, the probability that voter v and another voter are pivotal,

etc.—would be the same for voters v and w.

May (1952)’s notion of equity, often termed symmetry or anonymity, requires that swapping

the votes of any two voters will not affect the collective outcome. It can be succinctly stated

as Autf = Sn.

May’s Theorem. Majority rule is the unique symmetric, neutral, and positively responsive

voting rule.

Perhaps surprisingly, the requirement of symmetry is far too strong for May’s conclusions.

In fact, as we show in Lemma 4 in Appendix B.5, a requirement that Autf be restricted to
6A voter v is pivotal at a particular voting profile if a change in her vote can affect the outcome under f .
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even permutations would suffice for his results.7 The set of even permutations contains half

the set of all permutations.

2.3 Equitable Voting Rules

As we have already seen, the requirement that Autf coincides with all permutations, or all

even permutations, precludes many examples of voting rules that “appear” equitable. What

makes a voting rule appear equitable? Our view is that, in an equitable voting rule, all voters

carry the same role in the election: ex-ante, there is no reason for any voter to be envious of

another. Any voter could play the role of another voter, with the proper relabeling of the

electorate, without affecting outcomes. From the perspective of pivotality, if voters each have

preferences that are independent and identically distributed, in an equitable voting rule, all

voters should have the same probability of being pivotal. Formally, we propose the following

definition.

Definition 1. A voting rule f is equitable if for every v, w ∈ V there is a σ ∈ Autf such

that σ(v) = w.

In words, a voting rule is equitable if any two voters play the same role. That is, for any

two voters v and w, there is some permutation of the population that relabels v as w such

that regardless of voters’ preferences, the outcome is unchanged relative to the original voter

labeling. This is inherently an ex-ante notion of equity. Before knowing anyone’s preferences,

all voters carry the same influence.

To better understand the meaning of a voting rule being equitable, consider nine voters

numbered {1, . . . , 9}, who use the simple electoral college rule depicted in Figure 1. Voters are

effectively divided into three states {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}. Now, imagine that one

learns voters’ names, as well as their state, but not their associated numbers. For example,
7A permutation σ is even if the number of pairs (v, w) such that v < w and σ(v) > σ(w) is even. Put

another way, define a transposition to be a permutation that only switches two elements, leaving the rest

unchanged. A permutation is even if it is the composition of an even number of transpositions.
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suppose that Alex, Andrea, and Avery are in one state, that Bailey, Blair, and Brooke are in

another, and that Carter, Casey, and Channing are in yet another. The rule being equitable

is tantamount to it being impossible to deduce, from the outcomes of every voting profile,

the number associated with any given name. Indeed, such information is consistent with, say,

Alex taking any role in {1, . . . , 9}.

In group-theoretic terms, f is equitable if and only if the group Autf is transitive.8 Insights

from group theory related to the characteristics of transitive groups are therefore at the

heart of our main results. Appendix A contains a short primer on the basic group theoretical

results that are useful for our analysis.

2.4 Winning coalitions

One way to describe a voting rule is through its winning coalitions, the sets of individuals

whose consensual vote determines the alternative chosen. Formally, we say that a subset

S ⊆ V is a winning coalition with respect to the voting rule f if, for every voting profile φ

and x ∈ {−1, 1}, φ(v) = x for all v ∈ S implies f(φ) = x.

Under majority rule, all winning coalitions are of size n/2. Our results will show that

relaxed equity requirements allow for voting rules with far smaller winning coalitions.

Note that no two winning coalitions of f can be disjoint. Indeed, suppose thatM,M ′ ⊆ V

are two disjoint winning coalitions. We can then have a profile under which members of

M vote unanimously for −1 and members of M ′ vote for 1. In such cases, f would not be

well-defined. The following lemma illustrates a version of the reverse.

Lemma 1. Let W be a collection of subsets of V such that every pair of subsets in W has

nonempty intersection. Then there is a neutral, positively responsive voting rule for V for

which every set in W is a winning coalition.

Intuitively, the construction underlying Lemma 1 is as follows. First, for any vote profile

in which a winning coalition votes for 1 (or −1) in consensus, we specify the voting rule
8It turns out our equity restriction is effectively the definition of transitivity. The notion of transitive

groups is not directly related to transitivity of relations often considered in Economics.
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to also take the value of 1 (or −1). For any profile in which no winning coalition votes

in consensus, we define the voting rule to follow majority rule. By definition, the winning

coalitions of this voting rule contain the subsets we started out with. As we show, it is also

neutral and positively responsive.

This lemma will allow us to discuss neutral and positive-responsive equitable voting rules

through the restrictions they impose on winning coalitions.

3 Winning Coalitions for Equitable Voting Rules

In this section, we provide bounds on the size of winning coalitions in general equitable voting

rules. We then restrict attention to the special class of equitable voting rules that generalize

electoral college rules and characterize the size of winning coalitions for those.

3.1 Winning Coalitions of Order
√

n

We first illustrate that for any population size, there always exist equitable voting rules that

have winning coalitions that are far smaller than n/2.

Theorem 1. For every n there exists a neutral, positively responsive equitable voting rule

with winning coalitions of size at most 2
√
n+ 2.

An important implication of the Theorem is that, under an equitable voting rule, winning

coalitions can account for a vanishing fraction of the population. In that respect, procedural

equity can go hand in hand with the empowerment of a small minority of the population.

The cross committee consensus rule described in the Introduction is an example of an

equitable voting rule in which winning coalitions are O(
√
n). However, there is an algebraic

subtlety—the construction of that rule relies on n being an integer squared. Certainly, an

analogous construction can be made for any n that can be described as n = k ·m for some

integers k and m by considering some committees to be of size k and others to be of size

m. Such constructions, however, would not necessarily generate voting rules with winning

coalitions of size close to
√
n.
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Figure 3: A cyclic voting rule.

Nonetheless, there is a simple class of rules that justifies the result in Theorem 1. A

voting rule f : Φ→ X is a cyclic voting rule if there is a σ ∈ Autf such that for any a, b ∈ V

there is some i ∈ N such that σi(a) = b.

Intuitively, a voting rule is cyclic if the voters can be arranged on a circle in such a way

that if all voters shift to the right the same number of spaces and vote the same way, the

outcome of the vote is the same. An example of a cyclic voting rule is illustrated in Figure 3.

Formally, the rule in this example is defined as follows:

• For any n, denote k = d
√
ne. We mark in blue the subset of the voters {1, . . . , n} given

by {1, 2, . . . , k}, as well as those that are equal to 0 modulus k.

• If all voters marked blue vote for x ∈ {−1, 1}, then x is the outcome.

• Similarly, if all voters who are exactly i spaces to the right of a voter marked blue vote

for x ∈ {−1, 1}, then x is the outcome.

• If neither of the above conditions obtains, then the outcome is decided by majority.
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If proximity on the circle signifies similarity on some relevant dimension—field of interest in

a university, specialty in a firm, etc.—this rule requires winning coalitions to be composed of a

sufficiently large lobby of similar individuals together with a sufficiently large lobby of diverse

individuals. In that respect, this rule bears a resemblance to the cross committee consensus

rule, which also requires two coalition types to agree in order to guarantee an outcome.

Cyclic voting rules are equitable by construction. Indeed, if any individual i desires the

role of individual j, a permutation defined by a rotation of individuals that leaves individual

i in j’s position would certainly render outcomes unchanged. Furthermore, this example

illustrates that, for every electorate size n, there exist cyclic voting rules with winning

coalitions that entail O(
√
n) members.9

We now provide a lower bound on the size of minimal coalitions in equitable voting rules.

While this bound is far smaller than n/2, it is still substantial.

Theorem 2. Every winning coalition of an equitable voting rule has size at least
√
n.

The lower bound of
√
n on a winning coalition’s size is tight: in the proof of Theorem 6 in

Appendix C, we construct, for arbitrarily large n, an equitable voting rule that has winning

coalitions of size exactly
√
n, rounded up to the nearest integer.

The proof of Theorem 2 relies on group-theoretic results described in Appendix A. To

gain some intuition for the bound, suppose, as in the example above, that voters are located

on a circle and that Autf corresponds to all rotations. These are permutations that relabel

voter v as voter v + x (modulo n) for some x = 0, 1, ..., n− 1. We know that two winning

coalitions cannot be disjoint. Take, then, any winning coalition S and denote by S + x the

winning coalition that is derived by adding x (again, modulo n) to the label of each member.

It follows that S and S + x must have a non-empty intersection. Therefore, if we look at all

the differences between two elements of S (i.e., elements of the form a− b, where a, b ∈ S),

they encompass all permutations in Autf . In particular, the cardinality of these differences is
9When the number of voters is prime, every equitable voting rule is cyclic. Hence, in some sense, cyclic

voting rules are an important class among equitable rules, as they are guaranteed to exist for all n.
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n. On the other hand, the number of such differences is certainly bounded by the number of

ordered pairs of members in S, which is |S|2. It follows that |S|2 ≥ n, generating our bound.

3.2 Generalized Electoral College Rules

Our discussion in the introduction suggested that voting rules mimicking the U.S. electoral

college are equitable, if not symmetric à la May (1952). Formally, a voting rule f : Φ→ X is

a generalized electoral college (GEC) if the following holds.

• If V = {v} is a singleton, then f(φ) = φ(v).

• If V is not a singleton, there exists a partition {V1, . . . , Vd} of V into d sets such that

f(φ) = m(f1(φ|V1), f2(φ|V2), . . . , fd(φ|Vd
)),

where each fi : XVi → X is some generalized electoral college rule, φ|Vi
is φ restricted

to Vi, and m is the majority rule.

Any GEC rule is associated with a rooted tree that captures voters’ hierarchical structure

(as in Figure 4 for the case of d = 3). A GEC voting rule is equitable if, in the induced tree,

the vertices in each level have the same degree.10

The following result characterizes the size of winning coalitions in GEC voting rules.

Theorem 3. If f is an equitable generalized electoral college rule for n voters, then a winning

coalition must have size of at least nlog3 2. Conversely, for arbitrarily large n, there exist

equitable generalized electoral college voting rules with winning coalitions of size nlog3 2.

There is an intriguing connection between this characterization and the so-called Hausdorff

dimension of the Cantor set11, which is log3 2 ≈ 0.63. The connection arises from the fact
10Intuitively, the permutations required to shift one voter’s role into another require the shift of that voter’s

entire “state” into the target role’s “state”, which can be done only when their numbers coincide.
11The Cantor set can be constructed by starting from, say, the unit interval and iteratively deleting the

open middle third of any sub-interval remaining. That is, in the first iteration we are left with [0, 1/3]∪ [2/3, 1],

in the second iteration we are left with [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1], etc. The fractal or Hausdorff

dimension is a measure of “roughness” of a set. See Peitgen et al. (1993) and references therein.
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Figure 4: Generalized electoral college voting rule. The leafs of the tree (at the bottom)

represent the voters. At each intermediate node the results of the three nodes below are

aggregated by majority.

that GEC rules with the smallest winning coalitions are those in which, at each level, the

subdivision is into three groups. In such rules, to construct a winning coalition, two of the

three top “representatives” need to agree. Then, two of the voters of these representatives

need to agree, and so on recursively. This precisely mimics the classical construction of the

Cantor set.

4 k-Equitable Voting Rules

So far, we have been focusing on voting rules that are robust to any individual switching

roles. Naturally, one could extend the notion and contemplate rules that are robust to larger

coalitions of voters changing their roles in the population. This section analyzes such rules for

arbitrary size k of coalitions. With such harsher restrictions on collective-choice procedures,

results similar to May’s reemerge, though with important caveats.

Definition 2. A voting rule is k-equitable for k ≥ 1 if for every pair of ordered k-tuples

(v1, . . . , vk) and (w1, . . . , wk) (with vi 6= vj and wi 6= wj for all i 6= j), there is a permutation

σ ∈ Autf such that σ(vi) = wi for i = 1, . . . , k.
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Intuitively, k-equitable voting rules are ones in which every group of k voters has the

same role in the election. This restriction is certainly harsher than that imposed for equitable

rules. Indeed, consider the example above corresponding to Figure 1. 2-equity implies that,

say, the pair (Alex, Andrea) could potentially be associated with any pair (i, j). But this is

clearly not true here, since Alex and Andrea are in the same state, and thus it is impossible

that, e.g., they are associated with the numbers 1 and 4.

In group-theoretic terms, f is k-equitable if and only if the group Autf is k-transitive.

The group of permutations of a finite set of size n is certainly k-transitive, as long as n ≥ k.

The group of even permutations of a set of size n is also easily seen to be k-transitive.12

At the heart of our analysis of k-equitable voting rules is the observation that when

Autf is the group of even permutations, every winning coalition must be of size at least n/2

(Lemma 4).

Certainly, majority rule is 2-equitable. As can be easily verified, none of the voting-rule

examples mentioned so far, other than majority, is 2-equitable. As it turns out, for most

population sizes, large winning coalitions, of size of at least n/2, are endemic to 2-equitable

voting rules.

We say that almost every natural number satisfies a property P if the subset NP ⊆ N of

the natural numbers that have property P satisfies

lim
n→∞

|NP ∩ {1, . . . , n}|
n

= 1.

Theorem 4. For almost every natural number n, every 2-equitable voting rule for n voters

has no winning coalitions of size less than n/2. In particular, for almost all n, the only

2-equitable, neutral, positively responsive voting rule is majority.

The proof of Theorem 4 relies on group-theoretical results (Cameron et al., 1982). As it

turns out, there is a vanishing share of integers for which there exist 2-transitive groups that
12Identifying the set of voters with the numbers 1, ..., n, recall that a permutation σ is even if the number

of pairs (i, j) such that i < j and σ(i) > σ(j) is even.
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are neither the set of all permutations nor the set of even permutations. Since those latter

groups yield winning coalitions of size at least n/2, the result follows.

While Theorem 4 suggests that for most population sizes, 2-equitable rules imply large

winning coalitions, we construct 2-equitable rules with small winning coalitions. A general

construction of such rules is rather technically involved and uses finite vector spaces. To

glean some intuition, we explain an analogous construction using standard vector spaces and

assuming a continuum of voters.

Suppose voters are identified with the set of one-dimensional subspaces of R3: i.e., each

voter is identified with a line that passes through the origin. Now suppose winning coalitions

are the two-dimensional subspaces: if all voters on a plane agree, that is the election outcome,

otherwise the election is undecided.13 Clearly, the winning coalitions are much smaller than the

electorate (or indeed of “half of the voters”) in the sense that they have a smaller dimension.

Invertible linear transformations of R3 permute the one-dimensional subspaces, and the

two-dimensional subspaces, and so constitute automorphisms of this voting rule. Equity

follows since for any two non-zero vectors v and u, we can find some invertible linear

transformation that maps v to u. Moreover, the voting rule is also 2-equitable—given a pair

of distinct voters (v1, v2), and given another such pair (u1, u2), we can find some invertible

linear transformation that maps the former to the latter. Thus, every pair of voters plays

the same role.

Our construction of 2-equitable voting rules for finite sets of voters is identical, using

finite vector spaces instead of R3 (see Theorem 6). Figure 5 shows a 2-equitable voting rule

constructed in this way, for 7 voters. In the figure, every three co-linear nodes form a winning

coalition, as well as the three nodes on the circle.14 In this construction, the size of the

winning coalition is exactly
√
n (rounded up to the nearest integer), which matches the lower

bound of
√
n in Theorem 2.

13This rule is well defined since every pair of two-dimensional subspaces intersects, and so no two winning

coalitions are disjoint.
14Figure 5 depicts what is commonly referred to as a Fano plane in finite geometry. It is the finite projective

plane of order 2.
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Figure 5: Every three co-linear points form a winning coalition, as well as the three points

on the circle (marked in blue). This voting rule is 2-equitable.

Certainly, one can replicate this construction for arbitrarily large n. For the interested

reader, precise constructions of 2- as well as 3-equitable rules for arbitrarily large populations

appear in Appendix C. However, because of number-theoretical issues, this construction

applies only for particular electorate sizes.15 These restrictions are then consistent with the

message of Theorem 4, that for most possible sizes n of the electorate, every winning coalition

of a 2-equitable rule must be of size at least n/2.

Since 3-equitable rules are, in particular, 2-equitable, the result of Theorem 4 naturally

follows for them as well, and for almost all population sizes, though not all—see Appendix C

for exceptions—winning coalitions contain at least n/2 individuals.

When considering harsher equity restrictions, results are much starker and conclusions

hold for all population sizes large enough:

Theorem 5. There exists n∗ such that for any n ≥ n∗, for any k ≥ 4, every k-equitable

voting rule has no winning coalitions of size less than n/2. In particular, the only k-equitable,

neutral, positively responsive voting rule is majority.
15The set of voters has to be of size q2k + qk + 1, for some k ≥ 1 and prime q.
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Theorem 5 follows from the following observations. As mentioned already, the group of all

permutations of a finite set of size n is certainly k-transitive, as long as n ≥ k. The group of

even permutations of a set of size n is also easily seen to be k-transitive in this case. Here we

rely on discoveries from the 1980’s and 1990’s that showed these to be the only examples of

groups that are 6-transitive and hence k-transitive for any k ≥ 6. Moreover, it was discovered

that there are only finitely many other groups that are 4-transitive or 5-transitive. These

results are a consequence of the successful completion of a large project, involving thousands

of papers and hundreds of authors, called the Classification of Finite Simple Groups, see

Dixon and Mortimer (1996).

As mentioned, we show that when Autf is the group of even permutations, every winning

coalition must be of size at least n/2 (Lemma 4). It thus follows that, except for a finite

number of possible population sizes (that are in fact all at most 24), any 4-equitable voting

rule must have winning coalitions of size at least n/2.

We stress that k-equity is a strong restriction. It requires that arbitrary coalitions of

a fixed size play the same role in the election, reminiscent of group-envy-freeness notions

considered in allocation problems (see, e.g., Varian, 1974). Nonetheless, for any fixed k,

k-equity is a far weaker restriction than May’s symmetry restriction. In that respect, Theorem

5 offers a strengthening of May’s original result.

5 Conclusions

This paper suggests that procedural equity in collective choice can go hand in hand with

the empowerment of a small set of individuals. We believe the approach taken here could

potentially be useful for various other contexts. For example, symmetric games are often

thought of as ones in which any permutation of players’ identities does not affect individual

payoffs (e.g., Dasgupta and Maskin, 1986, page 18). As is well known, such finite games have

symmetric equilibria. Interestingly, in his original treatise on games, Nash took an approach

to symmetry that is similar to ours, studying the automorphism group of the game. He
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showed that equity, analogously defined for games, suffices for the existence of symmetric

equilibria: that is, it suffices that for every two players v and w there is an automorphism

of the game that maps v to w (Nash, 1951, page 289). It would be interesting to explore

further the consequences of equity so defined in more general strategic interactions.

A A Primer on Finite Groups

This section contains what is essentially a condensed first chapter of a book on finite groups

(see, e.g., Rotman, 2012), and is provided for the benefit of readers who are not familiar with

the topic. The terms and results covered here suffice to prove the main results of this paper.

Denote by N = {1, . . . , n}. A permutation of N is a bijection g : N → N . The inverse of a

permutation g is denoted by g−1 (so g−1(g(i)) = i), and the composition of two permutations

g and h is simply gh; i.e., if k = gh then k(i) = g(h(i)).

A group—for our purposes—will be a non-empty set of permutations that (1) contains

g−1 whenever it contains g, and (2) contains gh whenever it contains both g and h.

Groups often appear as sets of permutations that preserve some invariant. In our case,

Autf is the group of permutations of the voters that preserves every outcome of f . It is easy

to see that Autf is indeed a group.

A subgroup H of G is simply a subset of G that is also a group. Given g ∈ G, we denote

gH = {gh ∈ G : h ∈ H}.

The sets gH are in general not subgroups, and are called the left cosets of H (the right cosets

are of the form Hg). It is easy to verify that all left cosets are disjoint, and that each has the

same size as H. It follows that the size of G is divisible by the size of H.

Given an element i ∈ N , we denote by Gi the set of permutations that fix i. That is,

g ∈ Gi if g(i) = i. Gi is a subgroup of G. It is called the stabilizer of i.

The G-orbit of i ∈ N is the set of j ∈ N such that j = g(i) for some g ∈ G. As it turns

out, if j is in the orbit of i then the set of g ∈ G such that g(i) = j is a coset of the stabilizer
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Gi. It follows that there is a bijection between the orbit of i and the cosets of Gi. This is

called the Orbit-Stabilizer Theorem.

Recall that G is transitive if for all i, j there is a g ∈ G such that g(i) = j. This is

equivalent to there existing only a single G-orbit, or that j is in the orbit of i for every i, j.

Therefore, if G is transitive, the orbit of i is of size n, and since we can identify the orbit

with the cosets of Gi, there are n such cosets. Since they are all the same size as Gi, and

since they form a partition of G, each coset of Gi must be of size |G|/n. We will use this fact

in the proof of Theorem 2.

B Proofs

B.1 Proof of Lemma 1

Proof of Lemma 1. Let f be the voting rule defined as follows. For a voting profile φ, if there

is a set W ∈ W such that φ(w) = 1 for all w ∈ W , then f(φ) = 1, and similarly, if there

is a set W ∈ W such that φ(w) = −1 for all w ∈ W , then f(φ) = −1. (Note that this is

well-defined, since if there are two such sets W , they must agree because they intersect.) If

not, then f(φ) is determined by majority.

That f is neutral follows immediately from the symmetry in the definition of f when

some W ∈ W agrees on either 1 or −1 and the fact that majority is neutral. To see that f is

positively responsive, suppose that f(φ) ∈ {0, 1}, φ′(x) ≥ φ(x) for all x ∈ V , and φ′(y) > φ(y)

for some y ∈ V . Since f(φ) 6= −1, there is no set W ∈ W such that φ(x) = −1 for all x ∈ W ,

hence the same is true for φ′. If there is some set W ∈ W such that φ′(x) = 1 for all x ∈ W ,

then f(φ′) = 1. If not, then the same is true of φ, and hence by positive responsiveness of

majority, f(φ′) = 1.

Finally, it is immediate from the definition of f that every W ∈ W is a winning coalition.
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B.2 Proof of Theorem 1

In this proof we identify the set of voters with {0, 1, . . . , n− 1}, the set of integers modulo n.

We can perform addition and multiplication on this set, which will be taken modulo n, so

that the result is always in this set.

Let m = b
√
nc, and consider the set of voters S = {0, 1, . . . ,m}∪{2m, 3m, . . . ,m ·m, (m+

1)m, (m + 2)m}. Note that since we consider the integers modulo n, (m + 2)m is still an

element of the set of voters.

The rotations of the set of voters is the group of cyclic permutations. Formally, the group

of rotations is identified with the integers modulo n (coinciding with the set of voters). The

application of a permutation x ∈ {0, . . . , n− 1} to a voter i is simply i+ x modulo n.

We will construct a voting rule f that is invariant to rotations. The set S described above

will be a winning coalition, as will all of its rotations S + x. The next lemma shows that

these winning coalitions are pairwise non-disjoint.

Lemma 2. S ∩ (S + x) 6= ∅ for all rotations x.

Proof. Fix a rotation x ∈ {0, . . . , n− 1}.

If x < m, then x = 0 + x, so x ∈ S ∩ (S + x), and thus S ∩ (S + x) is not empty.

If m ≤ x < (m + 2)m, then write x = km + j with 0 ≤ j < m, 0 < k ≤ m + 1. Then

m−j ∈ S =⇒ (m−j)+x ∈ S+x and (m−j)+x = (k+1)m ∈ S, so (m−j)+x ∈ S∩(S+x).

If x ≥ (m+ 2)m, then (m+ 2)m ≥ (
√
n+ 1)(

√
n− 1) = n− 1, so x = n− 1. In this case,

1 ∈ S =⇒ 1 + x = 0 ∈ S + x, so 0 ∈ S ∩ (S + x).

We have thus constructed a set of voters S of size at most 2m + 2 ≤ 2
√
n + 2 that

intersects all of its rotations. Given this, the proof of Theorem 1 follows.

Proof of Theorem 1. Let W be the collection of sets of the form S + x for some rotation x.

Lemma 2 shows that these are pairwise non-disjoint, and so by Lemma 1 we have a neutral,

positively responsive voting rule with winning coalitions of size at most 2
√
n+ 2. Moreover,
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this rule is equitable since each rotation is in its automorphism group, and since for each pair

of voters i, j there is a rotation x = j − i that maps i to j.

B.3 Proof of Theorem 2

Readers who are not familiar with the theory of finite groups are encouraged to read Section A

before reading this proof.

Recall that the group of all permutations of a set of size n is denoted by Sn.

The next lemma shows that if a group G acts transitively on {1, . . . , n}, then any set S

that intersects all of its translates (i.e., sets of the form gS for g ∈ G) must be of size at least
√
n. The proof of the theorem will apply this lemma to a winning coalition S.

Lemma 3. Let G ⊂ Sn be transitive, and suppose that S ⊆ V is such that for all g ∈ G,

gS ∩ S 6= ∅. Then |S| ≥
√
n.

Proof. For any v, w ∈ V , define Γv,w = {g ∈ G : g(v) = w}. Then Γv,w is a left coset of the

stabilizer of v. Hence, and since the action is transitive, it follows from the orbit-stabilizer

theorem that |Γv,w| = |G|
n
. If gS ∩ S 6= ∅ for all g ∈ G, then for any g ∈ G, there exists

v, w ∈ S such that g(v) = w, hence
⋃

v,w∈S
Γv,w = G.

So

|G| =
∣∣∣∣∣⋃
v,w

Γv,w
∣∣∣∣∣ ≤∑

v,w

|Γv,w| = |S|2
|G|
n
,

and we conclude that |S| ≥
√
n.

Our lower bound (Theorem 2) is an immediate corollary of this claim.

Proof of Theorem 2. Let f be an equitable voting rule for the set of voters V , and suppose

that W ⊆ V is a winning coalition for f . Then for every σ ∈ Autf , it must be the case that

σ(W ) ∩W 6= ∅ (if this failed, f would not be well-defined.) Hence, it follows from Lemma 3

that |W | ≥
√
n.
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B.4 Proof of Theorem 3

Proof of Theorem 3. Define C(n) to be the smallest size of any winning coalition in any

generalized electoral college rule for n voters. We want to show that C(n) ≥ nlog3 2.

If n = 1 then a winning coalition must be of size 1, which is ≥ 1log3 2.

If n > 1, then any generalized voting rule f is of the form f(φ) = m(f1(φ|V1), f2(φ|V2), . . . , fd(φ|Vd
)).

Because the voting rule is equitable, any minimal winning coalition for each of the fi would

be of the same size. A minimal winning coalition for f would then need to include a strict

majority of these, which is of size at least d+1
2 . So

C(n) ≥ min
d|n

d+ 1
2 · C (n/d) . (1)

Assume by induction that C(m) ≥ mlog3 2 for all m < n. Then for d|n,

d+ 1
2 · C (n/d) ≥ d+ 1

2 ·
(
n

d

)log3 2
= nlog3 2 · d+ 1

2 · d− log3 2.

Denote h(d) = d+1
2 · d

− log3 2, so that

d+ 1
2 C(n/d) ≥ nlog3 2h(d).

Note that h(d) ≥ 1. To see this, observe that h(3) = 1, and

h′(d) =
d− log 6/ log 3(d log 3

2 − log 2)
2 log 3 > 0

for d ≥ 3, and so h(d) ≥ 1 for d ≥ 3.

We have thus shown that
d+ 1

2 C(n/d) ≥ nlog3 2,

and so by (1), f(n) ≥ nlog3 2.

For the other direction, take n to be a power of 3, and let f be defined recursively by

choosing the partitions V1, . . . , Vd to be of size d = 3. A simple calculation shows that

the winning coalition recursively consisting of the winning coalitions of V1 and V3 is of size

nlog3 2.
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B.5 Proof of Theorems 4 and 5

The group of all even permutations is called the alternating group and is denoted An.

Lemma 4. Let f be a voting rule n voters. If Autf is either Sn or An then every winning

coalition for f has size at least n/2.

Proof. Suppose W ⊆ V is a winning coalition for f with |W | = k < n/2. Label the voters V

with labels 1, . . . , n such that W = {1, . . . , k}, and let π be the permutation of V given by

π(i) = n+ 1− i for i = 1, . . . , n. If bn/2c is odd, then let π be the map above composed with

the map that exchanges 1 and 2. Then π is in the alternating group, and hence π ∈ Autf .

However, π(W ) ∩W = ∅ since k < n+ 1− k, contradicting the assumption W is a winning

coalition.

Proof of Theorem 4. Denote by η(n) the number of positive integers m ≤ n for which there

is no 2-transitive group action on a set of m elements except for Sm and Am. It follows from

the main theorem in Cameron et al. (1982) that n− η(n) is at most 3n/ log(n) for all n large

enough. Since

lim
n→∞

3n/ log(n)
n

= 0,

it follows that

lim
n→∞

η(n)
n

= lim
n→∞

1− n− η(n)
n

= 1,

and so the claim follows from Lemma 4.

Proof of Theorem 5. The only 4- or 5-transitive finite groups aside from the alternating and

symmetric groups are the Mathieu groups, with the largest action on a set of size 24 (Dixon

and Mortimer, 1996). Hence, for n > 24, every 4- or 5-transitive voting rule must have

either Sn or An as an automorphism group. Furthermore, the only 6-equitable groups are Sn
or An (again, see Dixon and Mortimer, 1996). Hence, the result follows immediately from

Lemma 4.
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C 2-Equitable and 3-Equitable Rules

In this section we show that for arbitrarily large n there exist 3-equitable rules with coalitions

of size O(
√
n log n), and 2-equitable rules with coalitions of size

√
n (rounded up to the

nearest integer), which, remarkably, sharply matches our lower bound of
√
n.

Theorem 6. Let the set of voters be of size n = q2 + q + 1, for prime q. Then there is a

2-equitable voting rule with a winning coalition of size exactly equal to
√
n, rounded up to the

nearest integer.

More generally, a similar statement holds when n = q2 + q + 1 and q = pk for some k ≥ 1

and p prime. The example in Figure 5 corresponds to the case q = 2.

Proof. Let Fq denote the finite field with q elements.16

Given a positive integer m, Fmq is a vector space, where the scalars take values in Fq: it

satisfies all the axioms that (say) R3 satisfies, but for scalars that are in Fq instead of R.

Indeed, much of the standard theory of linear algebra of Rm applies in this finite setting, and

we will make use of it here.

In particular, we will make use of GL(m, q), the group of invertible, m × m matrices

with entries in Fq. Here, again, the product of two matrices is calculated as usual, but

addition and multiplication are taken modulo q. Since Fmq is finite, each matrix in GL(m, q)

corresponds to a permutation of Fmq . As in the case of matrix multiplication on Rm, these

permutations preserve the 1-dimensional and 2-dimensional subspaces. Moreover, this group

acts 2-transitively on the 1-dimensional subspaces, as any two non-colinear vectors (u, v)

can be completed to a basis of Fmq , and likewise starting from (u′, v′); then any basis can be

carried by an invertible matrix to any other basis.

With this established, we are ready to identify our set of voters with the set of 1-dimensional

subspaces of F3
q. For each 2-dimensional subspace U of F3

q, define the set SU of 1-dimensional
16Fq is the set {0, 1, . . . , q− 1}, equipped with the operations of addition and multiplication modulo q. The

primality of q is required to make multiplication invertible.
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subspaces (i.e., voters) contained in U . Let W be the collection of all such sets SU , and

define, using Lemma 1, a voting rule f in which the sets SU are winning coalitions. We need

to verify that any two winning coalitions SU and SU ′ are non-disjoint. This simply follows

from the fact that every pair of 2-dimensional subspaces intersects in some 1-dimensional

subspace, and so it follows that each pair of such winning coalitions will have exactly one

voter in common.17

A simple calculation shows that the winning coalitions are of size q + 1. Since
√
n ≤

q + 1 ≤
√
n+ 1, the claim follows.

To construct 3-equitable rules we will need the following lemma. It allows us to show,

using the probabilistic method, that for small automorphism groups we can construct voting

rules with small winning coalitions. This is useful for proving that there exist 3-equitable

voting rules with small winning coalitions.

Lemma 5. Let G be a group of m permutations of {1, . . . , n}. Then there is a neutral and

positively responsive voting rule f such that G is a subgroup of Autf , and f has winning

coalitions of size at most 2
√
n logm+ 2.

We use this lemma to prove our theorem illustrating the existence of 3-equitable rules

with small winning coalitions for arbitrarily large voter populations. We then return to prove

the lemma.

Theorem 7. For n such that n− 1 is a prime power, there is a 3-equitable voting rule with

a winning coalition of size at most 6
√
n log n.

Proof. For n such that n − 1 is the power of some prime there is a 3-transitive group of

permutations of {1, . . . , n} that is of size m < n3.18 Hence, by Lemma 5, there is a 3-equitable
17This is the reason that the winning coalitions of this rule are so small and proving a tight match to the

lower bound.
18The group PGL(2, n − 1) acts 3-transitively on the projective line over the field Fn−1, and is of size

n(n− 1)(n− 2) < n3.
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voting rule for n (i.e., a rule with a 3-transitive automorphism group) with a winning coalition

of size at most 2
√
n log(n3) = 6

√
n log n.

It is natural to conjecture that this probabilistic construction is not optimal, and that

there exist 3-equitable rules with winning coalitions of size O(
√
n).

The heart of Lemma 5 is the following group-theoretic claim, which states that when

G is small then we can find a small set S such that gS and S are non-disjoint for every

g ∈ G. These sets gS will be the winning coalitions used to prove Lemma 5. The proof of

this proposition uses the probabilistic method: we choose S at random from some distribution,

and show that with positive probability it has the desired property. This proves that there

exists a deterministic S with the desired property.

Proposition 1. Let a group G of m > 2 permutations of {1, . . . , n}. Then there exists a set

S ⊆ {1, . . . , n} with |S| ≤ 2
√
n logm+ 2 such that ∀g ∈ G we have gS ∩ S 6= ∅.

Proof. To prove this, we will choose S at random, and prove that it has the desired properties

with positive probability. Let ` = d
√
n log |G|e. Let S = S1 ∪ S2, where S1 is any subset of

X of size `, and S2 is the union of ` elements of X, chosen independently from the uniform

distribution. Hence S includes at most 2` ≤ 2
√
n log |G|+ 2 elements.

We now show that P(∀g ∈ G : gS ∩ S 6= ∅) > 0, and hence there is some set S with the

desired property. Note that for any particular g ∈ G, the distribution of gS2 is identical to

the distribution of S2. Hence

P(gS ∩ S = ∅) ≤ P(gS2 ∩ S1 = ∅)

= P(S2 ∩ S1 = ∅)

=
(
n− `
n

)`
≤ e−`

2/n

≤ e−(logm)2
.
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Thus, the probability that there is some g ∈ G for which gS ∩ S = ∅ is, by taking a union

bound, at most

me−(log |G|)2
,

which is strictly less than 1 for m > 2.

We are finally ready to prove Lemma 5.

Proof of Lemma 5. Let S be the subset of {1, . . . , n} given by Proposition 1. Let W be the

collection of sets of the form gS, where g ∈ G. This is a collection of pairwise non-disjoint

sets, since if gS and hS intersect then so do h−1gS and S, which is impossible by the defining

property of S. Since |S| = 2
√
n logm+ 2 the claim follows from Lemma 1.
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