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Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
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We explore the apparent discrepancy between experimental data and theoretical calculations of the lattice
resistance of bcc tantalum. We present an empirical potential calculation for the temperature dependence of the
Peierls stress in this system and anab initio calculation of the zero-temperature Peierls stress, which employs
periodic boundary conditions, those best suited to the study of metallic systems at the electronic-structure level.
Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental
lattice resistance to zero temperature. Although we find that the common techniques for such extrapolation
indeed tend to underestimate the zero-temperature limit, the amount of the underestimation we observe is only
10%-20%, leaving open the possibility that mechanisms other than the lattice resistance to motion of an
isolated, straight dislocation are important in controlling the process of low-temperature slip.
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I. INTRODUCTION

The study of the plasticity of crystalline materials is a ri
many-body problem involving physics on multiple leng
scales, with many remaining unexplained mysteries. T
plasticity of bcc metals, for instance, is particularly challen
ing. Unlike their fcc and hcp counterparts, the bcc met
exhibit many active slip planes, have a strong tempera
dependence in their plasticity, and violate the simple emp
cal Schmid law.1,2 Moreover, theoretical calculations of th
most basic question in plasticity, the stress needed to ind
yield at low temperature in a pure sample, differ from e
perimental extrapolations by over a factor of 2.1 The purpose
of this work is to provide needed insight into this discre
ancy.

It is generally believed that it is the physics of the^111&
screw dislocation defect which controls the low-temperat
plasticity of bcc materials.1,2 The Peierls stress, the yiel
stress at which these dislocations first begin to move spo
neously, is difficult to compare directly with experimen
Whereas most computational work on the Peierls stress m
sures the stress to move an isolated, infinitely straight di
cation at zero temperature,2–14 experiments measure th
Peierls stress at a finite temperature in systems with m
interacting, curved dislocations and in media with defe
and surfaces. As an example of the present challenges, u
model generalized pseudopotential theory~MGPT!,12 Yang
et al.9 predicted for theT50 Peierls stress a value 2.5 time
greater than experimental extrapolations.15 Because such po
tentials are not based upon first principles, it is impossible
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determinea priori whether this discrepancy is due to th
interatomic potential, the environmental complexities d
cussed above, or to a flaw in our understanding of the r
tion between the Peierls stress and the experiments.

Since it is a daunting experimental task16 to observe prop-
erties of a single dislocation locked deep in the heart o
material, accurate theoretical calculations of such syste
are essential. Nearly all theoretical calculations to date, c
cerning such dislocations, have relied upon empiri
potentials.2–6,9–14,17,18Given the empirical nature of such ca
culations, the complex directional bonding properties of b
materials, and the lack of direct comparison with expe
ments for validation, first-principlesab initio calculations of
dislocations in such systems are clearly needed. Ismail-B
and Arias19 showed that density-functional theory calcul
tions were crucial for understanding the fundamental prop
ties of the^111& screw dislocation core structure in bcc m
lybdenum and tantalum. Until that work, most computation
studies based on empirical potentials2–6,10–12supported the
idea that the dislocation core breaks symmetry, with two
ergetically equivalent ground-state structures which spr
outward along two different equivalent sets of three$110%
planes,2 similar to the concept originally proposed by Hirsc
and co-workers.2,20 Until the availability of theab initio cal-
culations, the prevailing view of the violation of the Schm
law in the bcc metals was based upon this structure.2 Ismail-
Beigi and Arias,19 in contrast, showed that for both molyb
denum and tantalum the ground-state structure wit
density-functional theory was a nondegenerate symme
core, supporting the work of Suzuki, Takeuch
©2003 The American Physical Society04-1
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and co-workers13,21,22 which first suggested that it is th
Peierls potential itself that controls the lattice resistance
not the details of the core structure. To help resolve the
crepancy between theoretical and experimental Pe
stresses, the work below provides a reliableab initio predic-
tion of the Peierls stress in bcc tantalum which is free of
unrealistic electronic boundary conditions employed in
only otherab initio prediction of the Peierls stress.7,8

Here, we show that the Peierls stress, calculated wi
density-functional theory, is over a factor-of-5 larger th
expected from extrapolation of experimental results.15 This
supports the view that the discrepancy between the exp
mental and computational predictions is largely due to
aforementioned environmental complexities, to a flaw in
lating the experimental data to the Peierls stress, or t
combination of both.

To further explore possible physical effects leading to t
discrepancy, we study the extrapolation of experimental d
to determine the zero-temperature Peierls stress. Such
trapolations generally employ fits from mesoscopic
thermodynamics/kinetic models.15,23–25However, it has not
been established that such models can accurately describ
lowest-temperature regime correctly, placing doubt on
quality of these extrapolations. To address this issue,
work below also provides a temperature- and orientati
dependent study of the Peierls stress, in which empirical
tentials are employed. We moreover show that extrapola
of our finite-temperature results using a current fitting mo
leads to an underestimation of the zero-temperature Pe
stress. This underscores the difficulty in extrapolating
experimental data accurately but does not fully account
the observed discrepancy.

In Sec. II, we review the various techniques in use
calculation of the Peierls stress in the context of efficacy
application toab initio calculations. Section III gives the
calculation of the temperature- and orientation-depend
Peierls stress in a bcc material. Section IV describes
technique for obtaining Peierls stresses within small u
cells with periodic boundary conditions. Finally, Sec. V pr
sents ourab initio prediction for the Peierls stress and com
pares and contrasts it to currently available experimental
computational values.

II. BOUNDARY CONDITIONS

The fundamental distinction among theoretical a
proaches to calculation of the Peierls stress is the choic
boundary condition. The literature describes three ty
of boundary conditions: cylindrical boundary cond
tions,2–4,10,12–14,17Greens-function~or ‘‘flexible’’ ! boundary
conditions,2,6–9,26,27 and periodic boundary conditions.4,5,18

We now briefly review each with emphasis on the uniq
challenges ofab initio electronic-structure calculations.

A. Cylindrical boundary conditions

In the practice of cylindrical boundary conditions, anis
tropic elasticity theory28–30 is used to generate a dislocatio
in the center of a cylinder. The cylinder is then separated
inner and outer regions. The atoms in the outer region a
01410
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held fixed to the solution of anisotropic elasticity theo
while the atoms in the inner region relax under the int
atomic forces. To calculate the Peierls stress, a stress is
plied to the system until the dislocation moves.

This approach suffers numerous drawbacks when app
to density- functional theory. To avoid surface effects and
properly account for the nonlinear nature of the dislocati
such cylinders generally have to be quite large. First, e
the outer cylinder is of finite size and therefore the ou
region must be sufficiently large enough so that forces
generates onto the inner region are equivalent to those
erated from an infinite continuum. The inner region al
must be sufficiently large to mitigate two effects. The inn
region must be large enough so that linear elasticity the
represents well the forces it imposes on the outer region.
inner region also must be large enough so that motion of
dislocation is not adversely affected by the fixed outer
gion, which is a concern because the fixed outer region r
resents the displacement field when a dislocation is at
center and therefore generates a extraneous force that
to prevent motion of the dislocation.17 When using simple,
interatomic potentials, the use of large cylinders mitigates
of these effects. However, this approach is not viable
density-functional calculations with their extreme compu
tional demands.

This approach, moreover, is particularly ill suited f
electronic-structure calculations because the artificial surf
at the outside of the outer region, being quite different fro
the bulk, give rise to strong scattering of the electrons v
different than that of an infinite continuum. This is partic
larly problematic for metals, because the single-particle d
sity matrix, which quantifies the effects of this scattering
the interatomic forces, decays only algebraically in metal31

The following section demonstrates that the boundary
gions should be quite large in order to prevent these sur
effects from resulting in large fictitious forces in the acti
region of the calculation.

B. Greens-function boundary conditions

The use of Greens-function, or flexible, bounda
conditions2,26,27 is an effective way to reduce the size of th
simulation cell. This approach also employs a cylindrical g
ometry. However, rather than the ‘‘inner’’ and ‘‘outer’’ ato
mistic regions of the cylindrical boundary approach, t
Greens-function approach employs three interatomic regio
an inner- ‘‘core’’ region containing the center of the disloc
tion, an intermediate ‘‘buffer’’ region, and an outermo
‘‘continuum-response’’ region. Withproper implementation,
the outer and inner regions couple only indirectly through
response of the buffer region.

In this method, all three regions respond to the prese
of a dislocation; however, the response of each region
treated differently through a number of steps. Initially,
regions are displaced by the solution to anisotropic elasti
theory. Each iteration then begins by relaxing the atoms
the core region according to the forces which they exp
ence, as computed from either an interatomic potential o
ab initio method. The forces generated from the misma
4-2
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between the outer and inner regions, which the cylindri
approach above ignores, are then relieved by moving
atoms ofall three regionsaccording to the elastic Green
function solution, leaving only the nonlinear effects from t
core region unaccounted. The next iteration then begins
relaxing these forces as described above. Iterations pro
until until the forces in the core and buffer regions are n
ligible.

What distinguishes this approach from simple cylindric
boundary conditions is that the continuum region, via
Greens-function response, is allowed to respond to the
tion of the dislocation and to the elastic response gener
by the core region as the dislocation moves. So long as
continuum-response region~i! accurately represents th
structure induced by the presence of the dislocation and~ii !
is sufficiently wide to properly reproduce the forces on t
atoms in the buffer and inner regions, this approach ac
rately describes basic properties of a dislocation.

In order for the first assumption~i! above to hold, the
inner-core region must be sufficiently large to contain
atoms with displacements outside of the linear regime
the buffer region must be sufficiently wide so that displac
atoms in the core have no direct effect on the forces exp
enced in the continuum-response region. The second
sumption~ii ! requires that the continuum-response region
sufficiently large so that its termination has no effect on
forces on the atoms in the buffer or inner region. The rad
of the calculation must therefore exceed the sum of the n
linear core radius plus twice the range over which motion
atoms creates forces within the lattice. Since the latter ra
can be quite large for electronic-structure calculations
metals, the application of this approach to electron
structure calculations can be problematic.

The Greens-function approach has predicted success
dislocation properties when applied to time-consuming e
pirical potentials6,9 which have a limited interaction range
The approach also has been applied to density-functional
culations of the Peierls stress for molybdenum a
tantalum,7,8 where its application is more questionable due
the above interactions. In these latter works, the artific
boundary on the outside of the continuum-response reg
has been treated in one of two ways,7,8 either by keeping the
surface free in vacuum or by embedding in periodic bou
ary conditions with the vacuum filled with material whic
must contain severe domain boundaries due to the incom
ibility of a net Burgers vector with periodic boundary cond
tions. To gauge the effects this artificial boundary may ha
and how far these effects penetrate from the continuu
response region into the buffer region, we perform a t
calculation within the density-functional theory pseudop
tential approach32 of the magnitude of the forces generat
onto the system due to the presence of a domain boun
similar to those in the works cited above.7,8

For this calculation, we employ the same computatio
procedure as for our production calculations in Sec. V. He
however, since this is a test, we employ only a singlek point
to sample the Brillouin zone (G). We begin with an ortho-
rhombic cell of 24 atoms of tantalum in a bulk arrangem
with supercell lattice vectorsrW15a@11̄0#, rW254a@112̄#,
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and rW35a/2@111#, where a is the lattice constant of the
cubic unit cell. We choose this cell because its length alo

rW2 is the same as the smallest simulation cell used in Ref
and 8. We then generate a domain boundary at the edg
cell along the (112̄) plane by changing the lattice vectorrW2

to rW254a@112̄#1arW3 and holding the atoms in the unit ce
fixed in their bulk locations.a is chosen such that the shift i
small and the nearest neighbor distance is always wi
95% of the bulk, representing even less of a disturbance t
that in Ref. 7, where atoms were within 90% of the bu
nearest-neighbor distance. To estimate the effect of the s
tering of electrons at the domain boundary on the interato
forces, we hold the atoms fixed and compute theab initio
forces acting upon them.

Figure 1 shows the forces along the@111# direction as a
function of distance from the center of each domain. N
that relatively large forces develop deep within the cell. T
data indicates that the continuum-response region shoul
quite large ('5210 Å! in order to prevent the response
the electrons from adversely effecting the forces in the bu
region. Note also that the buffer region should be of simi
width to prevent forces from the nonlinear displacements
the core from penetrating into the linear continuum-respo
region. Such large continuum-response and buffer regi
can make the calculation incompatible with current comp
tational techniques.

In fact, the only density-functional calculations of th
Peierls stress in this system to date employ the Gree
function method but with a distance from the buffer region
the domain boundary of only'3.7 Å . It thus is unclear
whether the continuum region in these calculations is su
ciently large enough to yield reliable results and clearly f
ther calculations are needed to support those results. Be
we provide just such calculations using the method of p
odic boundary conditions, which perturb the electronic s
tem far less than the introduction of domain boundaries.

FIG. 1. Force on the atoms, along the@111#, due to the presence
of a domain boundary. The forces are plotted as a function of
tance from the center of the unit cell. The domain boundary
generated such that the nearest-neighbor distance is always w
95% of the bulk (a51/4).
4-3
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C. Periodic boundary conditions

The final common choice for boundary conditions is
repeat the dislocation core periodically throughout space
that the dislocation is no longer isolated, but embedded
bulk material containing an array of dislocations. Cons
tency with periodic boundary conditions then demands t
the unit cell contain a net zero Burgers vectors, arran
typically in a dipolar33–35 or quadrupolar19,35,36 array. For
static properties of the dislocation core, such cells give r
able results as the elastic fields of the surrounding dislo
tions effectively cancel at the location of each core.

Periodic boundary conditions can also be used to calcu
the Peierls stress.4,5,18Care must be taken, however, becau
the material properties of a densely packed array of dislo
tions can be quite different from those of bulk. The use
large unit cells can control this effect;18 however, such a
direct, brute-force approach is not practical for computati
ally demandingab initio calculations. To make such calcula
tions feasible, they must occur in small periodic ce
thereby demanding proper accounting for the presence
many neighboring dislocations.

We have shown in another work4 that, under certain con
ditions, such effects can be accounted for accurately w
minimal extra computational effort, so that accurate valu
of the Peierls stress can be obtained from density-functio
calculations in periodic cells. Since the residual errors w
this approach are associated with the boundary conditi
the magnitude of such an error can be tested by using o
computational methods, such as empirical potentials.
previous work shows that this residual error is relative
small,4 a fact which we confirm explicitly below.

Because the deviations from the bulk arrangement at
riodic boundaries are relatively mild, such calculations
ideal for mitigating electronic boundary effects. Given t
simplicity of working with these boundary conditions an
the possibility of the extraction of accurate values for t
Peierls stress from small unit cells, we choose to work w
periodic boundary conditions throughout this work. Sect
IV outlines our procedure for calculating the Peierls str
while working with periodic boundary conditions and d
scribes the sources and the magnitude of the residual er
~See Ref. 4 for a full discussion of these issues.!

III. DEPENDENCE OF THE PEIERLS STRESS ON
ORIENTATION AND TEMPERATURE

To illustrate the complexities of relating computation
predictions to experimental findings, we now explore the
pendence of the Peierls stress in bcc tantalum on orienta
and temperature. The strong dependencies that we find
derscore the unique properties of dislocations in bcc me
To clarify, since some authors use slightly different defi
tions for the Peierls stress, here we consider the Peierls s
as the value of the stress on the maximum resolved s
stress plane~maximum value of the shear stress along
@111# direction! when the dislocationfirst moves to a differ-
ent equilibrium position.

Despite recent advances inab initio quantum-mechanica
methods, such methods are still too computationally int
01410
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sive to study such properties as the temperature depend
of the Peierls stress. Therefore, for these calculations,
employ a molecular-dynamics~MD! framework carried out
using a first-principles-based embedded atom met
~qEAM!, many-body force field~FF! for tantalum which we
have developed to allow accurate and computationally e
cient evaluation of atomic interactions.5,37

As described above, we carry out these calculatio
within periodic boundary conditions. The supercell consi
of a quadrupolar arrangement35,36 of dislocations containing
5670 atoms with lattice parametersax570.59 Å, ay
573.39 Å , andaz520.11 Å , where thex, y, andz axes of
our coordinate system are along@11̄0#, @112̄#, and @111#
directions, respectively. As we have shown in another wo4

such a cell gives very accurate values for the Peierls str

A. Orientation dependence of the zero-temperature Peierls
stress of theŠ111‹ screw dislocation

To calculate the zero-temperature Peierls stress, we
with a fully relaxed quadrupole dislocation configuration
zero stress and increase the stress in steps of 50 MPa
the dislocations move. Once the dislocations move, we
start the calculation from the structure equilibrated just pr
to the motion and increase the stress in smaller steps~5 MPa!
in order to more narrowly define the critical stress. At ea
incremental target stress, we relax the atoms and stress
the cell by running two very low-temperature (T
50.001 K) MD simulations. The first run is for 15 ps a
constant stress and temperature (NsT ensemble! using a
Parinello-Rahman barostat38 and a Hoover39 thermostat, and
the second run is for 50 ps at constant volume and temp
ture (NvT ensemble!. We find this approach to be quit
stable for relaxing the cell and the atoms of the system.

The ^111& screw dislocation has three equivalent$112%
and three equivalent$110% potential slip planes, with such
planes occurring at 30° intervals. To study the orientat
dependence of the Peierls stress, we apply three types of
shear stress to the system: asxz stress, a positivesyz stress,
and a negativesyz stress.~Note that with coordinate axes a
defined above, thez axis lies along the dislocation line.!
These stresses lead to forces on the dislocation in
^112&, ^110&-twinning, and ^110&-antitwinning directions,
respectively.28 Along these directions, we find Peier
stresses oft1125655 MPa, t twin5575 MPa, andtanti
51075 MPa, respectively. Table I shows that our essenti
zero-temperature results are in good agreement with thos
Yang and collaborators,9 who employed model generalize

TABLE I. Peierls stress for thê111& screw dislocation in tan-
talum in the twinning,̂ 112&, and antitwinning directions; the las
column shows the ratio between antitwinning and twinning Peie
stresses. MGPT results are from Yanget al. ~Ref. 9!.

Potential Twin ^112& Antitwin Asymmetry

qEAM FF 575 MPa 655 MPa 1075 MPa 1.6412
MGPT 605 MPa 640 MPa 1400 MPa 2.29
4-4
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pseudopotential theory~MGPT!,12 a different interatomic po-
tential. The result of such a strong dependence of the Pe
stress on orientation is consistent with the experiment
observed breakdown of the Schmid law in bcc metals.

To make quantitative comparison with experimen
which were carried out at nonzero temperature, we comp
our results to those of Tanget al.,15 who fitted experimenta
data40 to a mesoscopic model and then extrapolated to
tract the zero-temperature Peierls stress. Their predi
value of 248 MPa for thê112& Peierls stress is over a facto
of-2 lower than our result. This type of discrepancy, whe
the theoretical Peierls stress overestimates the z
temperature extrapolation of the experimental data by a
tor of 2 to 3, is quite generally observed.1 This discrepancy
may be due either to inaccuracies in the theoretical calc
tions or, perhaps, a flaw in the comparison between the z
temperature extrapolation of the experimental data and th
retical predictions.

B. Temperature dependence of the Peierls stress of theŠ111‹
screw dislocation

To explore potential difficulties with the zero-temperatu
extrapolation, we now present what is to our knowledge
first temperature-dependent study of Peierls stress usin
realistic potential for a bcc metal. For these calculations,
continue to employ the qEAM FF and begin with the ze
temperature, equilibrated structures. We then apply var
constant shear stresses~lower than theT50 Peierls stress! to
the system while slowly increasing the temperature~in steps
of 10 K! until the dislocations move. Similarly to theT
50.001 K case, for each temperature we first run for 10 p
the NsT ensemble and then for 25 ps inNvT ensemble.

Because the Peierls stress can depend on the rate at w
the strain is applied, to place our results in context, we fi
estimate the strain rate in our computations. The strain ra
approximatelyġ5rvdb, wherevd is the dislocation veloc-
ity, r is the dislocation density, andb is the Burgers vector
Using a dislocation density typical of the experiments15 (r
5101131/m2)and estimating the dislocation velocity as t
ratio between the distance traveled in one jump (1/3a^112&
52.717 Å! and the simulation time~35 ps!, we obtain an
effective strain rate of;10231/s, which is large compare
to the strain rates (431025) in the experiments used for th
zero-temperature extrapolations.15,40

Figure 2 summarizes our results for the temperature
pendence of the Peierls stress as a function of tempera
for the three directions (^112&, twinning, and antitwinning!.
As expected, the Peierls stress obtained from our MD sim
lations decreases rapidly with increasing temperature,
ticularly for very low temperatures. It is important to me
tion that, although our simulations are three dimensional,
dislocations move as straight lines without the formation
double kinks because our simulation cell is only seven B
gers vectors long along the dislocation lines. Such dou
kinks are quite important at finite temperatures since t
tend to lower the lattice resistance at nonzero temperatu
Our results are approximately a factor-of-2 to 4 larger th
the fit of Tang et al.15 to the experimental data o
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Wasserbach.40 We feel that this is reasonable, considering t
facts that our simulation cells do not allow for double kin
formation and that, as discussed above, our strain rates
much higher than those in the experiments.15,40

Experimental extrapolations of the Peierls stress to z
temperature generally come from mesoscopic or kine
thermodynamic model15,23–25 fits to experimental data an
are then extrapolated to zero temperature. To explore
effects of this procedure, we fit our atomistic data to suc
model, perform the extrapolation, and then compare with
direct zero-temperature results.

For the fit we use an analytical expression for the dep
dence of the Peierls stress with temperature at constant s
rate24,25 based on a mechanism involving double kink nuc
ation and propagation. This model gives for the temperatu
dependent Peierls stress

tP5
t0

bEkink
arcsinhS ġ

ġ0
kink

ebEkinkD , ~1!

whereb is 1/kBT, with kB being Boltzmann’s constant andT
the absolute temperature,Ekink is the kink energy,28 t0 is the
effective Peierls stress, andġ0

kink is the reference strain rate
Here, the effective Peierls stress is

t05
Ekink

bLkinkl P

~2!

and the reference strain rate is

ġ0
kink52br l PnD , ~3!

whereb is the Burgers vector,Lkink is the kink length,r is
the dislocation density,nD is the attempt frequency which
may be identified with the Debye frequency to a fir
approximation,24,25 and l P is the distance between two con
secutive Peierls valleys. Physically,Ekink is the minimum
energy to form a double kink,Lkink is the minimum length

FIG. 2. Temperature dependence of the Peierls stress along
ous directions: thê112&, twinning and antitwinning directions. The
fits are done for the high-temperature data using Eq.~1!. The tem-
perature is in degrees Kelvin, and the stress in mega-Pascals.
4-5
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for this double kink, andto is the stress, whose work t
move a dislocation a distancel P is equal toEkink.

Figure 2 shows the fit of Eq.~1! to our atomistic data. To
mimic how zero-temperature lattice resistances are gene
extracted, we adjust the three unknown parame
(t0 , Ekink, andġ0

kink)to fit our higher-temperature dataonly.
Intriguingly, extrapolation of our higher-temperature resu
to zero temperature leads to an underestimation of the Pe
stress of between 10% and 20%. We would also expect
a fit to data from a cell sufficiently large to allow for doub
kink formation ~which are only active at nonzero temper
tures! would lead to an even larger underestimation of
zero-temperature stress. These results therefore sugges
the general discrepancy between extrapolated experime
values and the calculated values for the zero-tempera
Peierls stress may be the result of failure of nonze
temperature models to properly describe the low-tempera
regime. However, since this discrepancy is over a factor o
when employing empirical potentials, further calculatio
would clearly be needed to determine if the underestima
due to extrapolations, when double kinks are capable
forming, could fully account for the discrepancy.

IV. ACCURATE PEIERLS STRESS CALCULATIONS IN
SMALL PERIODIC CELLS

Having underscored the need for first-principl
electronic-structure studies and already having determ
that the most effective boundary conditions for such stud
is periodic, we now focus on determining minimal cell si
appropriate to calculation of the zero-temperature Pei
stress for â 111& screw dislocation in a bcc metal when th
maximum resolved shear stress is along a$110% plane.

To minimize image effects, we employ periodic bounda
conditions with a quadrupolar unit cell. Figure 3 shows
differential displacement map2 of such a cell of size 42 Å3
41 Å in the plane perpendicular to the Burgers vector.
such a map, the dots indicate columns of atoms along

FIG. 3. Quadrupolar unit cell of size 42 Å3 41 Å : relative
displacements of neighboring columns of atoms~arrows! and dislo-
cation centers~triad of arrows!. Note, that in the calculations ha
the amount of such cells are used, which can always be done
an appropriate choice of lattice vectors~Ref. 36!.
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@111#, and the vectors between the columns of atoms in
cate the relative shift along the Burgers vector due to
presence of a dislocation between each pair of columns, w
the vectors scaled so that a vector of full length between
columns corresponds to one-third the Burgers vector. In
ground-state structure of the dislocation, triads of full leng
vectors surround the center of each dislocation, correspo
ing to a new displacement by a full Burgers vector up
completion of a closed loop about each center. In the figu
four dislocations are present.

In practice, because of symmetry, the quadrupole cell m
be reduced to half the size, when lattice vectors are prop
chosen.36 Since such a reduction is computationally efficie
we now use such smaller cells. Although the computatio
cells will now only contain two dislocations, we still refer t
it as a quadrupolar cell, in order to differentiate it from th
dipolar cell, which also has two dislocations but whose p
riodic images differ.

As Sec. II notes, for calculations of static properties su
as the ground-state dislocation core structure, the strain fi
from the surrounding dislocations in a quadrupolar array
sentially cancel at each dislocation core. However, in a
namical problem such as the calculation of the Peierls str
the dislocations begin to interact with the stress fields of
others as they begin to move. Our previous work4 shows
that, for the particular geometry considered here, accu
values for the Peierls stress can be extracted from quite s
unit cells provided the proper procedure is followed. We n
outline that procedure while reviewing the relevant bac
ground.

A. Calculation of Peierls stress within periodic
boundary conditions

To calculate the Peierls stress in a small periodic cell,
begin with lattice vectors appropriate to bulk material in t
absence of dislocations and then, while relaxing the inter
coordinates of the cell, apply increasingly pureexz strains
~using the same Cartesian coordinates as those in Sec.!
until the dislocations move. Such a strain drives the dislo
tion along the @112̄# direction.28 Before the dislocation
moves, the strain energy of the cell increases quadratica

E5
1

2
C8exz

2 , ~4!

whereC8 is an elastic constant associated with the quad
pole unit cell which can be extracted simply from the en
gies of the cell as the strain increases. The stress assoc
with this strain is

sxz5C8exz , ~5!

so that at the strain at which the dislocation moves, Eq.~5!
gives the Peierls stress.

The great benefit of the above procedure is that it requ
a minimal search through phase space in order to calcu
the Peierls stress and accounts accurately for the effec
the dislocation-dislocation interactions. TheC8 elastic con-
stant, which is a direct byproduct of the procedure and
quires no further calculations, suffices to account accura

ith
4-6



e
e
r
e
r
t-
on
w
r
c
lu
e
lk
a
e

sh
no
.
en
ch
y
riv
is
r
c
cc
e
e
b
t
t

he

-
a
ifi

an
-
in

r
i

ur
re

t
c
a

te-

se
at in
at

lls,
8%
that
-

hat
of

erate
al-
we

we

all
s is
e
our

ss
for
he
d
as

m-
bulk
e
the

, we
e
rs

s
tress
-

rve

g
re

his

nd
all,

Ab initio AND FINITE-TEMPERATURE MOLECULAR . . . PHYSICAL REVIEW B68, 014104 ~2003!
for the main effects of having a cell with a densely pack
array of dislocations.4 This correction prevents most of th
effects from working with small unit cells and can diffe
from that of an equivalent bulk cell by a value of 2 or mor

The above procedure involves several approximations
quiring justification. First, we apply strain relative to the la
tice vectors of the bulk cell in the absence of the dislocati
rather than those of the quadrupole array. Previously,
have shown through explicit calculation on model inte
atomic potentials that working with the relaxed lattice ve
tors of the quadrupolar array does not improve the va
calculated for the Peierls stress and therefore is not need4

The reason for this is that although working with the bu
lattice vectors generates artificial stresses, these are prim
diagonal (s i i ), because the greatest effect of the presenc
the dislocations is dilation of the system.4 In the present ge-
ometry, such diagonal stresses result only in a constant
in the energy over the range of applied strain and do
generate driving~Peach-Kohler28! forces on the dislocations

Some slight care must be taken with the above argum
Duesbery and others3,14 have pointed out that stresses whi
do not result in driving forces on a dislocation still ma
affect the overall value of the Peierls stress needed to d
the dislocation, because such stresses may modify the d
cation core structure,41 an effect not accounted for in linea
elasticity theory. This effect of nondriving stresses is, in fa
one of the common violations of the Schmid law that b
metals exhibit. Diagonal stresses, however, do not hav
large effect3 on the value for the Peierls stress, since th
tend to only compress or expand the core. Fortunately,
cause the bulk lattice vectors should be relatively close
that of the dislocation cell, we expect all of these effects
be quite small, as we have found previously4 and again
verify in the test calculations below.

The second simplification in our procedure is that rat
than applying a strain which imposes a puresxz stress, we
apply a pureexz strain, which also generates a residualsxy
stress.28 To generate a pure stress of the formsxz , one would
have to apply an additionalexy strain of a magnitude deter
mined by yet another elastic constant of the quadrupolar
ray. Because the calculation of this constant would sign
cantly increase the number of calculations required
because the residualsxy stress28 acts on the plane perpen
dicular to the dislocation, and thus does not create a driv
force on the dislocations, we simply apply the pureexz strain.
As with the diagonal stress components, although the
sidual in-planesxy stress does not drive the dislocations,
can affect the Peierls stress by modifying the core struct
Unlike the diagonal stress components, the in-plane st
significantly affects the Peierls stress in bcc metals.3,14 This
effect, however, will be small as long as the residualsxy
stress is small compared to the drivingsxz stress. The ratio
sxy /sxz , is equal toC9/C8, whereC8 is the elastic constan
appearing in Eq.~4! andC9 is another combination of elasti
constants. In pure bulk cubic materials these constants h
the form28

C85
1

3
~C111C442C12!,
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~2C441C122C11!,

whereCi j are the standard elastic constants for cubic ma
rials.

As evidence of the correlation between the ratio of the
constants and the errors in the Peierls stress, we note th
our previous study4 with the same empirical potential as th
in Sec. III, the ratioC9/C8 varied from approximately 1/5 in
the smallest cell studied to less than 1/10 for all other ce
while the error in extracting the Peierls stress went from 1
to less than 2%, respectively. For the potential used in
study, the value ofC9/C8 computed from bulk elastic con
stants is 1/90. Since the bulk value ofC9/C8 within density-
functional theory is less than 1/100,19 we expect the errors in
our ab initio value of the Peierls stress to be even somew
smaller. Lending further support to this view is the result
Duesbery and Vitek41 that demonstrated that the effect ofsxy
stresses on core structure is much less for the nondegen
core structure, which we have in our density-functional c
culations, than for the degenerate core structures, which
had in our interatomic potential calculations.4

B. Demonstration

To demonstrate the efficacy of the above procedure,
now proceed to extract the Peierls stress in the^112& direc-
tion for vanadium and tantalum from calculations in sm
periodic cells, when the maximum resolved shear stres
along a $110% plane. In all calculations we calculate th
Peierls stress for an infinite straight dislocation, since
periodic cells have the lattice vectoraW 35a@111#/2 along the
dislocation line. To allow comparison with the Peierls stre
of isolated dislocations, we employ empirical potentials
this demonstration. For vanadium we use t
Finnis-Sinclair42 potential with modifications made Acklan
and Thetford,43 and for tantalum we use the same potential
that used in Sec. III but with a slight adjustment of para
eters to produce a nondegenerate core structure. The
ratios for C9/C8 for vanadium and tantalum within thes
models are 1/10 and 1/6.5, respectively, much larger than
density-functional theory value.

To determine the reference value for the Peierls stress
employed cylindrical boundary conditions with larg
amounts of material, increasing the radii of the cylinde
until the boundary forces were small17 and the Peierls stres
approached an asymptotic value. To extract the Peierls s
from within periodic boundary conditions, we follow pre
cisely the procedure that Sec. IV A outlines.

Figure 4 shows the resulting energy versus strain cu
for vanadium within a periodic cell of size 42 Å3 20 Å . At
a strain'0.054, the curve exhibits a discontinuity, signalin
the critical strain for moving the dislocation. The curvatu
of the fit determines the elastic constantC8 through Eq.~4!.
Finally, combining this value ofC8 with the observed critical
strain, Eq. ~5!, yields the Peierls stress. We repeated t
procedure for tantalum as well.

Table II summarizes our results for both vanadium a
tantalum. The table shows that the errors are relatively sm
4-7
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much smaller than the general discrepancy between em
cal potentials and the experimental extrapolations. It is a
noteworthy that the potentials employed in this demons
tion exhibit C9/C8 ratios over an order-of-magnitude larg
than those of density-functional theory. From these and p
vious results,4 we conservatively estimate that the error
the Peierls stress in the density-functional calculations be
should be no greater than'20%.

V. DENSITY-FUNCTIONAL RESULTS AND DISCUSSION

A. Computational details

All of our first principles electronic-structure calculation
employ the plane-wave density-functional theory~DFT!
pseudopotential approach32 within the local-density
approximation.44,45 We employ a pseudopotential of th
Kleinman-Bylander form46 with s, p, andd nonlocal chan-
nels that have been successfully used in previous works19,47

and a plane-wave basis with cutoff of 40 Ry. As justifi
above, we employ a quadrupolar supercell, containing
dislocations, of sizesrW155a@1,1̄,0#, rW25(3/2)a@1,1,2̄#,
and rW35a@1,1,1#/2, wherea53.25 Å is the lattice constan
of the cubic unit cell. The lattice vectors of this cell areaW 1

5rW1/22rW21rW3/2, aW 25rW1/21rW21rW3/2, andaW 35rW3. To carry
out the integrations over the Brillouin zone we use a nonz
electronic temperature ofkBT50.1 eV to facilitate integra-
tion over the Fermi surface and sample the zone at six
specialk points.48 These choices give energy differences

FIG. 4. Energy versus strain of vanadium in a quadrupolar
of size 42 Å3 20 Å . Diamonds denote the energy calculated
various strains. The dotted line is a quadratic fit up to the Pei
stress.

TABLE II. Magnitude of percentage of error in calculating th
Peierls stress in periodic cells of two different sizes from empiri
potentials for vanadium and tantalum.

23 Å311.5 Å 42 Å320 Å

Ta 25% 10%
V 26% 11%
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liably to within 0.1 eV/atom. Finally, to determine the ele
tronic structure, we minimize using the analytically conti
ued functional approach,49 expressed within the DFT11
~Ref. 50! formalism.

B. Energy landscapes

To demonstrate the discrepancies that occur between
predictions of empirical potentials and first-principle
electronic-structure studies, we compare the energy la
scape for a dislocation moving along a reaction coordin
from the easy-core configuration to the hard-co
configuration2,10 for both molybdenum and tantalum as d
termined within MGPT~Ref. 12! and as calculated usingab
initio studies. Within MGPT, we carried out the calculatio
for molybdenum ourselves and used the hard-easy-core
ergy difference reported in the literature11 for tantalum.
Within density-functional theory, we have calculated the e
ergy at a number of points along the reaction pathway
tantalum, and for molybdenum we report the difference
tween the easy-core and hard-core configurations as foun
Ref. 19. We also note that, for molybdenum, within densi
functional theory, the hard-core configuration was not sta
and therefore the stable structure found within MGPT w
used as the reference state.

Figure 5 shows the results. Most noticeably, the atomi
landscapes are three times stiffer than theab initio land-
scapes. This raises the question of whether the approxim
factor-of-3 overestimate of theoretical calculations over
extrapolation of the experimental Peierls stresses to z
temperature is due to defects in the interatomic potential
to failures in the connection between the experiments and
theoretical calculations.

C. Verification of cell size

To compute the Peierls stress, we employ a cell of dim
sions 23 Å3 12 Å . To verify that long-range electronic
structure effects in metals do not interfere with results
such a cell, we compare the core structure repor
previously19 for this cell with a new calculation using
larger cell. Figure 6 shows the result for the core struct
in a cell of size 41 Å3 20 Å . The quadrupole superce
has sizes rW15 9a@1,1̄,0#, rW25 (5/2)a@1,1,2̄#, andrW3

5 a@1,1,1#/2. The lattice vectors are similarlyaW 15rW1/2
2rW21rW3/2, aW 25rW1/21rW21rW3/2, andaW 35rW3. Here we use
eight specialk points,51 which is sufficient since the lattice
vectors in the plane of the dislocation have doubled.

We note that the core structure is very similar to previo
studies19 which used a smaller cell equal in size to the o
we employ for our calculation of the Peierls stress. We the
fore do not expect the long-range nature of electronic effe
in metallic systems to greatly affect the value which sh
extract for the Peierls stress. We also note that the empir
potential results for tantalum~Sec. IV! had a very large cut-
off of 9 Å and accurate results were obtained in the smal
cells used in those calculations. These facts lend confide
to the reliability of our density-functional theory prediction
below.
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D. Results for the Peierls stress

Figure 7 shows our density-functional theory results
energy as a function of strain following the procedure of S
IV A. We regard each data point as fully relaxed when t
magnitude of the residual force on each atom is less t
0.005 eV/Å .

From Fig. 7 it is apparent that, at a strain of 0.05, t
Peierls stress has been exceeded, whereas at a strain of
the energy curve lies on the elastic solution. From the cur
ture of the data in the elastic region (C8535.2 GPa! and with
these critical strains, we bound the Peierls stress (sxz) to be
between 1.41 GPa and 1.76 GPa. These results are sli
lower than the previous density-functional results of'1.8
GPa obtained using Greens-function boundary conditio8

However, both results are still in reasonable agreement
we expect our results to be within 20% of the infinite c
limit, while it is unclear how the domain boundary affecte
the value of the Peierls stress in the Greens-function bou
ary condition calculation.

Figures 8 and 9 show differential displacement maps2 of
the dislocation configuration at strains of 0.04 and 0.05,
spectively. The solid upright triangles in the figures repres
the locations of the center of the dislocations before the
plication of strain and the upsidedown, triangles repres
the center of the dislocations once they have moved. Figu
shows the relaxed dislocation core to remain in the posi
of its unstressed state, whereas Fig. 9 shows that at an
plied strain of 0.05, the dislocation moves onto the next tr
of columns of atoms. This glide is consistent with such scr
dislocations since the initial displacement is along the (01)̄
plane. The subsequent motion should be along the (10̄)
plane, since the core symmetry is broken prior and up
motion,14 and hence overall motion is along a$112% plane
~twinning direction!, consistent with the previous density
functional theory8 calculations.

FIG. 5. ~Color online! Energy landscape per Burgers vect
along a reaction coordinate when going from the easy-core to
hard-core configurations in tantalum and molybdenum: dens
functional theory~squares in upper panels! and MGPT~curves in
lower panels!. Ab initio results for molybdenum are from Ref. 19
and the MGPT results for tantalum are from Ref. 11.
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Intriguingly, despite the fact that theab initio energy land-
scape islesscorrugated than that of the interatomic potent
by a factor of nearly 3~Fig. 5!, the aboveab initio result for
the Peierls stress is over a factor-of-2larger than the empiri-
cal potential result~Table I!. Moreover, our result is over a
factor-of-5larger than extrapolations of experimental data
zero temperature,15 a discrepancy much larger than any e
fects from the use of either our relatively small quadrupo
cell or the local-density approximation to density-function
theory. Certainly, as Sec. III shows, some of this discrepa
can be due to the extrapolation of experimental data to z
temperature. However, errors in the zero-temperature
trapolation may not likely account for all of the discrepan
since the underestimation in Fig. 2 is only'10%220%.
Although we made the conjecture that double kink format
may even make these errors larger, we would not expect
effect to account for the 500% difference between theab
initio results and the experimental findings. One must the
fore consider the possibility of other factors such as the

e
-

FIG. 6. Easy-core structure for tantalum calculated with
density- functional theory. This cell of size 41 Å3 20 Å gives very
similar results to the cell of size 23 Å3 12 Å , used in Ref. 19.

FIG. 7. Energy versus strain for tantalum in a cell of size 23
3 12 Å , calculated within density-functional theory. Squares d
note the calculate energy at various strains. The line is a quad
fit to the first five data points. The graph indicates that the po
with strain at and above 0.05 (sxz51.76 GPa! will be at a stress
above the Peierls stress.
4-9



en

e

e
st
sy
re
u
s

at

lc
di
al
o

te
ic

all
y-
an
n of
port-
ierls
ro-

o-
is

t
ch
on
g
se-

st

bo

J

er

J.

s

o
r-
o
t

of
r-
ved
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fects of junctions,52 defects, surfaces, strain-rate depend
cies, curved dislocations, screening from the presence
other dislocations, or a combination of effects to accurat
predict the experimental results.

VI. CONCLUSION

This work explores various aspects of the Peierls str
for the ^111& screw dislocation in bcc tantalum. The fir
nonzero-temperature results for the Peierls stress in this
tem show both a strong orientation- and temperatu
dependent response, consistent with experimental res
These data also demonstrate that common extrapolation
experimental data tend to underestimate the zero-temper
limit.

We have also presented a density-functional theory ca
lation for the Peierls stress within periodic boundary con
tions, the approach best suited to metallic systems. The v
we find for the Peierls stress is substantially larger than b
the experimental extrapolations and current empirical po
tial results. This difference is much larger than errors wh
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